Supporting information

to the manuscript

Neutral and anionic zinc compounds supported by a bis(imino)phenyl NCN ligand

by

Minh Tho Nguyen[†], Bullat Gabidullin[‡], Georgii Nikonov[†]*

[†]Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada

[‡]X-ray Core Facility, Faculty of Science, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada

Table of contents

I. General information		
II. N	NMR Characterization of compounds	S3
1.	Compound 6	S3
2.	Compound 7	S4
3.	Compound 8	S5
4.	Compound 9	S6
III.	Crystallographic data	S8
IV.	Reference	S10

I. General information

All experiments involving air and moisture – sensitive compounds were carried out under an atmosphere of dried and purified nitrogen gas using standard Schlenk line or glovebox technique. THF, diethyl ether, benzene, DCM were purified by distillation over potassium hydroxide/benzophenone. Toluene, hexane, were purified by using Grubbs-type solvent purification system. All solvents were stored under nitrogen atmosphere prior to use. ¹H, ²H, ¹³C, ¹¹B spectra were recorded on Bruker DPX-300 and Avance III HD 400 MHz spectrometer. The chemical shifts are expressed in parts per million (ppm) with residual solvent signal as internal standard. The coupling constants (J) are reported in Hertz (Hz) and splitting patterns are indicated in singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (b). Unless indicated, starting materials were obtained from commercial sources. Bis(amino)aryl NCN pincer compound 2,6-(2,6-¹Pr₂C₆H₃N=CH)C₆H₃-1-Br was prepared according to literature procedure^[1].

II. NMR Characterization of compounds

1. <u>Compound 6</u>

Figure SI1. ¹H and ¹³C{¹H} NMR spectra of 6

2. <u>Compound 7</u>

¹³C{¹H} NMR spectrum

Figure SI2. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 7

3. <u>Compound 8</u>

¹³C{¹H} NMR spectrum

Figure SI3. ¹H and ¹³C{¹H} NMR spectra of 8

4. <u>Compound 9</u>

Figure SI4. ¹H and ¹³C{¹H} NMR spectra of 9

Figure SI5. ¹H NMR spectrum of the reaction between **7** + (superhydride) LiBHEt₃ at various time (yellow diamond corresponding to compound **9**, purple cycle corresponding to compound **8**).

III. Crystallographic data

 Table S1 Crystal and structure refinement data for 6-9.

	6	7	8	9
Empirical formula	$C_{26}H_{48}N_4Zn$	C48H69Cl2LiN2OZn	$C_{64}H_{78}N_4Zn$	$C_{64}H_{80}N_4Zn_2$
Formula weight	574.1	881.26	968.67	1036.06
colour, habit	colorless, block	colorless, block	colorless, block	orange, block
Crystal size, mm ³	0.16x0.31x0.84	0.75x0.74x0.50	0.21x0.25x0.27	0.08x0.34x0.43
Crystal system	monoclinic	orthorhombic	triclinic	monoclinic
Space group	P21/n	Pnma	P-1	$P2_1/c$
Unit cell dimensions:				
a, Å	9.555(3)	21.774(3)	13.522(4)	21.465(2)
b, Å	23.515(9)	21.338(3)	14.632(4)	15.5065(14)
c, Å	15.776(6)	10.5392(13)	15.856(5)	19.1466(18)
α, °	90	90	77.163(4)	90
β, °	106.742(4)	90	86.790(4)	114.8170(10)
γ, °	90	90	67.573(4)	90
Volume, Å ³	3394(2)	4896.7(11)	2826.0(15)	5784.3(9)
Z	4	4	2	4
Density (calcd), g/cm ³	1.123	1.195	1.138	1.190
Absorption coefficient, mm ⁻¹	0.747	0.652	0.476	0.870
F(000)	1232	1880	1040	2208
Temperature, K	200(2)	200(2)	238(2)	200(2)

2θ range for data collection, °	2.19 to 28.28	1.87 to 28.38	1.77 to 27.00	1.68 to 28.32
Reflections collected	39832	81417	26044	69330
Independent reflections	8256 [R(int) = 0.0590]	6269 [R(int) = 0.0590]	12176 [R(int) = 0.0600]	14211 [R(int) = 0.0594]
Data / restraints / parameters	8256 / 91 / 391	6269 / 418 / 439	12176 / 0 / 622	14211 / 0 / 631
Goodness-of-fit on F ²	1.010	1.028	0.956	1.020
Final R indices [I>2σ(I)]	$R_1 = 0.0596, wR_2 = 0.1206$	$R_1 = 0.0539, wR_2 = 0.1413$	$R_1 = 0.0591, wR_2 = 0.1152$	$R_1 = 0.0508, \\ wR_2 = 0.1316$
R indices (all data)	$R_1 = 0.1149, wR2$ = 0.1402	$R_1 = 0.0911, wR_2 = 0.1718$	$\begin{array}{l} R_1 = \ 0.1243, \ wR_2 \\ = \ 0.1400 \end{array}$	$R_1 = 0.1192, \\ wR_2 = 0.1798$
Largest diff. peak and hole, e.Å ⁻³	0.563 and -0.699	0.477 and -0.655	0.291 and -0.442	1.595 and - 1.270

Figure SI6. Molecular structure of complex 8

IV. Reference

1 S. Nückel and P. Burger, *Organometallics*, 2000, **19**, 3305–3311.