Electronic Supplementary Information

An isolable β-diketiminato chlorosilylene[†]

Yun Xiong, Shenglai Yao, Arseni Kostenko, and Matthias Driess*

Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, D-10623 Berlin, Germany

E-mail: matthias.driess@tu-berlin.de

A Synthesis and Characterization

Synthesis and Characterization of 1	S2
Synthesis and Characterization of 2	S3
Synthesis and Characterization of 3	S3
Synthesis and Characterization of 4	S3
Synthesis and Characterization of 5	S4

B Crystallographic data

Figure S1	Molecular structure for 1	84
Table S1	Crystal data and structure refinement for 1	85
Table S2	Selected interatomic distances [Å] and angles [°] for 1	85
Figure S2	Molecular structure for 2	S6
Table S3	Crystal data and structure refinement for 2	S7
Table S4	Selected interatomic distances [Å] and angles [°] for 2	S7
Figure S3	Molecular structure for 3	S8
Table S5	Crystal data and structure refinement for 3	S9
Table S6	Selected interatomic distances [Å] and angles [°] for 3	S9
Figure S4	Molecular structure for 4	S10
Table S7	Crystal data and structure refinement for 4	S11
Table S8	Selected interatomic distances [Å] and angles [°] for 4	S11

C. Theoretical Calculation

S12

S26

D. References

1

A Synthesis and Characterization

General Considerations

All experiments were carried out under dry oxygen-free nitrogen using standard Schlenk techniques. Solvents were dried by standard methods and freshly distilled prior to use. The NMR spectra were recorded with Bruker spectrometers ARX200 and AV400 referenced to residual solvent signals as internal standards. Abbreviations: s = singlet; d = doublet; t = triplet; *sept* = septet; m = multiplet; Elemental analyses and ESI-MS were performed by the analytical labor in the Institute of Chemistry, Technical University of Berlin, Germany. IR spectra were measured from powder samples inside a nitrogen filled glovebox using a Thermofisher Nicolet iS5 IR Spectrometer (ATR-Diamond) and the OMNIC software (Version 9.3.30) for data acquisition. The ligand LH was synthesized according to literature.¹

Single-Crystal X-ray Structure Determination

Crystals were each mounted on a glass capillary in per-fluorinated oil and measured in a cold N₂ flow. The date of **1**, **2**, **3** and **4** were collected on an Oxford Diffraction Supernova, Single source at offset, Atlas at 150 K (Cu- K α -radiation, $\lambda = 1.5418$ Å). The structures were solved by direct method and refined on F^2 with the SHELX-97 ² software package. The positions of the H atoms were calculated and considered isotropically according to a riding model. CCDC 1588134 (compound 1), 1588135 (compound 2), 1588133 (compound 3), and 1588136 (compound 4) contain the supplementary crystallographic data for this paper. In the structure of compound **2**, the chlorine atom is disordered over two orientations with refined site occupancies of 0.94 and 0.06. In the structure of compound **4**, the whole molecule is disordered over two orientations with refined site occupancies of 0.82 and 0.18. It is noteworthy that a twin phenomenon cannot be excluded although the refinement model with disorder treatment is satisfied. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Synthesis and Characterization of 1

At -20 °C ⁿBuLi (13.92 mL, 2.5M in n-hexane) was dropwise added to a suspension of **LH** (13.60 g, 34.81mmol) in toluene (150 mL). The reaction mixture was raised to room temperature and stirred for 2h. To the solution HSiCl₃ (3.51 mL) was dropwise added at -20 °C. The reaction mixture was warmed to ambient temperature and was stirred for 3 days. The precipitate was separated away from the solution. Storage of the concentrated solution at -20 °C in a freezer for 1 day afforded 6.20 g (12.66 mmol, 36.4%) of **1** as pure colorless powder. M. p. 171 °C (decomp.); ¹H NMR (200.13 MHz, $[D_8]$ THF, 25°C): $\delta = 1.05$ (d, ³*J*(H,H) = 6.9 Hz, 12 H; -CH(CH₃)₃), 1.25 (d, ³*J*(H,H) = 6.9 Hz, 12 H; -CH(CH₃)₃), 3.21 (*sept*, ³*J*(H,H) = 6.9 Hz, 4 H; -CH(CH₃)₃), 5.58 (t, ³*J*(H,H) = 6.46 Hz, 1 H; Y-CH), 6.46 (t, ⁴*J*(H,H) = 1.9 Hz 1 H; SiH), 7.09 – 7.22 (m, 6 H; Ph), 7.53 (dd, ³*J*(H,H) = 6.46 Hz, ⁴*J*(H,H) = 1.9 Hz, 2 H; β -CH); ¹³C {¹H} NMR (100.61 MHz, $[D_8]$ THF, 25 °C): $\delta = 23.89$, 25.60 (CH(CH₃)₃), 30.00 (CH(CH₃)₃), 97.72 (Y-C), 125.11 (*m-Ph*), 128.75 (*p-Ph*), 144.95 (*o-Ph*), 145.60 (N-Ph), 162.97 ppm (β -C); ²⁹Si {1H} NMR (79.49 MHz, $[D_8]$ THF, 25 °C): $\delta = -97.39$ ppm (s); IR (cm⁻¹): 2960(s), 2927(w), 2867(w), 2148(w, v_{SiH}), 1608(s), 1536(vs), 1458(s), 1444(s), 1384(w), 1363(w), 1345(s), 1297(vs), 1259(w), 1194(w), 1182(m), 1145(m), 1102(w), 1077(m), 1059(m), 1002(m), 911(w), 807(w), 788(s), 758(vs), 714(m), 672(vs), 632(w), 603(m), 564(w); HR ESI-MS: *m/z*: 391.31063 (calc. 391.31078 [M-SiCl₂]⁺); elemental analysis calcd. (%) for C₂₇H₃₈N₂SiCl₂: C 66.24, H 7.82, N 5.72, S 10.35; found: C 65.98, H 7.69, N 5.83. %).

Synthesis and Characterization of 2

To a mixture of 1 (0.99 g, 2.02 mmol) and Et₂O-LiN(SiMe₃)₂ (0.49 g, 2.02 mmol) at -70 °C was added toluene (50 mL) under stirring. The mixture was allowed to warm to room temperature and stirred overnight. The precipitate was separated away via centrifugation, and the volatiles were removed under vacuum. From the residue compound 2 was obtained by extraction with diethyl ether. The collected colorless crystals of 2 are amounted to 0.80 g (1.30 mmol, 64%). M.p. 128 °C; ¹H NMR (200.13 MHz, $[D_6]C_6H_6$, 25°C): $\delta = -0.20$ (s, 9 H; SiMe₃), 0.47 (s, 9 H; SiMe₃), $1.21 (d, {}^{3}J(H,H) = 6.8 Hz, 3 H; -CH(CH_{3})_{3}), 1.23 (d, {}^{3}J(H,H) = 6.8 Hz, 3 H; -CH(CH_{3})_{3}), 1.26 (d,$ Hz, 3 H; -CH(CH₃)₃), 1.27 (d, ${}^{3}J$ (H,H) = 6.8 Hz, 3 H; -CH(CH₃)₃), 1.31 (d, ${}^{3}J$ (H,H) = 6.8 Hz, 3 H; -CH(CH₃)₃), $1.37 (d, {}^{3}J(H,H) = 6.8 Hz, 3 H; -CH(CH_{3})_{3}, 1.41 (d, {}^{3}J(H,H) = 6.8 Hz, 3 H; -CH(CH_{3})_{3}, 1.46 (d, {}^{3}J(H,H) = 6.8 Hz, 1.46 (d, {}^{3$ Hz, 3 H; -CH(CH₃)₃), 3.51 (sept, ${}^{3}J$ (H,H) = 6.8 Hz, 1 H; -CH(CH₃)₃), 3.62 (sept, ${}^{3}J$ (H,H) = 6.8 Hz, 1 H; - $CH(CH_3)_3$, 3.84 (sept, ${}^{3}J(H,H) = 6.8$ Hz, 1 H; $-CH(CH_3)_3$), 3.88 (sept, ${}^{3}J(H,H) = 6.8$ Hz, 1 H; $-CH(CH_3)_3$), 4.43 $(dd, {}^{3}J(H,H) = 3.8, 8.9 \text{ Hz}, 1 \text{ H}; \Upsilon$ -CH), 5.04 $(dd, {}^{3}J(H,H) = 1.9, 3.8 \text{ Hz}, 1 \text{ H}; (SiMe_{3})_{2}$ N-CH), 5.80 $(dddd, {}^{3}J(H,H))$ = 1.9, 8.9 Hz, ${}^{4}J(H,H) = 0.7$ Hz, 1 H; β -CH), 6.15 (t, ${}^{4}J(H,H) = 0.7$ Hz, ${}^{1}J(Si-H) = 133$ Hz, 1 H; SiH), 7.03 – 7.20 (m, 6 H; Ph); ¹³C{¹H} NMR (100.61 MHz, [D₆] C₆H₆, 25 °C): $\delta = 1.56$, 4.56 (N(SiMe_3)₂, 23.48, 23.72, 24.03, 24.61, 25.22, 25.57, 26.02, 26.33 (CH(CH₃)₃), 27.86, 28.14, 28.40, 28.43 (CH(CH₃)₃), 75.02 ((SiMe₃)₂NCH), 103.16 (Y-*C*), 123.73, 123.96, 124.92, 125.33, 127.37, 127.96 (*C*H in *Ph*), 136.14 (β-=*C*H), 138.23, 139.85, 147.05, 148.27, 148.55, 148.55 ppm (*Ph*); ²⁹Si{1H} NMR (79.49 MHz, [D₆] C₆H₆, 25°C): $\delta = -0.19$ (s, N(SiMe₃)₂), -2.94 (s, N(SiMe₃)₂), -38.2 ppm (s, SiH); HR ESI-MS: m/z: 614.35433 (calc. 614.35383 [M+H]⁺). IR (KBr, cm⁻¹): 2961(s), 2868(m), 2194(s, v_{SiH}), 1644(s), 1464(s), 1442(s), 1311(s), 1275(s), 1252(vs), 1188(s), 1159(vs), 1104(w), 1055(w), 1043(w), 1014(w), 988(vs), 953(m), 928(s), 902(s), 867(vs), 835(vs), 808(m), 798(vs), 759(s), 734(m); elemental analysis calcd. (%) for C₃₃H₅₆N₃Si₃Cl: C 64.50, H 9.18, N 6.84; found: C 64.26, H 9.33, N 6.87.

