Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Nonanuclear Ni(II) Complexes in a [1-7-1] Formation Derived from Asymmetric Multidentate Ligands: Magnetic and Electrochemical Properties

Yasuhiro Tsuji, Tatsuo Togo, Akio Mishima, Tomomi Koshiyama, and Masaaki Ohba* Kyushu University

Physical Measurement

Elemental analyses of carbon, hydrogen and nitrogen were carried out by the staff of technical support division graduate school of science, Kyushu University. UV-Vis absorption was measured by JASCO V-630. Infrared spectra were measured with a JASCO FT/IR-4200 using ATR method. Cyclic voltammogram was recorded on an ALS 612D electrochemical analyzer and all electrodes used was purchased from BAS. Platinum electrode was used as counter electrode and glassy carbon electrode was used as working with electrode which was polished with 0.05 μ m polishing alumina. As the reference electrode, RE-7 nonaqueous reference electrode (Ag⁺/Ag) was used. Tetrabutylammonium perchlorate used as an electrolyte was recrystallized from ethanol. In the bulk electrolysis measurement, Porous carbon electrode was used as working electrode. The magnetic susceptibilities of all samples were measured on Quantum Design MPMS-XL5R SQUID susceptometer in the temperature range of 2-300 K in an applied DC field of 1000 Oe. The samples were put into a gelatin capsule, placed in a plastic straw, and then fixed to the end of the sample transport rod. Diamagnetic correction was calculated by using Pascal constant. The molar magnetic susceptibility, χ_M , was corrected for the diamagnetism of the constituent atoms and the sample tube.

Single-crystal X-ray diffraction

All Single-crystal X-ray diffraction data were collected on a Bulker SMART APEX II ULTRA CCD-detector Diffractometer, a rotating-anode (Bruker Tourbo X-ray source) with graphite-monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å) was used. Computations were carried out on a APEX2 crystallographic software package and OLEX2 software.¹ A single crystal was mounted on a polymer film with liquid paraffin and the temperature kept -173 °C under flowing N₂ gas. All of the structures were solved by direct method or intrinsic method. All the structures were expanded using Fourier techniques. Fullmatrixleast-squares refinements were carried out with anisotropic thermal parameters for all non-disordered and non-hydrogen atoms. The hydrogen atoms were attached based on the difference Fourier map and calculation geometrically. The SQUEEZE program was used to remove the contribution of the highly disordered solvent molecules from the structural calculations.

Preparations

All chemicals were purchased from commercial sources and used without further purification. Dimethyl pyridine 2,6-carboxylate (a) and dimethyl 4-methoxypyridine-2,6-dicarboxylate (b) were prepared according to literature procedures.^{2,3} The preparation of the 6-acetoacetyl-2-pyridinecarboxylic acid (H₂L1) and its derivatives were carried out in three steps including a Claisen condensation with reference to the literature method.⁴ Synthetic scheme of the ligand is shown in **scheme 1**.

Scheme 1. Synthetic scheme of 6-acetoacetyl-2-pyridinecarboxylic acid and its derivatives.

Dimethyl pyridine-2, 6-dicarboxylate (a)²

Pyridine-2, 6-dicarboxylic acid (33.42 g, 0.20 mol) and concentrated sulfuric acid (6.0 g) was added to MeOH (100 ml). The mixture was refluxed for 3 h, and then cooled to room temperature with stirring. The white crystals of dimethyl pyridine-2,6-dicarboxylate was filtrated and washed with MeOH and dried *in vacuo*.

Yield 35.70 g (91.5 %) ¹H NMR (600 MHz, CDCl₃ δ in ppm): 8.30 (d, 2H, *J*=7.8 Hz, py), 8.01 (dd, 1H, *J*=8.1Hz, py), 4.01 (s, 1H, OMe). Elemental analysis (%); Calcd. for C₉H₉NO₄: C 55.39, H 4.65, N 7.18; found: C 55.31, H 4.60, N 7.16. FT-IR (cm⁻¹); 1739, 1290, 1163, 996, 755, 694

Dimethyl 4-methoxypyridine-2,6-dicarboxylate (b) ³

Chelidamic acid monohydrate (16.09 g, 80 mmol) was refluxed in methanol (800 mL) in presence of sulfuric acid (16 mL) for 10 days. The solvent was concentrated to dryness, and the crude product dissolved in water and neutralized by saturated NaHCO₃ solution. White precipitate was extracted by dichloromethane, and the organic phase was dried over Na₂SO₄ and evaporated to dryness. White solid of crude product was purified by column chromatography on silica gel with CHCl₃ / MeOH (20:1), and the solvent evaporated to give dimethyl 4-methoxypyridine-2,6-dicarboxylate.

