Supporting Information

A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light

Ning Xu,^a Rui-Lei Wang,^a Dong-Peng Li,^a Xing Meng,^a Jing-Lin Mou,^a Zi-Yan Zhou,^{*a} and Zhong-Min Su^b

^{*a*}School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.

^bInstitute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

*Corresponding authors.

E-mail addresses: zyzhou@sdut.edu.cn (Z.-Y. Zhou).

Supplementary captions:

S1. PXRD patterns of COP-NT under different conditions

S2. TGA curves of the COP-NT

S3. The semiconductor property of COP-NT

S4. The 4-factor and 3-level orthogonal tests for degradation of MO, RhB and MB

S5. The reaction rate constants in different temperatures

S6. A comparison of the half-life time $t_{1/2}$ for degradation of MO, RhB and MB with other materials

S7. The PXRD patterns and FT-IR spectra of COP-NT before and after the photocatalytic experiment

S8. The ¹H NMR spectra of compound 1 and compound 2

S1. PXRD patterns of COP-NT under different conditions

Fig. S1 The PXRD patterns of COP-NT under different conditions.

S2. TGA curves of COP-NT

Fig. S2 TGA curves of COP-NT.

S3. The semiconductor property of COP-NT

Fig. S3 (a) UV-vis diffuse reflectance spectrum, (b) (α h v)² versus h v curve, and (c) UPS spectrum of COP-NT.

S4. The 4-factor and 3-level orthogonal tests for degradation of MO, RhB and MB

			Factors	
Levels –	pH (A)	Time/(h) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial MO/10 ⁻⁵ (mol/L) (D)
1	4	6	0.12	1
2	7	8	0.20	2
3	10	10	0.28	5

 Table S1 Design of 4-factor and 3-level orthogonal test of MO

 Table S2 Orthogonal experimental results of MO

Entry	pH (A)	Time/(h) (B)	30%H ₂ O ₂ /(mol/L) (C)	Initial MO/10 ⁻ ⁵ (mol/L) (D)	Degradation rate/%
1	1(4)	1(6)	1(0.06)	1(1)	25.25
2	1(4)	2(8)	2(0.10)	2(2)	38.15
3	1(4)	3(10)	3(0.14)	3(5)	45.01
4	2(7)	1(6)	2(0.10)	3(5)	41.04
5	2(7)	2(8)	3(0.14)	1(1)	33.97
6	2(7)	3(10)	1(0.06)	2(2)	35.99
7	3(10)	1(6)	3(0.14)	2(2)	32.78
8	3(10)	2(8)	1(0.06)	3(5)	30.76
9	3(10)	3(10)	2(0.10)	1(1)	37.91

 Table S3 Optimization results of MO

Entry	рН (А)	Time/(h) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial MO/10 ⁻⁵ (mol/L) (D)
K1	108.4	99.08	91.9	97.11
K2	111	102.88	117.09	106.92
K3	101.44	118.9	111.76	116.81
$\overline{K_1}$	36.13	33.01	30.63	32.37
$\overline{K_2}$	37.01	34.29	39.03	35.64
$\overline{K_3}$	33.81	39.63	37.25	38.93
R	3.2	6.62	8.4	6.56

Fig. S4 $\overline{K_i}$ vs the levels of the factors for MO

Table S4 Design of 4-factor and 3-level orthogonal test of RhB

	Factors					
Levels –	pH (A)	Time/(h) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial MO/10 ⁻⁵ (mol/L) (D)		
1	4	2	0.03	1		
2	7	3	0.05	2		
3	10	4	0.07	5		

Table S5	Orthogonal	experimental	results	of RhB
1 4010 00	ormogona	emperimenten	repares	or run

Entry	рН (A)	Time/(h) (B)	30%H ₂ O ₂ /(mol/L) (C)	Initial RhB/10 ⁻ ⁵ (mol/L) (D)	Degradation rate/%
1	1(4)	1(2)	1(0.03)	1(1)	70.06
2	1(4)	2(3)	2(0.05)	2(2)	79.50
3	1(4)	3(4)	3(0.07)	3(5)	77.53
4	2(7)	1(2)	2(0.05)	3(5)	15.51
5	2(7)	2(3)	3(0.07)	1(1)	79.87
6	2(7)	3(4)	1(0.03)	2(2)	69.72
7	3(10)	1(2)	3(0.07)	2(2)	26.70
8	3(10)	2(3)	1(0.03)	3(5)	8.27
9	3(10)	3(4)	2(0.05)	1(1)	33.94

Entry	рН (А)	Time/(h) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial RhB/10 ⁻⁵ (mol/L) (D)
K1	227.09	112.26	148.08	183.87
K2	165.10	167.67	128.94	175.92
K3	68.93	181.19	184.10	101.32
$\overline{K_1}$	75.70	37.42	49.36	61.29
$\overline{K_2}$	55.03	55.89	42.98	58.64
$\overline{K_3}$	22.98	60.40	61.37	33.77
R	52.72	22.98	18.39	27.52

Table S6 Optimization results of RhB

Fig. S5 $\overline{K_i}$ vs the levels of the factors for RhB

Table S7 Design of 4-factor and 3-level orthogonal test of MB

		Factors		
Levels -	pH (A)	Time/(min) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial MB/10 ⁻⁵ (mol/L) (D)
1	4	60	0.01	4
2	7	80	0.02	4.5
3	10	100	0.03	5