Synthesis and Characterization of 3

To a mixture of 1 (0.64 g, 1.30 mmol) and K₂Fe(CO)₄ (0.32 g, 1.30 mmol) at -30 °C was added THF (20 mL) under stirring. The mixture was allowed to warm to room temperature and stirred overnight. A dark brown precipitate was formed. The volatiles were removed under vacuum. From the residue compound 3 was obtained by extraction with diethyl ether (30 mL) as colorless crystals (0.38 g, 0.42 mmol, 65%). M.p. 103 °C (decomposed); ¹H NMR $(200.13 \text{ MHz}, [D_6]C_6H_6, 25^{\circ}C)$: $\delta = 0.45 (d, {}^{3}J(H,H) = 6.9 \text{ Hz}, 3 \text{ H}$; -CH(CH₃)₃), 1.15 (d, {}^{3}J(H,H) = 6.9 \text{ Hz}, 3 \text{ H}; - $CH(CH_3)_3$, 1.23 (d, ${}^{3}J(H,H) = 6.9$ Hz, 9 H; $-CH(CH_3)_3$), 1.27 (d, ${}^{3}J(H,H) = 6.9$ Hz, 3 H; $-CH(CH_3)_3$), 1.29 (d, ${}^{3}J(H,H) = 6.9 \text{ Hz}, 3 \text{ H}; -CH(CH_{3})_{3}, 1.40 (d, {}^{3}J(H,H) = 6.9 \text{ Hz}, 3 \text{ H}; -CH(CH_{3})_{3}), 3.29 - 3.44 (m, 1 \text{ H}; -CH(CH_{3})$ $3.65 - 3.89 (m, 3 \text{ H}; -CH(CH_3)_3), 4.23 (d, {}^{3}J(\text{H},\text{H}) = 2.5 \text{ Hz}, 1 \text{ H}; \beta-CH), 5.32 (dd, {}^{3}J(\text{H},\text{H}) = 8.9, 2.5 \text{ Hz}, 1 \text{ H}; (\Upsilon-20, 2.5 \text{ Hz}))$ CH), 5.74 (s, 1 H; SiH), 6.33 (d, ${}^{3}J(H,H) = 8.9$ Hz, 1 H; β -(=CH)), 6.91 – 7.12 (m, 6 H; Ph); ${}^{13}C{}^{1}H$ NMR $(100.61 \text{ MHz}, [D_6] C_6H_6, 25 \text{ °C}): \delta = 23.48, 23.89, 24.69, 24.75, 25.38, 25.55, 25.65 (CH(CH_3)_3), 28.12, 28.20, 24.69, 24.75, 25.28, 25.55, 25.65 (CH(CH_3)_3), 28.12, 28.20, 24.55, 25.55 (CH(CH_3)_3), 28.12, 28.20, 24.55, 25.55 (CH(CH_3)_3), 28.12, 28.20, 25.55 (CH(CH_3)_3), 28.12, 28.20, 28.20, 24.55 (CH(CH_3)_3), 28.55, 25.55 (CH(CH_3)_3), 28.25, 28.20, 24.55 (CH(CH_3)_3), 28.55 (CH(C$ 28.43 (CH(CH₃)₃), 63.66 (β-C), 99.00 (Υ-C), 124.01, 124.78, 124.82, 125.78, 127.95, 128.00 (CH in Ph), 136.30 (β- (=*C*H)), 136.43, 137.22, 147.42, 147.44, 148.59, 149.33 ppm (*Ph*); ²⁹Si{1H} NMR (79.49 MHz, [D₆] C₆H₆, 25°C): $\delta = -38.29$ (s); HR ESI-MS: m/z: 907.50753 (calc. 907.50583 [M+H]⁺). IR (cm⁻¹): 2963(s), 2926(w), 2867(w), 2238(s, v_{SiH}), 1977(s), 1934(s), 1646(s), 1450(s), 1383(s), 1363(s), 1330(w), 1252(s), 1209(w), 1183(w), 1155(vs), 1107(m), 1045(m), 963(m), 923(w), 902(w), 868(vs), 830(w), 801(vs), 786(s), 756(s), 750(s), 708(w), 662(w), 592(w), 566(w); elemental analysis calcd. (%) for C₅₄H₇₆N₄Si₂Cl₂: C 71.41, H 8.43, N 6.17; found: C 70.99, H 8.33, N 6.27.

Synthesis and Characterization of 4

At -40 °C THF (20 mL) was added to a mixture of **1** (1.52 g, 3.10 mmol) and 1,3-di(tert-butyl)-imidazol-2-ylidene (0.56 g, 3.10 mmol) under stirring. The solution was allowed to warm to room temperature, and the color changed slowly from colorless, via yellow, to orange-red with the formation of small amount of white precipitate. After overnight stirring the precipitate was separated from the solution via filtration and the volatiles were evacuated

under reduced pressure. The residue was extracted with diethyl ether (20 mL), from which compound **4** as orangered colored crystals was obtained at room temperature with a yield of 0.14 g (0.31 mmol, 10%). M. p. 188 °C (decomp.); ¹H NMR (200.13 MHz, [D₆] C₆H₆, 25°C): $\delta = 1.06$ (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.16 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.35 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.38 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 3.60 (*sept*, ³*J*(H,H) = 6.70 Hz, 2 H; -CH(CH₃)₃), 3.81 (*sept*, ³*J*(H,H) = 6.70 Hz, 2 H; -CH(CH₃)₃), 5.07 (t, ³*J*(H,H) = 6.50 Hz, 1 H; Y-CH), 7.05 (d, ³*J*(H,H) = 6.50 Hz, 2 H; β -CH), 7.10 – 7.19 ppm (m, 6 H; Ph); ¹³C{¹H} NMR (100.61 MHz, [D₆] C₆H₆, 25 °C): $\delta = 22.62$, 24.75, 24.86, 25.27 (CH(CH₃)₃), 27.94, 29.55 (CH(CH₃)₃), 95.84 (Y-CH), 123.53, 125.28, 128.18 (CH in Ph), 141.87, 143.40, 145.70 (N-Ph, o-Ph), 157.46 ppm (β -C); ²⁹Si{1H} NMR (79.49 MHz, [D₆]C₆H₆, 25°C): $\delta = -10.73$ ppm (s); HR ESI-MS: m/z: 453.24873 (calc. 453.24674 [M+H]⁺); IR (KBr, cm⁻¹): 2955(m), 2866(w), 1586(m), 1514(m), 1463(m), 1430(m), 1344(m), 1323(w), 1307(w), 1271(s), 1231(vs), 1206(s), 1151(vs), 1059(m), 963(s), 805(m), 782(m), 764(m), 754(s), 641(m); elemental analysis calcd. (%) for C₂₇H₃₇N₂SiCl: C 71.57, H 8.23, N 6.18; found: C 71.29, H 8.13, N 6.22.