Yield 12.07 g, (67.0 %). ¹H NMR (600 MHz, $CDCl_3 \delta$ in ppm): 7.80 (s, 2H, py), 4.00 (s, 6H, CO_2Me), 3.97 (s, 3H, OMe). Elemental analysis (%); Calcd. for $C_{10}H_{11}NO_5$: C 53.33, H 4.92, N 6.22; found: C 53.28, H 4.93, N 6.18. FT-IR (cm⁻¹); 1716, 1604, 1431, 1362, 1268, 1107, 1048, 993, 887, 786

6-acetoacetyl-2-pyridinecarboxylic acid (H₂L1) and its derivatives (H₂L2, H₂L3, H₂L4)

Compound **a** (9.76 g, 0.05 mol for H_2L1 and H_2L2) or compound **b** (11.26 g, 0.05 mol for H_2L3 and H_2L4), and 28 % sodium methoxide methanol solution (9.65 g, 0.05 mol) was added to diethyl ether (150 ml) and then, acetone (4.36 g, 0.075 mol for H_2L1 and H_2L3) or pinacolin (7.51 g, 0.075 mol for H_2L2 and H_2L4), in 30 ml of diethyl ether was added dropwise under reflux for 4 h. The yellow precipitate was filtered and washed with diethyl ether and dried *in vacuo*. After that, yellow powder was dissolved in 100 ml of water and pH was adjusted to 1 by 5M HCl. Stirring 12 h and yellowish white powder of methyl ester was filtrate and wash with water and dried *in vacuo*.

30 % aqueous NaOH (15 ml) was added to a solution of each compound in acetone (150 ml) under stirring at room temperature for 12 h. The yellow solid was collected by filtration and washed with acetone and dried *in vacuo*. After that, yellow powder was dissolved in 100 ml of water and pH was adjusted to 1 by 5M HCl. Yellowish white powder formed was filtered and wash with water and dried *in vacuo*.

6-acetoacetyl-2-pyridinecarboxylic acid (H₂L1)

H₂**L1** was recrystallized from hot EtOH. Yield 7.70 g (54.4 %). ¹H NMR (600 MHz, CDCl₃ δ in ppm): 15.64 (s, H, C=C—OH), 8.33-8.35 (m, 2H, py) 8.12 (dd, 1H, *J*=7.8 Hz, py), 6.74 (s, 1H, — CH=), 2.29 (s, 3H, —CH₃). Elemental analysis (%); Calcd. for C₁₀H₉NO₄: C 57.97, H 4.38, N 6.76; found: C 57.83, H 4.31, N 6.72. FT-IR (cm⁻¹); 1706, 1617, 1580, 1460, 1422, 1327, 1300, 1249, 942, 779

6-(4,4-dimethyl-3-oxopentanoyl)picolinic acid (H₂L2)

Yield 7.52 g (56.3 %). ¹H NMR (600 MHz, CDCl₃ δ in ppm): 16.05 (s, H, C=C—OH), 8.35-8.33 (m, 2H, py) 8.12 (dd, 1H, J=7.8 Hz, py), 6.84 (s, 1H, —CH=), 1.28 (s, 9H, —*t*Bu). Elemental analysis (%); Calcd. for C₁₃H₁₇NO₅ (monohydrated): C 58.42, H 6.41, N 5.24; found: C 58.52, H 6.34, N 5.24. FT-IR (cm⁻¹); 1685, 1576, 1317, 1263, 1237, 785, 755, 687

4-methoxy-6-(3-oxobutanoyl)picolinic acid (H₂L3)

Yield 9.22 g (77.7 %). ¹H NMR (600 MHz, CDCl₃ δ in ppm): 15.61 (s, H, C=C−OH), 7.81 (s, 2H, py), 6.71 (s, 1H, −CH=), 4.00 (s, 3H, −OMe), 2.28 (s, 3H, CH₃). Elemental analysis (%);

Calcd. for C₁₁H₁₁NO₅: C 55.70, H 4.67, N 5.90; found: C 55.80, H 4.82, N 5.42. FT-IR (cm⁻¹); 1702, 1583, 1236, 1042, 704

6-(4,4-dimethyl-3-oxopentanoyl)-4-methoxypicolinic acid (H₂L4)

