Electronic Supporting Information for

A Macrocyclic Silver Polycarbene Complex Based on 1,2,4-

Triazole Units: Synthesis and Postsynthetic Modification

Le Zhang, and Ying-Feng Han

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education

College of Chemistry and Materials Science, FM & EM International Joint Laboratory, Northwest University, Xi'an 710127, P. R. China

E-mail: yfhan@nwu.edu.cn.

Contents

- 1. ¹H and ¹³C NMR spectra of H_2 -1(BF₄)₂ (Fig. S1-S2).
- 2. ¹H and ¹³C NMR and 2D spectra of $[Ag_2(1)_2](BF_4)_2$ (Fig. S3-S7).
- 4. ¹H and ¹³C NMR and 2D spectra of [Ag₂(**2**)](BF₄)₂ (Fig. S8-S12).
- 5. ¹H NMR spectrum of $[Ag_2(2)](BF_4)_2$ which obtained directly from the reaction of H₄-2(BF₄)₄ and Ag₂O (Fig. S13).
- 6. ¹H and ¹³C NMR and 2D spectra of H_4 -2(BF₄)₄ (Fig. S14-S18).
- 7. ESI-MS spectra of complexes $H_2-1(BF_4)_{2,}$ [Ag₂(1)₂](BF₄)₂ and [Ag₂(2)](BF₄)₂ (Fig. S19-S21).
- ESI-MS spectra of complex [Ag₂(2)](BF₄)₂ which obtained directly from the reaction of H₄-2(BF₄)₄ and Ag₂O (Fig. S22).
- 9. UV-vis spectra of [Ag₂(1)₂](BF₄)₂ (5 μM) in CH₃CN before [Ag₂(1)₂](BF₄)₂ (dash line) and after [Ag₂(2)](BF₄)₂ (soild line) photoreaction (Fig. S23)
- 10. Crystal data of complex $[Ag_2(1)](BF_4)_2$ (Table S1).

Figure S1. ¹H NMR (400 MHz, DMSO- d_6) of H₂-1(BF₄)₂.

Figure S2. ¹³C NMR (100 MHz, DMSO-*d*₆) of H₂-1(BF₄)₂.

9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 fl (ppm)

Figure S3. ¹H NMR (400 MHz, DMSO-*d*₆) of [Ag₂(1)₂](BF₄)₂.

Figure S4. ¹³C NMR (100 MHz, DMSO-*d*₆) of [Ag₂(1)₂](BF₄)₂.

Figure S5. HH-COSY NMR (400 MHz, DMSO-*d*₆) of [Ag₂(1)₂](BF₄)₂.

Figure S6. HC-HSQC NMR (400 MHz, DMSO-*d*₆) of [Ag₂(1)₂](BF₄)₂.

Figure S7. HC-HMBC NMR (400 MHz, DMSO-*d*₆) of [Ag₂(1)₂](BF₄)₂.

9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 f1 (ppm)

Figure S8. ¹H NMR (400 MHz, DMSO-*d*₆) of [Ag₂(**2**)](BF₄)₂.

Figure S9. ¹³C NMR (100 MHz, DMSO-*d*₆) of [Ag₂(**2**)](BF₄)₂.

Figure S10. HH-COSY NMR (400 MHz, DMSO-*d*₆) of [Ag₂(**2**)](BF₄)₂.

Figure S11. HC-HSQC NMR (400 MHz, DMSO-*d*₆) of [Ag₂(**2**)](BF₄)₂.

Figure S12. HC-HMBC NMR (400 MHz, DMSO-*d*₆) of [Ag₂(**2**)](BF₄)₂.

Figure S13. ¹H NMR (400 MHz, DMSO-*d*₆) of $[Ag_2(2)](BF_4)_2$ which obtained directly from the reaction of H₄-2(BF₄)₄ and Ag₂O.

Figure S14. ¹H NMR (400 MHz, DMSO-*d*₆) of H₄-**2**(BF₄)₄.

Figure S15. ¹³C NMR (100 MHz, DMSO-*d*₆) of H₄-**2**(BF₄)₄.

Figure S16. HH-COSY NMR (400 MHz, DMSO-*d*₆) of H₄-**2**(BF₄)₄.

Figure S17. HC-HSQC NMR (400 MHz, DMSO-*d*₆) of H₄-**2**(BF₄)₄.

Figure S18. HC-HMBC NMR (400 MHz, DMSO-*d*₆) of H₄-2(BF₄)₄.

ESI-MS (positive ions) for $\{[H_2-1]\}^{2+}$: Top (tested) and bottom (Calcd). Figure S19. ESI-MS spectra of $H_2-1(BF_4)_2$.

ESI-MS (positive ions) for $\{[Ag_2(1)_2]\}^{2+}$: Top (measured) and bottom (Calcd.). Figure S20. ESI-MS spectra of $[Ag_2(1)_2](BF_4)_2$.

ESI-MS (positive ions) for $\{[Ag_2(2)]\}^{2+}$: Top (measured) and bottom (Calcd.). Figure S21. ESI-MS spectra of $[Ag_2(2)](BF_4)_2$.

ESI-MS (positive ions) for $\{[Ag_2(2)]\}^{2+}$: Top (measured) and bottom (Calcd.).

Figure S22. ESI-MS spectra of $[Ag_2(2)](BF_4)_2$ which obtained directly from the reaction of H_4 -**2**(BF₄)₄ and Ag₂O.

Fig. S23 UV–vis spectra of $[Ag_2(1)_2](BF_4)_2$ (5 µM) in CH₃CN before $[Ag_2(1)_2](BF_4)_2$ (dash line) and after $[Ag_2(2)](BF_4)_2$ (soild line) photoreaction

Empirical formula	$C_{68}H_{64}Ag_2B_2Cl_8F_8N_{12}O_8$
Formula weight	1850.27
Temperature/K	296(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.0041(14)
b/Å	10.5386(16)
$c/\text{\AA}$	20.971(3)
$\alpha/^{\circ}$	94.863(2)
$\beta/^{\circ}$	93.285(2)
γ/°	106.354(2)
Volume/Å ³	1895.7(5)
Z	1
$\rho_{calc}g/cm^3$	1.621
µ/mm⁻¹	0.880
F(000)	932.0
Crystal size/mm ³	$0.130 \times 0.120 \times 0.120$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2θ range for data collection/°	3.912 to 50.018
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -24 \le l \le 24$
Reflections collected	32149
Independent reflections	$6594 [R_{int} = 0.0332, R_{sigma} = 0.0265]$
Data/restraints/parameters	6594/0/489
Goodness-of-fit on F ²	1.047
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0364, wR_2 = 0.0939$
Final R indexes [all data]	$R_1 = 0.0426, wR_2 = 0.0982$
Largest diff. peak/hole / e Å ⁻³	1.97/-0.54

Table S1. Crystal data of complex $[Ag_2(1)_2](BF_4)_2$.