Synthesis and Characterization of 5

At room temperature toluene (10 mL) was added to a mixture of **4** (0.18 g, 0.40 mmol) and S₈ (0.013 g, 0.050 mmol) under stirring. The reaction mixture turned yellow immediately. One hour later the volatiles were evacuated under reduced pressure and the residue was washed with n-hexane (5 mL). It afforded compound **5** as off-white powder with yield of 0.17 g (0.35 mmol, 88%). M. p. 220 °C (decomp.); ¹H NMR (200.13 MHz, [D₆] C₆H₆, 25°C): $\delta = 1.02$ (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.09 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.36 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 1.55 (d, ³*J*(H,H) = 6.70 Hz, 6 H; -CH(CH₃)₃), 3.76 (*sept*, ³*J*(H,H) = 6.70 Hz, 2 H; -CH(CH₃)₃), 4.74 (t, ³*J*(H,H) = 6.52 Hz, 1 H; Y-CH), 6.92 (d, ³*J*(H,H) = 6.52 Hz, 2 H; β -CH), 7.04 – 7.12 ppm (m, 6 H; Ph); ¹³C {¹H} NMR (100.61 MHz, [D₆] C₆H₆, 25 °C): $\delta = 22.76$, 24.65, 24.87, 25.36 (CH(CH₃)₃), 28.47, 29.67 (CH(CH₃)₃), 96.38 (Y-CH), 124.24, 124.90, 129.11 (CH in Ph), 139.43, 144.93, 145.47 (N-Ph, *o*-Ph), 162.66 ppm (β -C); ²⁹Si {1H} NMR (79.49 MHz, [D₆]C₆H₆, 25°C): $\delta = 28.63$ ppm (s); HR ESI-MS: m/z: 391.31103 (calc. 391.31078 [M-SiSCI+H]⁺); IR (KBr, cm⁻¹): 2961(w), 2866(w), 2788(w), 2728(m), 1599(s), 1566(vs), 1521(vs), 1463(m), 1334(m), 1309(vs), 1244(m), 1210(s), 1160(w), 1144(w), 1095(w), 1059(w), 935(w), 816(m), 798(s), 763(s), 701(w), 680(w); elemental analysis calcd. (%) for C₂₇H₃₇N₂SiSCI: C 66.84, H 7.69, N 5.77, S 6.61; found: C 66.29, H 7.53, N 5.82, S 6.46.

B. Crystallographic data

Figure S 1. Molecular structure of compound **1**. Thermal ellipsoids are drawn at 50% probability level. H atoms (except that in Si1) are omitted for clarity.

Empirical formula	C27 H38 Cl2 N2 Si	
Formula weight	489.58	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 16.9139(4) Å a= 90°.	
	$b = 6.73970(10) \text{ Å}$ $b = 95.840(2)^{\circ}.$	
	$c = 24.2997(6) \text{ Å } g = 90^{\circ}.$	
Volume	2755.66(10) Å3	
Z	4	
Density (calculated)	1.180 Mg/m3	
Absorption coefficient	2.649 mm-1	
F(000)	1048	
Crystal size	0.45 x 0.05 x 0.04 mm3	
Theta range for data collection	2.63 to 67.49°.	
Index ranges	-19<=h<=20, -7<=k<=8, -29<=l<=20	
Reflections collected	9614	
Independent reflections	4943 [R(int) = 0.0354]	
Completeness to theta = 67.49°	9° 99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.32561	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	4943 / 0 / 301	
Goodness-of-fit on F2 1.042		
Final R indices [I>2sigma(I)]	R1 = 0.0389, wR2 = 0.0954	
R indices (all data)	R1 = 0.0495, wR2 = 0.1044	
Largest diff. peak and hole	0.315 and -0.282 e.Å-3	

Table S1. Crystal data and structure refinement for 1.

Table S2. Selected interatomic distances [Å] and angles [°] for compound 1.

Cl(1)-Si(1)	2.1916(7)
Si(1)-N(2)	1.7985(16)
Si(1)-N(1)	1.9565(16)
Si(1)-Cl(2)	2.0909(7)
N(1)-C(1)	1.314(3)

N(2)-C(3)	1.354(2)
C(3)-C(2)	1.370(3)
C(1)-C(2)	1.382(3)
N(2)-Si(1)-N(1)	90.94(7)
N(2)-Si(1)-Cl(2)	110.49(6)
N(1)-Si(1)-Cl(2)	91.85(5)
N(2)-Si(1)-Cl(1)	93.37(5)
N(1)-Si(1)-Cl(1)	170.93(6)
Cl(2)-Si(1)-Cl(1)	94.10(3)
C(1)-N(1)-Si(1)	126.42(13)
C(3)-N(2)-Si(1)	124.68(13)
N(2)-C(3)-C(2)	127.30(18)
N(1)-C(1)-C(2)	122.51(18)
C(3)-C(2)-C(1)	121.51(19)

Symmetry transformations used to generate equivalent atoms:

Figure S2. Molecular structure of compound **2**. The chlorine atom is disordered over two orientations with refined site occupancies of 0.94 and 0.06, only the major one is depicted. Thermal ellipsoids are drawn at 50% probability level. H atoms (except those in C1 and Si1) are omitted for clarity.

Table S3. Crystal data and structure refinement for **2**.

Empirical formula	C33 H56 Cl N3 Si3	
Formula weight	614.53	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	Pca21	
Unit cell dimensions	a = 11.2116(2) Å	α= 90°.
	b = 17.7148(3) Å	β= 90°.
	c = 18.6404(3) Å	$\gamma = 90^{\circ}$.
Volume	3702.19(11) Å ³	
Z	4	
Density (calculated)	1.103 Mg/m ³	
Absorption coefficient	2.017 mm ⁻¹	
F(000)	1336	
Crystal size	0.45 x 0.23 x 0.19 mm ³	
Theta range for data collection	2.49 to 67.50°.	
Index ranges	-13<=h<=9, -21<=k<=20, -22<=l<=22	
Reflections collected	24032	
Independent reflections	6353 [R(int) = 0.0266]	
Completeness to theta = 67.50°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.05117	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6353 / 1 / 384	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	R1 = 0.0285, WR2 = 0.0750	
R indices (all data)	R1 = 0.0291, $wR2 = 0.0758$	
Absolute structure parameter	-0.023(10)	
Largest diff. peak and hole	0.244 and -0.174 e.Å ⁻³	

Table S4. Selected interatomic distances [Å] and angles [°] for compound **2**.

Cl(1)-Si(1)	2.0496(6)
Si(1)-N(1)	1.7014(13)
Si(1)-N(2)	1.7185(14)
N(1)-C(1)	1.4812(19)
C(1)-N(3)	1.4939(19)

C(1)-C(2)	1.503(2)
Si(2)-N(3)	1.7569(14)
N(2)-C(3)	1.402(2)
C(2)-C(3)	1.336(2)
Si(3)-N(3)	1.7563(14)
N(1)-Si(1)-N(2)	106.63(7)
N(1)-Si(1)-Cl(1)	112.38(5)
N(2)-Si(1)-Cl(1)	110.08(5)
C(1)-N(1)-Si(1)	125.69(11)
N(1)-C(1)-N(3)	114.86(12)
N(1)-C(1)-C(2)	112.13(13)
N(3)-C(1)-C(2)	112.37(13)
C(3)-N(2)-Si(1)	119.06(11)
C(3)-C(2)-C(1)	128.88(15)
C(1)-N(3)-Si(3)	120.21(11)
C(1)-N(3)-Si(2)	111.16(10)
Si(3)-N(3)-Si(2)	122.71(7)
C(2)-C(3)-N(2)	126.21(16)

Symmetry transformations used to generate equivalent atoms:

Figure S3 Molecular structure of compound **3**. Thermal ellipsoids are drawn at 50% probability level. H atoms (except those in C1 and Si1) are omitted for clarity.