Yield 6.44 g (51.7 %). ¹H NMR (600 MHz, CDCl₃ δ in ppm): 16.02 (s, H, C=C-OH), 7.81 (s, 2H, py), 6.81 (s, 1H, -CH=), 4.00 (s, 3H, -OMe), 1.27 (s, 9H, *t*Bu). Elemental analysis (%); Calcd. for C₁₄H₁₇NO₅: C 60.21, H 6.14, N 5.02; found: C 59.92, H 6.13, N 4.94. FT-IR (cm⁻¹); 1694, 1585, 1464, 1334, 1044, 932, 738

$[Ni_9(L1)_6(OH)_6(H_2O)_6]$ (Ni₉L1)

 H_2L1 (207 mg, 1.0 mmol) and Et_3N (416 µl) were dissolved in 15 ml of MeOH. Then, NiSO₄·6H₂O (526 mg, 2.0 mmol) in water (5 ml) was added in the methanol solution and stirred for 12 hours. Green solution was concentrated under ambient condition. Green crystals formed within 2 weeks were collected by filtration and washed with MeOH/H₂O and diethyl ether and dried *in vacuo*.

Yield 110 mg (33.8 %), Elemental analysis (%); Calcd. for $C_{60}H_{60}Ni_9N_6O_{36}$ [Ni₉(L1)₆(OH)₆(H₂O)₆]: C 36.59, H 3.07, N 4.27; found: C 36.67, H 2.66, N 4.37. Formula weight 1969.39 FT-IR (cm⁻¹); 1621, 1591, 1515, 1469, 1410, 1370, 1291, 1145

$[Ni_{9}(L2)_{6}(OH)_{6}(H_{2}O)_{6}] \cdot 2H_{2}O (Ni_{9}L2)$

 H_2L2 (498 mg, 2.0 mmol) and Et_3N (831 µl) were dissolved in 20 ml of MeOH. Then, NiSO₄·6H₂O (1.052 g, 4.0 mmol) in water (5 ml) was added in the methanol solution and stirred for 12 hours. Green solution was concentrated under ambient condition. Green crystals formed within two weeks were collected by filtration and recrystallized from 25 ml of MeOH/H₂O (v : v = 4 : 1). Green crystals formed were collected and washed with H₂O and dried *in vacuo.*

Yield 110 mg (14.6 %), Elemental analysis (%); Calcd. for $C_{78}H_{100}Ni_9N_6O_{38}$ {[Ni₉(L2)₆(OH)₆(H₂O)₆]·2H₂O}: C 41.49, H 4.46, N 3.72; found: C 41.05, H 4.09, N 3.82. Formula weight 2257.90. FT-IR (cm⁻¹); 1623, 1594, 1510, 1468, 1413, 1372, 1293, 1116

[Ni₉(L3)₆(OH)₆(H₂O)₆] (Ni₉L3)

 H_2L3 (237 mg, 1.0 mmol) and Et₃N (416 μl) were dissolved in 18 ml of MeOH. Then, NiSO₄·6H₂O (526 mg, 2.0 mmol) in water (2 ml) was added in the methanol solution and reflux for 24 hours. Green solution was concentrated under ambient condition. Green crystals formed within three weeks were collected by filtration and washed with H₂O and dried *in vacuo*. Yield 115 mg (32.1 %), Elemental analysis (%); Calcd. for C₆₆H₇₂N₆Ni₉O₄₂ [Ni₉(L3)₆(OH)₆(H₂O)₆]: C 36.88, H 3.38, N 3.91; found: C 37.38, H 3.20, N 4.01. Formula weight 2149.54. FT-IR (cm⁻¹); 1601, 1512, 1469, 1416, 1363, 1231, 1170, 1061

$[Ni_{9}(L4)_{6}(OH)_{6}(MeOH)_{2}(H_{2}O)_{4}]$ (Ni₉L4)

 H_2L4 (279 mg, 1.0 mmol) and Et_3N (416 µl) were dissolved in 40 ml of MeOH. Then, NiSO₄·6H₂O (526 mg, 2.0 mmol) in water (10 ml) was added in the methanol solution and stirred for 12 hours. Green solution was concentrated under ambient condition. Green crystals formed within 7 days were collected by filtration and washed with MeOH and diethyl ether and dried *in vacuo*.

Yield 242 mg (89.6 %), Elemental analysis (%); Calcd. for C₆₀H₉₂Ni₉N₆O₅₂

 $[Ni_9(L4)_6(OH)_6(MeOH)_2(H_2O)_4]$: C 42.51, H 4.65, N 3.46; found: C 42.54, H 4.45, N 3.50. Formula weight 2430.08. FT-IR (cm⁻¹); 1598, 1512, 1469, 1416, 1366, 1146, 1106, 1060

Crystal Structure

In the crystal structure, a lot of lattice water molecules are found, and they formed hydrogen bond-network and some of them form the hydrogen-bonded networks with carboxylate of the ligand. These solvent molecules had been removed from calculations using SQUEEZE. Approximately 10-20 water molecules could be seen as Q peaks on the difference map. The number of solvent water of the dried sample was determined by elemental analysis.