Entry	pH (A)	Time/(min) (B)	30%H ₂ O ₂ /(mol/L) (C)	Initial MB/10 ⁻ ⁵ (mol/L) (D)	Degradation rate/%
1	1(4)	1(60)	1(0.01)	1(4)	18.61
2	1(4)	2(80)	2(0.02)	2(4.5)	29.00
3	1(4)	3(100)	3(0.03)	3(5)	28.57
4	2(7)	1(60)	2(0.02)	3(5)	44.92
5	2(7)	2(80)	3(0.03)	1(4)	47.55
6	2(7)	3(100)	1(0.01)	2(4.5)	51.61
7	3(10)	1(60)	3(0.03)	2(4.5)	52.69
8	3(10)	2(80)	1(0.01)	3(5)	54.97
9	3(10)	3(100)	2(0.02)	1(4)	55.38

Table S8 Orthogonal experimental results of MB

Table S9 Optimization results of MB

Entry	pH (A)	Time/(min) (B)	30% H ₂ O ₂ /(mol/L) (C)	Initial MB/10 ⁻⁵ (mol/L) (D)
K1	76.18	116.22	125.18	121.53
K2	144.07	131.52	129.30	133.30
K3	163.03	135.56	128.81	128.46
$\overline{K_1}$	25.39	38.74	41.73	40.51
$\overline{K_2}$	48.02	43.84	43.10	44.43
$\overline{K_3}$	54.34	45.18	42.94	42.82
R	28.95	6.44	1.21	3.92

Fig. S6 $\overline{K_i}$ vs the levels of the factors for MB

S5. The reaction rate constants of degrade dyes in different temperature

Dye	T/°C	<i>k</i> /min ⁻¹	\mathbb{R}^2 of k	Ea /(J/mol)	\mathbf{R}^2 of $\boldsymbol{E}\mathbf{a}$
МО	30	0.00151	0.967	9396	0.954
	35	0.00156	0.959		
	40	0.00166	0.971		
	45	0.00174	0.989		
	50	0.00191	0.979		
RhB	30	0.00871	0.994	30940	0.979
	40	0.01613	0.973		
	50	0.01903	0.961		
	60	0.02856	0.971		
MB	30	0.00610	0.998	17543	0.998
	35	0.00685	0.979		
	40	0.00753	0.992		
	45	0.00841	0.979		
	50	0.00944	0.965		

 Table S10 The reaction rate constants of degrade dyes in different temperature

S6. The half-life time $t_{1/2}$ for degradation of MO, RhB and MB compared with other materials at room temperature

catalytic	half-life (min)	reference
	64.8	<i>RSC Adv.</i> , 2014,
D W 0/ 010-00-1	04.8	4 , 64977–64984
complexes 1	180	Cryst. Growth Des., 2013,
complexes 1	180	13 , 901–907
DANII/2	216	Z. Anorg. Allg. Chem., 2015,
1 Am/2	210	632 , 1125–1129
COP-NT	459	In this work
TiO	5460	Ind. Eng. Chem. Res., 2013,
ΠO_2	5400	52 , 2201–2208

Table S11 The half-life time $t_{1/2}$ (min) for degradation of MO compared with other materials

Table S12 The half-life time $t_{1/2}$ (min) for degradation of RhB compared with other materials

catalytic	half-life (min)	reference
MOF-3	37	Cryst. Growth Des., 2016,
		16 , 2277-2288.
α-Fe ₂ O ₃ MRs	71	J. Phys. Chem.C, 2010,
		114 , 17051-17061.
COP-NT	79	In this work
β -NaYF4:Yb ³⁺ ,Tm ³⁺	114	ACS Appl. Mater. Interfaces, 2014, 6,
@SiO ₂ @TiO ₂		340-348.
β -NaYF ₄ :Yb ³⁺ ,Er ³⁺	142	ACS Appl. Mater. Interfaces, 2014, 6,
@SiO ₂ @TiO ₂		340-348.
		Cryst. Growth Des., 2013, 10, 597-
$In(OH)_3$ nanocubes	251	601.
oubic 7nIn S	cubic $ZnIn_2S_4$ 346	ACS Appl. Mater. Interfaces, 2012, 4,
		2273-2279.
ZnWO4 nanocubes 356	356	ACS Appl. Mater. Interfaces, 2014, 6,
	14423-14432.	

catalytic	half-life (min)	reference
Compound 3	38	Cryst. Growth Des., 2016,
		16, 2277–2288
G-V ₂ O ₅	40	ACS Appl. Mater. Interfaces, 2015,
		7, 14905–14911
COP-NT	113	In this work
compound 1	120	<i>RSC Adv.</i> , 2014,
		4, 24755–24761
TiO _{2-X} N _X	212	J. Phys. Chem. C, 2010,
		114, 6472–6477
BiTaO ₄	285	J. Phys. Chem. C, 2010,
		114, 6472–6477
Fe-TiO ₂	300	Ind. Eng. Chem. Res., 2015,
		54 , 7346–7351

Table S13 The half-life time $t_{1/2}$ (min) for degradation of MB compared with other materials

S7. The PXRD patterns and FT-IR spectra of COP-NT before and after the photocatalytic experiments

Fig. S7 (a) PXRD patterns and (b) FT-IR spectra of COP-NT before and after reaction.

S8. The ¹ H NMR spectra of compound 1 and compound 2

Fig. S8 The ¹ H NMR spectra of compound 1.

Fig. S9 The ¹ H NMR spectra of compound 2.