Table S5Crystal data and structure refinement for 3

Empirical formula	C54 H76 Cl2 N4 Si2	
Formula weight	908.27	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Tetragonal	
Space group	I41/a	
Unit cell dimensions	a = 20.92430(10) Å	α=90°.
	b = 20.92430(10) Å	β= 90°.
	c = 23.8905(2) Å	$\gamma = 90^{\circ}$.
Volume	10459.89(11) Å ³	
Z	8	
Density (calculated)	1.154 Mg/m ³	
Absorption coefficient	1.837 mm ⁻¹	
F(000)	3920	
Crystal size	0.45 x 0.21 x 0.17 mm ³	
Theta range for data collection	2.81 to 67.46°.	
Index ranges	-25<=h<=23, -24<=k<=25, -28<=l<=25	
Reflections collected	35549	
Independent reflections	4706 [R(int) = 0.0502]	
Completeness to theta = 67.46°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.69397	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4706 / 0 / 292	
Goodness-of-fit on F ²	1.029	
Final R indices [I>2sigma(I)]	R1 = 0.0404, wR2 = 0.1075	
R indices (all data)	R1 = 0.0460, wR2 = 0.1149	
Largest diff. peak and hole	0.446 and -0.223 e.Å ⁻³	

Table S6Selected interatomic distances [Å] and angles [°] for 3

Cl(1)-Si(1)	2.0703(6)
Si(1)-N(1)	1.7014(13)
Si(1)-N(2)	1.7086(13)
N(1)-C(1)	1.4842(19)
C(1)-C(2)	1.505(2)
C(1)-C(1)#1	1.570(3)

N(2)-C(3)	1.404(2)
C(2)-C(3)	1.333(2)
N(1)-Si(1)-N(2)	106.13(6)
N(1)-Si(1)-Cl(1)	111.76(5)
N(2)-Si(1)-Cl(1)	111.51(5)
C(1)-N(1)-Si(1)	125.25(10)
N(1)-C(1)-C(2)	112.38(12)
N(1)-C(1)-C(1)#1	110.85(15)
C(2)-C(1)-C(1)#1	112.03(10)
C(3)-N(2)-Si(1)	118.61(11)
C(16)-N(2)-Si(1)	121.78(10)
C(3)-C(2)-C(1)	128.32(15)
C(2)-C(3)-N(2)	125.28(15)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1/2,z

Figure S 4. Molecular structure of compound **4**. The whole molecule is disordered over two orientations with refined site occupancies of 0.82 and 0.18, only the major one is depicted. Notably, a twin structure cannot be excluded although the refinement model is satisfied. Thermal ellipsoids are drawn at 50% probability level. H atoms are omitted for clarity.

Table S7. Crystal data and structure refinement for 4.

Empirical formula	C27 H37 Cl N2 Si
Formula weight	453.13
Temperature	150(2) K
Wavelength	1.54184 Å

Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 11.8229(3) Å	<i>α</i> = 90°.
	b = 6.68690(10) Å	β=91.272(2)°.
	c = 16.5376(4) Å	$\gamma = 90^{\circ}$.
Volume	1307.12(5) Å ³	
Z	2	
Density (calculated)	1.151 Mg/m ³	
Absorption coefficient	1.837 mm ⁻¹	
F(000)	488	
Crystal size	0.14 x 0.14 x 0.05 mm ³	
Theta range for data collection	2.67 to 67.50°.	
Index ranges	-14<=h<=14, -7<=k<=7, -14<=l<=19	
Reflections collected	8272	
Independent reflections	4140 [R(int) = 0.0257]	
Completeness to theta = 67.50°	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.73861	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4140 / 100 / 429	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0372, $wR2 = 0.0904$	
R indices (all data)	R1 = 0.0389, wR2 = 0.0915	
Absolute structure parameter	0.472(16)	
Largest diff. peak and hole	0.248 and -0.270 e.Å ⁻³	

Table S8. Selected interatomic distances [Å] and angles [°] for compound 4.

Cl(1)-Si(1)	2.1954(9)
Si(1)-N(2)	1.860(3)
Si(1)-N(1)	1.865(2)
N(1)-C(1)	1.341(6)
C(1)-C(2)	1.370(7)
N(2)-C(3)	1.312(4)
C(2)-C(3)	1.391(4)
N(2)-Si(1)-N(1)	91.57(10)
N(2)-Si(1)-Cl(1)	98.46(8)
N(1)-Si(1)-Cl(1)	96.22(7)

C(1)-N(1)-Si(1)	126.6(3)
N(1)-C(1)-C(2)	124.3(3)
C(3)-N(2)-Si(1)	127.95(19)
C(1)-C(2)-C(3)	122.3(3)
N(2)-C(3)-C(2)	124.0(3)

Symmetry transformations used to generate equivalent atoms:

C. Computational Details

All quantum chemical calculation were performed using the Gaussian 09, Revision D.01³ and NBO 6.0⁴ software packages. Optimization were performed at M05-2X⁵/def2-TZVP ⁶ level of theory.

Analytical frequencies were computed to verify the optimized geometries as minima.

Si NMR chemical shift were calculated at the HCTH407⁷/6-311+G(3d,p)⁸// M05-2X/def2-TZVP level.

Cartesian coordinates and energies of the optimized geometry of **1** at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-2371.622561 E _h
Sum of electronic and zero-point Energies	-2371.019222 E _h
Sum of electronic and thermal Energies	-2370.984226 E _h
Sum of electronic and thermal Enthalpies	-2370.983282 E _h
Sum of electronic and thermal Free Energies	-2371.085056 E _h
Number of imaginary frequencies	0

Cl	1.44847	-0.27586	-2.38583
Si	-0.00465	-0.35461	-0.75453
Ν	-1.44439	-0.21246	0.60705
Cl	-0.41261	-2.39545	-1.00620
Ν	1.23688	-0.14974	0.55312
С	1.05602	-0.56331	1.81864
Н	1.96873	-0.63035	2.39653
С	-1.34705	-0.57364	1.84848
Н	-2.25338	-0.59360	2.44552
С	-4.17333	1.98173	-0.57767
Н	-4.35070	3.03185	-0.75524
С	2.62696	0.15298	0.26427
С	-2.73682	0.20456	0.13956
С	-0.11824	-0.86474	2.45203
Н	-0.08732	-1.17999	3.47949
С	2.99361	1.48137	0.03511
С	-1.90239	2.61139	0.27477
Н	-0.96889	2.10133	0.49886
С	-2.93983	1.57163	-0.09197
С	3.55859	-0.88576	0.26110
С	-3.75507	-0.73341	-0.06712
С	-4.97561	-0.27071	-0.55093
Н	-5.77475	-0.97722	-0.71871
С	-3.61323	-2.20801	0.24658
Н	-2.58776	-2.40392	0.54247
С	3.17735	-2.34511	0.40464
Н	2.09944	-2.42029	0.52185

С	4.33861	1.76000	-0.16082
Н	4.65289	2.77459	-0.34469
С	5.28773	0.75145	-0.13454
Н	6.32983	0.98757	-0.28839
С	-5.18426	1.06810	-0.81773
Н	-6.13768	1.40241	-1.19813
С	4.89658	-0.55669	0.06813
Н	5.63621	-1.34357	0.05964
С	1.95552	2.58245	0.00603
Н	1.05902	2.17836	-0.46511
С	3.83588	-2.98084	1.63035
Н	4.92033	-2.97772	1.53164
Н	3.51154	-4.01501	1.73314
Н	3.58387	-2.44907	2.54667
С	-3.90469	-3.07418	-0.97918
Н	-4.94860	-2.99163	-1.27811
Н	-3.70404	-4.11937	-0.74894
Н	-3.28020	-2.78104	-1.81884
С	-4.53102	-2.60296	1.40630
Н	-4.32314	-2.01594	2.29967
Н	-4.39680	-3.65640	1.64680
Н	-5.57601	-2.44673	1.14258
С	-2.34356	3.34165	1.54618
Η	-3.28751	3.85842	1.37771
Н	-1.59822	4.07805	1.84259
Η	-2.48525	2.64226	2.36879
С	2.38204	3.78608	-0.82874
Η	3.18883	4.33747	-0.34795
Н	1.54242	4.46931	-0.93836
Н	2.70886	3.48013	-1.82020
С	3.53985	-3.12423	-0.86162
Н	3.07201	-2.67558	-1.73394
Н	3.19671	-4.15386	-0.77123
Н	4.61842	-3.13855	-1.01316
С	-1.63578	3.60428	-0.85349
Н	-1.31970	3.09381	-1.76099
Н	-0.85110	4.29751	-0.55418
Н	-2.52243	4.19279	-1.08219
С	1.59871	3.02759	1.42605
Н	1.20468	2.20494	2.02012
Н	0.85070	3.81935	1.39736
Н	2.48689	3.41414	1.92459
Н	-0.78921	0.66772	-1.45734

Cartesian coordinates and energies of the optimized geometry of **2** at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-2784.824989 E _h
Sum of electronic and zero-point Energies	-2783.988735 E _h
Sum of electronic and thermal Energies	-2783.939813 E _h
Sum of electronic and thermal Enthalpies	-2783.938869 E _h
Sum of electronic and thermal Free Energies	-2784.067646 E _h
Number of imaginary frequencies	0

Cl	2.60057	1.49545	1.59413
Si	1.40824	-0.08750	1.00106
Ν	-0.11221	0.46920	0.45639
С	-0.84094	-0.05153	-0.70878
Н	-1.14647	0.84241	-1.25698