Fig. S1 An ORTEP drawing and schematic structure of **Ni₉L1**. H atoms are omitted for clarity. Ni: light green; C: gray; O: red; and N: light blue.

Fig. S2 An ORTEP drawing and schematic structure of **Ni₉L2**. H atoms are omitted for clarity. Ni: light green; C: gray; O: red; and N: light blue

Fig. S3 An ORTEP drawing and schematic structure of **Ni**₉L**3**. H atoms are omitted for clarity. Ni: light green; C: gray; O: red; N: and light blue

Fig. S4 An ORTEP drawing and schematic structure of **Ni**₉L4. H atoms are omitted for clarity. Ni: light green; C: gray; O: red; N: and light blue

Complex	Ni ₉ L1	Ni₀L2
Formula	$C_{60.18}H_{60.18}N_6Ni_9O_{36}$	$C_{81}H_{102}N_6Ni_9O_{36}$
Formula weight	1971.90	2264.09
Temperature / K	100	100
Crystal size / mm	$0.341 \times 0.077 \times 0.054$	$0.238 \times 0.085 \times 0.084$
Crystal system	Monoclinic	Cubic
Space group	<i>P</i> 2 ₁ /n	Ра
a / Å	17.738(2)	28.0844(16)
b / Å	26.380(3)	28.0844(16)
c / Å	21.689(2)	28.0844(16)
α/°	90	90
β/°	95.9356(13)	90
γ/°	90	90
Volume / ų	10094.5(19)	22151.(4)
Z value	4	8
R_1	0.0294	0.0805
wR ₂	0.0800	0.1998
Goodness of Fit	1.074	1.073
Complex	Ni₀L3	Ni ₉ L4
Complex Formula	Ni ₉ L3 C ₁₀₂ H ₉₉ N ₉ Ni _{13.5} O ₆₃	Ni ₉ L4 C _{88.39} H _{99.67} N ₆ Ni ₉ O _{42.86}
Complex Formula Formula weight	Ni ₉ L3 C ₁₀₂ H ₉₉ N ₉ Ni _{13.5} O ₆₃ 3251.48	Ni₅L4 C _{88.39} H _{99.67} N ₆ Ni ₉ O _{42.86} 2457.62
Complex Formula Formula weight Temperature / K	Ni ₉ L3 C ₁₀₂ H ₉₉ N ₉ Ni _{13.5} O ₆₃ 3251.48 100	Ni ₉ L4 C _{88.39} H _{99.67} N ₆ Ni ₉ O _{42.86} 2457.62 100
Complex Formula Formula weight Temperature / K Crystal size / mm	Ni₉L3 C ₁₀₂ H ₉₉ N ₉ Ni _{13.5} O ₆₃ 3251.48 100 0.296 × 0.08 × 0.06	Ni ₉ L4 C _{88.39} H _{99.67} N ₆ Ni ₉ O _{42.86} 2457.62 100 0.232 × 0.056 × 0.052
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5)	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2)
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4)	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3)
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group <i>a</i> / Å <i>b</i> / Å	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3)	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2)
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group <i>a</i> / Å <i>b</i> / Å <i>c</i> / Å α / °	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å c / Å α / ° β / °	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90 126.189(10)	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90 106.2012(12)
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å c / Å c / Å α / ° β / °	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 $0.296 \times 0.08 \times 0.06$ Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90 126.189(10) 90	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90 106.2012(12) 90
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å c / Å $\alpha / °$ $\beta / °$ $\gamma \mathbb{Z} / °$ Volume / Å ³	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90 126.189(10) 90 35993(7)	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90 106.2012(12) 90 11584.(2)
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å c / Å c / Å α / ° β / ° γ @/ ° Volume / Å ³ Z value	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 0.296 × 0.08 × 0.06 Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90 126.189(10) 90 35993(7) 8	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90 106.2012(12) 90 11584.(2) 4
Complex Formula Formula weight Temperature / K Crystal size / mm Crystal system Space group a / Å b / Å c / Å c / Å α / ° β / ° γ ?/ ° Volume / Å ³ Z value R_1	Ni ₉ L3 $C_{102}H_{99}N_9Ni_{13.5}O_{63}$ 3251.48 100 $0.296 \times 0.08 \times 0.06$ Monoclinic C2/c 43.678(5) 35.508(4) 28.756(3) 90 126.189(10) 90 35993(7) 8 0.0803	Ni ₉ L4 $C_{88.39}H_{99.67}N_6Ni_9O_{42.86}$ 2457.62 100 0.232 × 0.056 × 0.052 Monoclinic C2/c 22.931(2) 24.553(3) 21.426(2) 90 106.2012(12) 90 11584.(2) 4 0.0489