Si	-3.50274	-0.01827	-1.11666
Ν	2.11239	-0.91134	-0.34706
С	0.04990	-0.81600	-1.64910
Н	-0.41658	-1.09748	-2.58094
Si	-2.07276	-2.46636	0.06293
Ν	-2.09362	-0.76816	-0.38411
C	1.33539	-1.13242	-1.48246
Ĥ	1 86327	-1 64692	-2.27460
C	-0.48765	2 88544	0 29299
C	-1 04190	4 04688	0.81368
н	-0.92153	4 97677	0.27753
C	-0.92133 -1.73354	4.03812	2 01196
с u	2 1/063	4.05312	2.01190
C	1 99105		2.40342
п	-1.00195	2.83277	2.70419
п	-2.41231	2.84904	2 20049
C	-1.30320	1.03981	2.20948
C H	-1.55850	0.39353	3.01/38
H	-1.262/5	-0.43961	2.3/684
C	-0.61557	0.41273	4.23883
Н	0.42229	0.57333	3.95363
Н	-0.68552	-0.52757	4.78464
Н	-0.90390	1.22054	4.91144
С	-2.98593	0.18173	3.45693
Н	-3.08206	-0.77791	3.96345
Н	-3.65782	0.19103	2.60087
Н	-3.30873	0.95261	4.15431
С	0.27511	2.97731	-1.01515
Η	0.69578	1.99791	-1.23511
С	-0.64181	3.38152	-2.17436
Н	-1.48866	2.70843	-2.28600
Н	-0.08214	3.38522	-3.10876
Н	-1.03577	4.38448	-2.01395
С	1.43316	3.97288	-0.92517
Н	1.06390	4.98260	-0.75338
Н	1.98478	3.97774	-1.86467
Н	2.11562	3.71484	-0.12052
С	3.51947	-1.18993	-0.44891
Č	4 34409	-0 29918	-1 14914
Č	5 69093	-0.61683	-1 28902
н	6 33762	0.05056	-1 83813
C	6 21689	-1 76439	-0 72872
н	7 26657	-1 99031	-0.84178
C	5 39606	-2 62089	-0.01753
ч	5 81/88	-3 51288	-0.01755
$\hat{\Gamma}$	1 04010	2 3 5 6 3 0	0.42077
C	4.04019	-2.55050	0.13034
С	5.14674 2.20001	-3.33643	0.85100
П	2.30991	-2.82132	1.20195
C H	3.84232	-4.10236	1.96941
H	3.10391	-4.6/368	2.52907
H	4.33499	-3.41290	2.65224
H	4.58345	-4.80804	1.59749
С	2.59872	-4.35621	-0.19176
Ĥ	2.03025	-3.85234	-0.97151
H	1.94660	-5.08061	0.29435
Н	3.42205	-4.89227	-0.66359
С	3.82701	0.98262	-1.76805
Η	2.82718	1.16618	-1.38243
С	3.73640	0.85769	-3.29069
Н	4.72388	0.67461	-3.71394
Н	3.34790	1.78067	-3.72013

Н	3.08351	0.03995	-3.58668
С	4.69937	2.18134	-1.39287
Н	4.80478	2.26445	-0.31382
Н	4.24990	3.09802	-1.76880
Н	5.69228	2.09937	-1.83126
С	-3.46920	-2.90455	1.24032
Н	-3.63225	-2.12360	1.97941
Н	-3.17225	-3.80987	1.77160
Н	-4.41017	-3.10998	0.73981
С	-2.21256	-3.58462	-1.44132
Н	-3.08073	-3.33359	-2.04999
Н	-2.31571	-4.62290	-1.12457
Н	-1.32513	-3.50737	-2.06733
С	-0.50159	-2.92595	0.96627
Н	0.38815	-2.69424	0.39034
Н	-0.51920	-4.00628	1.11915
Н	-0.43278	-2.45458	1.94464
С	-3.25296	0.09656	-2.97928
Н	-2.36763	0.66645	-3.25786
Η	-4.11446	0.57871	-3.44137
Н	-3.15592	-0.90160	-3.40679
С	-5.06262	-1.01827	-0.84567
Η	-5.00326	-2.03258	-1.23358
Н	-5.85574	-0.50239	-1.38900
Н	-5.35071	-1.05996	0.20205
С	-3.83810	1.69225	-0.43666
Н	-4.06329	1.64641	0.62767
Н	-4.70634	2.10612	-0.95161
Н	-3.00995	2.38510	-0.56090
С	-0.66165	1.67999	0.99824
Н	1.40087	-0.92736	2.20760

Cartesian coordinates and energies of the optimized geometry of **4** at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

-1910.764140 E _h
-1910.171843 E _h
-1910.138620 E _h
-1910.137676 E _h
-1910.235681 E _h
0

Cl	-0.02861	-2.37478	-1.10866
Si	0.00945	-0.18913	-0.82622
Ν	-1.34089	-0.14294	0.49149
С	-1.21863	-0.59470	1.72257
Н	-2.13569	-0.67515	2.29694
С	2.66715	0.14344	0.07103
Ν	1.34334	-0.20632	0.50881
С	-0.02145	-0.91920	2.34064
Н	-0.03704	-1.27202	3.35601
С	1.19725	-0.63451	1.74226
Н	2.10397	-0.72925	2.33114
С	-2.66806	0.18026	0.03906
С	-2.97073	1.52019	-0.25356
С	-4.25502	1.81837	-0.68504
Н	-4.51574	2.83698	-0.92224
С	-5.21586	0.82833	-0.81373
Н	-6.21024	1.08292	-1.14811
С	-4.89777	-0.48051	-0.52005

Н	-5.64818	-1.24926	-0.62929
С	-3.61930	-0.83670	-0.09703
С	-3.33159	-2.29823	0.17959
Н	-2.28237	-2.40950	0.43546
С	-3.57294	-3.15074	-1.06729
Н	-4.62617	-3.15152	-1.34516
Н	-3.27418	-4.17937	-0.87186
Н	-2.98982	-2.78020	-1.90624
С	-4.17378	-2.81451	1.34809
Н	-3.99984	-2.23887	2.25596
Н	-3.93199	-3.85680	1.54966
Н	-5.23616	-2.75407	1.11607
С	-1.94681	2.61787	-0.04728
Н	-0.98876	2.24534	-0.40836
С	-1.80475	2.95418	1.43988
Н	-1.04863	3.72684	1.57918
Н	-1.51428	2.08546	2.02590
Н	-2.75172	3.32855	1.82797
С	-2.25393	3.88821	-0.83321
Н	-2.40998	3.67624	-1.88895
Н	-1.42004	4.58084	-0.74231
Н	-3.13719	4.39250	-0.44363
С	2.96356	1.49614	-0.13339
С	4.23520	1.82831	-0.58238
Н	4.48440	2.86679	-0.74319
С	5.18769	0.85268	-0.81371
Н	6.17154	1.12852	-1.16197
С	4.87828	-0.47590	-0.59214
Н	5.62737	-1.23336	-0.76905
С	3.61639	-0.86146	-0.15173
С	3.33550	-2.33290	0.06934
Н	2.29217	-2.45171	0.34544
С	3.54959	-3.13731	-1.21333
Н	4.59535	-3.12058	-1.51782
Н	2.94354	-2.74044	-2.02360
Н	3.26209	-4.17450	-1.04900
С	4.20285	-2.88932	1.20048
Н	3.96611	-3.93819	1.37141
Н	4.04689	-2.34446	2.13035
Н	5.25996	-2.81874	0.94756
С	1.97435	2.60244	0.16477
Н	1.04598	2.14966	0.50612
С	2.48916	3.49666	1.29469
Н	3.40932	3.99973	1.00150
Н	2.69336	2.91643	2.19271
Н	1.74973	4.25954	1.53475
С	1.66642	3.42931	-1.08277
Н	0.94644	4.21088	-0.84423
Η	1.25360	2.80142	-1.86963
Н	2.56653	3.91081	-1.46183

Cartesian coordinates and energies of the optimized geometry of [4-H]⁺ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1911.180827 E _h
Sum of electronic and zero-point Energies	-1910.578329 E _h
Sum of electronic and thermal Energies	-1910.544894 E _h
Sum of electronic and thermal Enthalpies	-1910.543950 E _h
Sum of electronic and thermal Free Energies	-1910.643821 E _h
Number of imaginary frequencies	0

Cl	0.00032	-1.79391	-1.61234
Si	-0.00009	-0.11332	-0.48015
Ν	-1.34259	-0.10460	0.64761
С	-1.20887	-0.33175	1.94761
Н	-2.13445	-0.36765	2.50842
Ν	1.34248	-0.10413	0.64754
С	0.00001	-0.48904	2.60344
Н	0.00008	-0.66994	3.66305
С	1.20881	-0.33143	1.94753
Н	2.13442	-0.36720	2.50831
С	-2.66682	0.10749	0.08768
C	-3.48647	-1.00080	-0.14771
Ĉ	-4 74079	-0 75430	-0 69295
Ĥ	-5 40638	-1 58230	-0.88152
C	-5 14892	0 53135	-0.99829
н	-6 12658	0.69731	-1 42423
C	-4 31274	1 60583	-0 75493
н	-4 64934	2 60512	-0.98403
C	-3 05148	1 42044	-0 20280
C	-2 10647	2 62607	0.12420
ч	-1 20038	2.02097	0.12420
C	2 01121	2.20059	1 08101
с u	-2.01131	2 01170	-1.00191
п u	-1.00001	3.011/9	-1.95504
п	-1.33720	4.30162	-0.62333
п	-2.93/18	2 20410	-1.360/3
U U	-2.80459	3.39419	1.30139
п	-3.79208	3.76900	1.03854
H	-2.1//21	4.24399	1.56322
H	-2.91057	2.75714	2.1//95
C	-3.08982	-2.42034	0.19912
H	-2.02800	-2.44078	0.43673
C	-3.86326	-2.90304	1.42983
H	-3.69136	-2.26540	2.29562
Н	-3.56672	-3.91832	1.68508
Н	-4.93272	-2.90248	1.22654
С	-3.31502	-3.37726	-0.97240
Н	-4.37610	-3.51381	-1.16949
Н	-2.89867	-4.35363	-0.73323
Н	-2.84412	-3.01145	-1.88143
С	2.66675	0.10770	0.08763
С	3.48651	-1.00069	-0.14695
С	4.74094	-0.75444	-0.69205
Η	5.40662	-1.58252	-0.87999
С	5.14905	0.53104	-0.99812
Н	6.12680	0.69679	-1.42396
С	4.31275	1.60561	-0.75563
Η	4.64931	2.60477	-0.98532
С	3.05140	1.42049	-0.20360
С	2.19629	2.62719	0.12250
Н	1.20921	2.28897	0.43568
С	2.01119	3.54652	-1.08428
Н	2.95707	3.98854	-1.38935
Н	1.33702	4.36132	-0.82836
Н	1.60001	3.01050	-1.93767
С	2.80429	3.39527	1.29920
H	2,91017	2,75885	2,17623
Н	2.17685	4.24524	1.56035
Н	3.79180	3.76992	1.03620

С	3.08984	-2.42010	0.20035
Н	2.02797	-2.44051	0.43777
С	3.86310	-2.90239	1.43134
Н	4.93260	-2.90179	1.22824
Н	3.56661	-3.91764	1.68681
Н	3.69100	-2.26454	2.29692
С	3.31529	-3.37740	-0.97082
Н	2.84447	-3.01194	-1.88003
Н	2.89900	-4.35372	-0.73136
Н	4.37641	-3.51390	-1.16774
Н	-0.00046	1.04891	-1.36389

Cartesian coordinates and energies of the optimized geometry of $[4-H_2]$ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1911.953579 E _h
Sum of electronic and zero-point Energies	-1911.343116 E _h
Sum of electronic and thermal Energies	-1911.309466 E _h
Sum of electronic and thermal Enthalpies	-1911.308522 E _h
Sum of electronic and thermal Free Energies	-1911.407731 E _h
Number of imaginary frequencies	0

Cl	1.11682	-1.19154	-1.93333
Si	-0.34358	-0.56786	-0.41003
Ν	-1.76373	0.01298	0.87192
Ν	0.90885	-0.25579	0.88093
С	0.67039	-0.41723	2.18968
Н	1.56316	-0.46609	2.80025
С	-1.72728	-0.16442	2.15269
Η	-2.64356	-0.01916	2.71839
С	-4.33755	2.12082	-0.72462
Н	-4.48352	3.15062	-1.01362
С	2.31533	-0.09592	0.57370
С	-2.99781	0.40544	0.26720
С	-0.53979	-0.48056	2.83049
Н	-0.55405	-0.61894	3.89657
С	2.77134	1.15607	0.15267
С	-2.08899	2.77477	0.20185
Η	-1.17324	2.24508	0.45358
С	-3.15102	1.74421	-0.11241
С	3.17967	-1.17943	0.74328
С	-3.99360	-0.54719	0.03222
С	-5.16605	-0.12243	-0.58626
Η	-5.95204	-0.83878	-0.77540
С	-3.85143	-2.00110	0.43138
Η	-2.86502	-2.14406	0.86456
С	2.69982	-2.57156	1.10140
Η	1.61186	-2.57328	1.10080
С	4.13459	1.31715	-0.05559
Η	4.51607	2.27081	-0.38330
С	5.01608	0.26897	0.14758
Н	6.07340	0.41467	-0.01487
С	-5.33992	1.19527	-0.96327
Н	-6.25656	1.50347	-1.44298
С	4.53835	-0.96691	0.53665
Н	5.22711	-1.78849	0.66589
С	1.81023	2.30862	-0.05219
Н	0.88686	1.90017	-0.46090
С	3.18594	-2.99133	2.49086

Н	4.27464	-3.01283	2.51925
Н	2.82245	-3.98964	2.72924
Н	2.84688	-2.30886	3.26793
С	-3.95823	-2.92301	-0.78371
Н	-4.94459	-2.85282	-1.23980
Н	-3.80042	-3.95704	-0.48131
Η	-3.21506	-2.66527	-1.53488
С	-4.89180	-2.38174	1.48645
Н	-4.81793	-1.74270	2.36489
Н	-4.75105	-3.41567	1.79734
Η	-5.89993	-2.28430	1.08632
С	-2.50531	3.59328	1.42619
Н	-3.43169	4.13018	1.22397
Η	-1.73451	4.32022	1.67867
Η	-2.67051	2.95070	2.28984
С	2.31562	3.34316	-1.05342
Н	3.15092	3.91319	-0.64913
Η	1.51884	4.04942	-1.27899
Η	2.63103	2.87204	-1.98185
С	3.15486	-3.59613	0.05982
Η	2.85029	-3.29048	-0.93694
Η	2.71233	-4.56639	0.28126
Н	4.23735	-3.71359	0.07546
С	-1.78558	3.68913	-0.98194
Η	-1.50372	3.11168	-1.86026
Η	-0.96384	4.35723	-0.72759
Η	-2.64274	4.30943	-1.23826
С	1.48807	2.98643	1.28222
Н	1.04303	2.29081	1.99113
Η	0.79243	3.81147	1.12985
Η	2.40143	3.38586	1.72219
Н	-0.82790	0.52216	-1.27237
Н	-0.95533	-1.91169	-0.36904

Cartesian coordinates and energies of the optimized geometry of A at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1444.913086 E _h
Sum of electronic and zero-point Energies	-1444.553206 E _h
Sum of electronic and thermal Energies	-1444.531918 E _h
Sum of electronic and thermal Enthalpies	-1444.530974 E _h
Sum of electronic and thermal Free Energies	-1444.604327 E _h
Number of imaginary frequencies	0

С	0.40510	2.45362	0.02812
С	-0.05802	-0.04455	-0.11610
С	0.46604	-2.50971	-0.48738
Ν	0.72054	1.02676	-0.05530
Ν	0.70383	-1.06703	-0.47411
Si	2.14742	0.07615	-0.86846
С	1.65818	-3.12165	-1.21685
Η	1.70217	-2.76368	-2.24430
Н	2.58728	-2.85661	-0.71314
Η	1.56656	-4.20582	-1.22613
С	0.43307	-3.02955	0.94969
Н	1.34410	-2.74146	1.46989
Н	-0.42371	-2.62213	1.48299
Η	0.34998	-4.11571	0.94929
С	-0.81958	-2.89292	-1.21705
Η	-1.70531	-2.58101	-0.67039

Н	-0.84061	-2.44582	-2.20975
Н	-0.85291	-3.97616	-1.32530
С	-0.12333	2.96459	-1.31160
Н	-1.08096	2.50461	-1.54691
Н	-0.26346	4.04405	-1.26971
Н	0.58613	2.73373	-2.10478
С	1.72963	3.14094	0.34867
Н	2.12744	2.77188	1.29175
Н	2.46179	2.94019	-0.43395
Н	1.58419	4.21734	0.41464
С	-0.59637	2.75638	1.13971
Н	-1.59302	2.39730	0.89867
Н	-0.27161	2.30322	2.07477
Н	-0.64928	3.83520	1.27826
С	-1.52677	-0.08320	0.10003
С	-2.03343	-0.30842	1.37302
С	-2.39131	0.09769	-0.97212
С	-3.40427	-0.35339	1.57201
Н	-1.35386	-0.43607	2.20254
С	-3.76114	0.05684	-0.76895
Н	-1.98924	0.25543	-1.96222
С	-4.26803	-0.16979	0.50245
Н	-3.79743	-0.52782	2.56185
Н	-4.43209	0.19701	-1.60255
Н	-5.33527	-0.20323	0.65962
Cl	3.34993	-0.29272	0.89578