1.065

 Table S1.
 Crystallographic parameters

Goodness of Fit

1.059

				- 5	\ 11				
	Ni1	Ni2	Ni3	Ni4	Ni5	Ni6	Ni7	Ni8	Ni9
Ni ₉ L1	2.15	2.01	2.04	2.04	1.94	2.02	2.05	2.02	2.14
Ni₀L2	2.19	2.04	1.98	2.03	2.15				
Ni₀L3	2.17	2.06	2.03	2.04	1.97	2.02	2.02	2.06	2.18
Ni ₉ L4	2.17	2.04	2.02	2.02	1.95				
	Ni11	Ni12	Ni13	Ni14	Ni15				
Ni₀L3	2.16	2.03	2.04	1.91	1.97				

Table S2. Calculated value of valence for $Ni_9Ln(V_i)$

Fig. S5. FT-IR spectra of Ni₉Ln.

UV-vis Spectra

All UV-vis spectra for **Ni**₉L*n* showed one intense band around 350 nm which could be attributed to in the ligand origin. The intensity of this band overlap of the charge transfer bands of Ni– μ -OH. The d-d transition absorption band was observed around 660 nm in both spectra. This band supposed to be involved with ${}^{3}A_{2} \rightarrow {}^{3}T_{1}$ for the octahedral Ni(II) center.

Fig. S6. UV-vis spectra of Ni₉L1 (a), Ni₉L2 (b), Ni₉L3 (c), Ni₉L4 (d), in Acetonitrile/MeOH.

Bulk electrolysis experiment

The bulk electrolysis measurement was run by holding the potential of the working electrode at 0.696 V vs. Fc⁺/Fc until the ratio of the average current of each interval to the average current of the first interval reaches at 6 %. Integration of the current showed the passage of 0.585 C, which is comparable to 1.01 electrons per molecule of Ni₉L1.

Fig. S7. The result of bulk electrolysis measurement of **Ni₉L1**. (0.1 mM **Ni₉L1**, in 60 ml of Acetonitrile/MeOH with 0.1 M TBAP electrolyte.)

Fig. S8. Cyclic voltammograms (100 mV/s) of 1 mM Ni₉Ln in Acetonitrile/MeOH with 0.1 M TBAP electrolyte.

Fig. S9. Ni-O-Ni or O-Ni-O angles changed by introduction of *t*-butyl group. (red and blue represent expanded angle and contracted angle respectively. Numeric data were summarized in Table S3)

• _							
_		Ni ₉ L1	Ni ₉ L2	Ni ₉ L3	Ni ₉ L4		
_	<i>E</i> _{1/2} / V	0.54	0.47	0.53	0.45		
	(a) _(ave.) / °	88.95	87.55	88.67	86.30		
	(b) _(ave.) / °	123.62	123.35	123.58	123.06		
	(C) _(ave.) / °	95.29	95.44	95.33	95.56		
	(d) _(ave.) / °	78.98	78.85	78.98	78.86		
	Ni _(central) -O _{(ave.).} / Å	2.071	2.065	2.066	2.070		

Table S3. Electrochemical and structural data of Ni₉Ln.

Fig. S10. $\chi_M T$ vs. *T* curves and magnetization curves of **Ni**₉L1 (a), **Ni**₉L2 (b), **Ni**₉L3 (c), **Ni**₉L4 (d) at 2 K (The solid lines represent the theoretical curves.).

References

- 1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J Appl Crystallogr*, 2009, **42**, 339–341.
- 2 V. Chandrasekhar, S. Das, A. Dey, S. Hossain and J.-P. Sutter, *Inorg. Chem.*, 2013, **52**, 11956–11965.
- 3 A.-L. Gassner, C. Duhot, J.-C. G Bünzli and A.-S. Chauvin, *Inorg. Chem.*, 2008, **47**, 7802–7812.
- 4 Y.-M. Luo, J. Li, L.-X. Xiao, R.-R. Tang and X.-C. Tang, *Spectrochimica Acta Part A*, 2009, **72**, 703–708.