Cartesian coordinates and energies of the optimized geometry of $[A-H]^+$ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1445.316215 E _h
Sum of electronic and zero-point Energies	-1444.945865 E _h
Sum of electronic and thermal Energies	-1444.924660 E _h
Sum of electronic and thermal Enthalpies	-1444.923716 E _h
Sum of electronic and thermal Free Energies	-1444.996476 E _h
Number of imaginary frequencies	0

С	0.25042	2.55720	-0.18673
С	-0.12245	-0.00065	-0.12621
С	0.57210	-2.49126	-0.24282
Ν	0.61335	1.12072	-0.13020
Ν	0.72886	-1.01799	-0.31696
С	1.87374	-3.05449	-0.80005
Н	2.01210	-2.75706	-1.83911
Н	2.72797	-2.72085	-0.20883
Н	1.84998	-4.14022	-0.75914
С	0.39984	-2.90884	1.21294
Н	1.23521	-2.55849	1.81696
Н	-0.52843	-2.51622	1.62107
Н	0.36303	-3.99448	1.27356
С	-0.60210	-2.96776	-1.08840
Н	-1.55457	-2.66188	-0.66605
Н	-0.52313	-2.59298	-2.10738
Н	-0.58355	-4.05497	-1.12190
С	-0.30837	2.88628	-1.56667
Н	-1.23905	2.35284	-1.74502
Н	-0.51348	3.95278	-1.62874
Η	0.40732	2.63030	-2.34694
С	1.55875	3.30366	0.04337
Н	1.96477	3.08225	1.02860

Н	2.29840	3.04033	-0.71671
Н	1.38680	4.37430	-0.02784
С	-0.75069	2.91549	0.90353
Н	-1.72758	2.47976	0.71521
Н	-0.39403	2.59004	1.87883
Н	-0.86296	3.99741	0.92364
С	-1.58130	-0.08869	0.05939
С	-2.09149	-0.20947	1.34656
С	-2.42645	-0.03767	-1.04287
С	-3.46264	-0.28405	1.52764
Н	-1.42542	-0.23497	2.19639
С	-3.79582	-0.10912	-0.84972
Н	-2.01902	0.04250	-2.03972
С	-4.31224	-0.23222	0.43231
Н	-3.86629	-0.37853	2.52354
Н	-4.45855	-0.07222	-1.70015
Н	-5.37980	-0.28783	0.57821
Cl	3.46074	0.09898	0.95454
Si	2.05451	0.14730	-0.47619
Н	2.63115	0.29376	-1.81252

Cartesian coordinates and energies of the optimized geometry of $[A-H_2]$ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1446.103417 E _h
Sum of electronic and zero-point Energies	-1445.725280 E _h
Sum of electronic and thermal Energies	-1445.703828 E _h
Sum of electronic and thermal Enthalpies	-1445.702883 E _h
Sum of electronic and thermal Free Energies	-1445.776099 E _h
Number of imaginary frequencies	0

С	0.20370	2.54376	-0.14264
С	-0.24288	-0.00288	-0.26076
С	0.28740	-2.46165	-0.34449
Ν	0.48691	1.12690	-0.44795
Ν	0.54981	-1.02084	-0.34222
С	1.46254	-3.09897	-1.08515
Н	1.48190	-2.76991	-2.12248
Η	2.40251	-2.82181	-0.61322
Н	1.36422	-4.18279	-1.06308
С	0.26629	-2.97617	1.09504
Η	1.18062	-2.68818	1.60770
Н	-0.58721	-2.56994	1.63373
Н	0.18480	-4.06253	1.09466
С	-1.00621	-2.85504	-1.05666
Н	-1.89181	-2.57274	-0.49479
Н	-1.05441	-2.39937	-2.04470
Н	-1.01511	-3.93726	-1.17902
С	0.78496	3.39009	-1.27591
Н	0.29065	3.14304	-2.21407
Н	0.62085	4.44516	-1.06271
Н	1.85130	3.22194	-1.38782
С	0.88272	2.89708	1.18184
Н	0.46572	2.29354	1.98734
Н	1.95264	2.70831	1.12884
Η	0.72414	3.94894	1.41613
С	-1.28097	2.87659	-0.03742
Н	-1.81118	2.63455	-0.95462

Н	-1.76665	2.37295	0.79295
Н	-1.36080	3.94981	0.12765
С	-1.70659	-0.06145	-0.02785
С	-2.18893	-0.29917	1.25179
С	-2.58935	0.08410	-1.08953
С	-3.55535	-0.38959	1.46853
Η	-1.49530	-0.40177	2.07324
С	-3.95267	-0.01562	-0.87197
Н	-2.20339	0.26631	-2.08189
С	-4.43704	-0.25183	0.40723
Η	-3.93022	-0.56893	2.46458
Н	-4.63808	0.08972	-1.69893
Η	-5.50028	-0.32773	0.57626
Cl	3.11412	-0.51239	1.02216
Si	2.09814	0.30942	-0.64582
Н	2.96089	1.52412	-0.69866
Н	2.38416	-0.33103	-1.94868

 $Cartesian \ coordinates \ and \ energies \ of \ the \ optimized \ geometry \ of \ LiN(SiMe_3)_2 \ at \ M05-2X/def2-TZVP \ level \ of \ theory. Thermochemistry \ at \ 298.150 \ K, \ 1.00000 \ Atm.$

				-
Electronic energy -880.982509 E _h				
Sum of electronic and zero-point Energies				-880.753686 E _h
Sum of electronic and thermal Energies				-880.735655 E _h
Sum	of electronic	and thermal I	Enthalpies	-880.734711 E _h
Sum	of electronic	and thermal I	Free Energies	-880.799380 E _h
Num	ber of imagin	ary frequenci	ies	0
	-			
Si	-0.96187	0.14903	0.34615	
Si	2.08436	-0.04562	-0.01139	
С	2.47413	0.99584	-1.53413	
Н	2.33870	0.41256	-2.44491	
Н	3.49991	1.36461	-1.51484	
Н	1.80555	1.85515	-1.58771	
С	2.46117	1.02964	1.49105	
Н	1.85243	1.93488	1.47939	
Н	3.50784	1.33440	1.50435	
Н	2.24804	0.49408	2.41569	
С	3.29792	-1.48799	-0.00051	
Н	3.15708	-2.10244	0.88879	
Н	4.32973	-1.13752	-0.00886	
Н	3.15771	-2.12001	-0.87902	
С	-1.23335	0.55979	2.15967	
Н	-1.11737	-0.33053	2.77689	
Н	-2.22845	0.97158	2.32936	
Н	-0.50214	1.29359	2.49653	
С	-1.32843	1.69915	-0.65124	
Н	-0.60939	2.47991	-0.40127	
Н	-2.32618	2.08576	-0.44355	
Н	-1.24563	1.50275	-1.71946	
С	-2.33658	-1.12346	-0.10407	
Н	-2.34889	-1.39080	-1.16718	
Н	-3.31513	-0.69089	0.09679	
Н	-2.29794	-2.03759	0.50094	
Ν	0.48991	-0.62845	-0.02149	
Li	-0.27638	-2.16925	-0.54207	

Cartesian coordinates and energies of the optimized geometry of $HN(SiMe_3)_2$ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Elec	Electronic energy			-874.035123 E _h
Sum	of electronic	-873.795968 E _h		
Sum	of electronic	and thermal I	Energies	-873.779022 E _h
Sum	of electronic	and thermal I	Enthalpies	-873.778078 E _h
Sum	of electronic	and thermal I	Free Energies	-873.838962 E _h
Num	ber of imagin	ary frequenci	ies	0
	0			•
Si	-1.06283	0.00318	0.33130	
Si	2.07002	-0.11254	-0.03844	
С	2.42238	0.83065	-1.61925	
Η	2.30776	0.18044	-2.48572	
Η	3.43912	1.22330	-1.61963	
Н	1.73596	1.66827	-1.73479	
С	2.30211	1.05066	1.41168	
Н	1.60896	1.89016	1.36875	
Н	3.31276	1.45822	1.40714	
Н	2.14650	0.52940	2.35488	
С	3.26004	-1.55179	0.09028	
Н	3.11661	-2.09224	1.02465	
Н	4.29127	-1.20294	0.05272	
Н	3.11597	-2.24993	-0.73414	
С	-1.32054	0.23665	2.17277	
Н	-1.27956	-0.72047	2.69106	
Н	-2.29111	0.69143	2.37121	
Η	-0.55302	0.88224	2.59726	
С	-1.14026	1.68433	-0.49272	
Η	-0.35394	2.34666	-0.13210	
Η	-2.09607	2.16257	-0.28006	
Η	-1.03600	1.59074	-1.57276	
С	-2.41426	-1.10496	-0.33972	
Н	-2.31505	-1.23100	-1.41694	
Η	-3.39694	-0.68170	-0.13583	
Η	-2.37378	-2.08992	0.12519	
Ν	0.45824	-0.75835	-0.01761	
Η	0.39305	-1.73408	-0.26423	

Cartesian coordinates and energies of the optimized geometry of ^{tBu}NHC at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy			-619.456816 E _h	
Sum of electronic and zero-point Energies			-619.101399 E _h	
Sum of electronic and thermal Energies			-619.083865 E _h	
Sum	of electronic	and thermal I	Enthalpies	-619.082921 E _h
Sum	of electronic	and thermal I	Free Energies	-619.144815 E _h
Nun	nber of imagin	ary frequenci	ies	0
Ν	-1.45870	0.02323	-0.09678	
Ν	0.66070	0.24083	-0.05813	
С	-2.78146	-0.63689	-0.04445	
С	-0.31379	-0.69512	-0.08023	
С	2.93370	0.64933	-0.95789	

-1.94544

0.60830

Η

2.47703

Н	3.91943	0.19219	-1.01713
Н	3.07075	1.68660	-0.67370
С	-3.35343	-0.49855	1.36543
Н	-2.67893	-0.97069	2.07712
Н	-4.32299	-0.99143	1.41943
Н	-3.48311	0.54197	1.65152
С	2.56529	0.10941	1.47605
Н	2.45886	1.15152	1.76599
Н	3.61516	-0.16596	1.56626
Н	1.98169	-0.50122	2.16228
С	2.08752	-0.13566	0.04574
С	-3.73119	-0.04040	-1.08430
Н	-4.08127	0.94989	-0.81600
Н	-4.60353	-0.68524	-1.17053
Н	-3.24135	0.00674	-2.05549
С	-1.21107	1.39591	-0.05286
С	0.13767	1.53460	-0.02821
С	-2.22789	2.48814	-0.08665
Н	-1.75891	3.42573	0.19395
Н	-3.04482	2.31477	0.60770
Н	-2.65287	2.61672	-1.08067
С	0.91180	2.81062	-0.02943
Н	1.34109	3.02448	-1.00680
Н	1.71891	2.80574	0.69719
Н	0.25148	3.63305	0.22652
С	-2.61803	-2.12048	-0.35830
Н	-2.19476	-2.26037	-1.34989
Н	-1.95895	-2.60297	0.35422
Н	-3.60428	-2.58141	-0.31828
С	2.24331	-1.61913	-0.27193
Н	1.66727	-2.23124	0.41230
Н	1.89996	-1.83495	-1.28067
Н	3.30020	-1.86953	-0.18899

Cartesian coordinates and energies of the optimized geometry of tBu NHC-HCl at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-1080.321030E _h
Sum of electronic and zero-point Energies	-1079.950094 E _h
Sum of electronic and thermal Energies	-1079.930474 E _h
Sum of electronic and thermal Enthalpies	-1079.929529 E _h
Sum of electronic and thermal Free Energies	-1079.996265 E _h
Number of imaginary frequencies	0

Ν	-0.88990	0.77261	0.45836
Ν	1.28087	0.85486	0.32797
С	-2.23519	0.20349	0.76200
С	3.28441	0.16638	-0.91734
Н	2.60758	-0.46296	-1.49446
Н	4.23780	-0.34543	-0.80349
Η	3.47162	1.09786	-1.44162
С	-2.99610	1.16889	1.66555
Н	-2.45967	1.31359	2.60161
Н	-3.97138	0.74095	1.88892
Н	-3.15390	2.13853	1.20403
С	3.47633	1.42161	1.27975
Η	3.51848	2.39129	0.79427
Н	4.49646	1.06306	1.40129
Н	3.03322	1.54524	2.26641
С	2.69181	0.39327	0.47115

-2.96505	-0.06924	-0.55072
-3.25895	0.84485	-1.05608
-3.86996	-0.63171	-0.32931
-2.32176	-0.66594	-1.19663
-0.57083	1.84571	-0.36210
0.78612	1.89620	-0.44498
-1.53925	2.72454	-1.07612
-1.07638	3.68688	-1.27124
-2.43914	2.90404	-0.50111
-1.82559	2.28826	-2.03118
1.59157	2.83388	-1.27582
1.83560	2.38431	-2.23619
2.51428	3.13372	-0.79357
1.01208	3.73187	-1.46551
0.24413	0.18562	0.80756
0.31164	-0.70403	1.38934
0.19904	-1.79540	-1.25426
-2.05990	-1.12477	1.49081
-1.50488	-1.82704	0.86914
-1.57025	-0.99331	2.45542
-3.05181	-1.52768	1.67926
2.70537	-0.93803	1.21559
2.31867	-0.83691	2.22940
2.14093	-1.68751	0.66131
3.74079	-1.26047	1.29132
	-2.96505 -3.25895 -3.86996 -2.32176 -0.57083 0.78612 -1.53925 -1.07638 -2.43914 -1.82559 1.59157 1.83560 2.51428 1.01208 0.24413 0.31164 0.19904 -2.05990 -1.50488 -1.57025 -3.05181 2.70537 2.31867 2.14093 3.74079	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Cartesian coordinates and energies of the optimized geometry of :SiH₂ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-290.604992 E _h
Sum of electronic and zero-point Energies	-290.593157 E _h
Sum of electronic and thermal Energies	-290.590287 E _h
Sum of electronic and thermal Enthalpies	-290.589343 E _h
Sum of electronic and thermal Free Energies	-290.612883 E _h
Number of imaginary frequencies	0

Si	0.00000	0.00000	0.13319
Н	0.00000	1.08288	-0.93230
Η	0.00000	-1.08288	-0.93230

Cartesian coordinates and energies of the optimized geometry of $[SiH_3]^+$ at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-290.924037 E _h
Sum of electronic and zero-point Energies	-290.901804 E _h
Sum of electronic and thermal Energies	-290.898819 E _h
Sum of electronic and thermal Enthalpies	-290.897875 E _h
Sum of electronic and thermal Free Energies	-290.922127 E _h
Number of imaginary frequencies	0

0.00000	0.00000	0.00019
0.00000	1.27059	0.73194
0.00000	-1.27059	0.73194
0.00000	0.00000	-1.46650
	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\end{array}$	0.000000.000000.000001.270590.00000-1.270590.000000.00000

Cartesian coordinates and energies of the optimized geometry of LiCl at M05-2X/def2-TZVP level of theory. Thermochemistry at 298.150 K, 1.00000 Atm.

Electronic energy	-467.804062469 E _h
Sum of electronic and zero-point Energies	-467.802549 E _h
Sum of electronic and thermal Energies	-467.800061 E _h
Sum of electronic and thermal Enthalpies	-467.799117 E _h
Sum of electronic and thermal Free Energies	-467.823236 E _h
Number of imaginary frequencies	0

Li	0.00000000	0.00000000	0.00000000
Cl	0.00000000	0.00000000	2.02306900

D. References

 D. J. E. Spencer, A. M. Reynolds, P. L. Holland, B. A. Jazdzewski, C. Duboc-Toia, L. L. Pape, S. Yokota, Y. Tachi, S. Itoh, W. B. Tolman, *Inorg. Chem.* 2002, 47, 6307.

2. G. M. Sheldrick, SHELX-97 Program for Crystal Structure Determination, Universität Göttingen (Germany) 1997.

3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R., Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

4. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/

5. Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory. Comput. 2006, 2, 364.

6. (a) A. Schaefer, H. Horn, and R. Ahlrichs, *J. Chem. Phys.*, 1992, 97, 2571 ; (b) A. Schaefer, C. Huber, and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829; (c) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297; (d) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.

7. (a) F. A. Hamprecht, A. Cohen, D. J. Tozer, and N. C. Handy, *J. Chem. Phys.*, 1998, **109**, 6264 ; (b) A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, *J. Chem. Phys.*, 2000, **112**, 1670 ; (c) A. D. Boese and N. C. Handy, *J. Chem. Phys.*, 2001, **114**, 5497.

8. (a) R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, *J. Chem. Phys.* 1980, **72**, 650 ; (b) A.D. McLean and G.S. Chandler *J. Chem. Phys.* 1980, **72**, 5639 ; (c) M.J. Frisch, J.A. Pople and J.S. Binkley, *J. Chem. Phys.* 1984, **80**, 3265; (d) T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, *J. Comp. Chem.* 1983, **4**, 294.