Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Activating [4+4] photoreactivity in the solid-state via complexation: from 9-(methylaminomethyl)anthracene to its silver(I) complexes.

Floriana Spinelli, Simone d' Agostino, Paola Taddei, Christopher D. Jones, Jonathan W. Steed and Fabrizia Grepioni

Electronic Supplementary Information

(16 pages)

Contents	
Photoreactivity of MAMA in solution	2
XRPD patterns	2
Crystal structure details	3
Gel Phase Crystallization	4
¹ H NMR spectroscopy	5
Synthesis of the gelator G1	6
Raman spectroscopy	7

Fig. S1 Crystallization of the trans photodimer, DMAMA, after irradiation at $\lambda = 365$ nm of a saturated ethanolic solution.

Fig. S2 Experimental (blue line) and simulated (black line) X-ray powder diffraction patterns for (a) DMAMA and for the complexes (b) $[Ag(MAMA)_2][PF_6]$, (c) $[Ag(MAMA)_2][BF_4]$ and (d) $[Ag(MAMA)_2][Ag(NO_3)_2]$.

2

Fig. S3 Experimental (blue), calculated (red) and difference (grey) patterns for the free ligand MAMA.

Fig. S4 Comparison between experimental X-ray powder diffraction patterns run before (black line) and after (blue line) UV irradiation for the complexes: (a) $[Ag(MAMA)_2][BF_4]$ and (b) $[Ag(MAMA)_2][Ag(NO_3)_2]$.

Table S1	Crystal	data a	nd details	of mea	surements	for	crystalline	MAMA,	DMAMA,	Ag(MAM	$[A)_2[PF_6],$
Ag(MAM	$(A)_2[BF_4]$], [Ag(MAMA) ₂]	[Ag(NO	D ₃) ₂], and [DM	[AMAH ₂]B	r ₂ .			

	MANA	DIVIANIA		[Ag(IVIAIVIA)2][DF4][.	$Ag(MAMA)_2 J[Ag(NO_3)$	
Formula	C15H16N	C16H15N	C32H30AgF6NP	C ₃₂ H ₃₀ AgBF ₄ N	$C_{16}H_{15}AgN_2O_3$	$C_{32}H_{32}Br_2N_2$
Fw (g/mol)	221.30	221.29	695.42	637.28	391.17	604.42
Cryst. System	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1	P-1	C2/c	C2/c	C2/c	$P2_1/n$
Z	2	2	8	8	8	4
Z'	2	2 x 0.5	0.5	0.5	0.5	0.5
a (Å)	24.1250(1)	8.1706(5)	19.4884(9)	18.6597(9)	20.4242(12)	9.202(5)
b (Å)	9.65362(3)	9.2479(6)	10.4542(4)	10.2048(4)	8.1480(4)	7.953(5)
c (Å)	5.48188(2)	16.4024(10)	14.4045(9)	14.7676(8)	18.6493(13)	18.223(5)
α (deg)	100.5596(4)) 92.8970(10)	90	90	90	90
β (deg)	96.2248(5)	93.1560(10)	96.753(5)	100.540(5)	108.776(7)	93.342(5)
γ (deg)	85.6998(3)	110.3720(10)	90	90	90	90
V (Å ³)	1245.69(5)	1156.88(13)	2914.3(3)	2764.6(2)	2938.4(3)	1331.4(12)
D _{calc} (g/cm ³)	1.180	1.271	1.585	1.531	1.768	1.508
μ (mm ⁻¹)	-	0.074	0.810	0.781	1.386	3.069
Measd refins	-	18826	7545	6336	7363	5040
Indep refins	-	6729	3379	3140	3375	2348
R ₁ (obs)	-	0.0555	0.083	0.0602	0.0786	0.0740
wR ₂ (all data)	-	0.1639	0.204	0.222	0.1626	0.1003
$\mathbf{R}_{\mathbf{wp}}$	8.2	-	-	-	-	-
Rexp	2.1	-	-	-	-	-

MAMA DMAMA [Ag(MAMA)₂][PF₆] [Ag(MAMA)₂][BF₄] [Ag(MAMA)₂][Ag(NO₃)₂] [DMAMAH₂]Br₂

Gel Phase Crystallization

LMWGs have been successfully used as media for crystal growth. The intrinsic supramolecular nature of such systems is potentially useful since their formation/disruption displays reversibility upon the application of a suitable stimulus, which can be used for the easy recovery of the gelgrown crystals. In order to test the photoreactivity of anthracene in a gel of bis(urea) gelator G1, both anthracene and the gelator were dissolved in toluene, and, after heating, the gel was obtained. After an overnight irradiation of the gel at $\lambda = 365$ nm crystals were obtained, which were recovered after gel decomposition with an ethanolic solution of tetrabutylammonium acetate, and subsequently tested by X-ray single crystal diffraction (see Fig. S5). The unit cell of the crystals corresponded to the unit cell of the anthracene dimer reported in the CSD. A comparison between crystals of the dianthracene obtained via solution irradiation and those obtained from gel showed that crystals grown in the gel medium are much larger with respect to those grown in solution (Fig. S6).

Fig. S5a Irradiation of anthracene in gel medium and subsequent gel disruption using an ethanolic solution of tetrabutylammonium acetate.

Fig. S5b Pictures of the crystals of dianthracene obtained after irradiation in solution (left) and in the gel medium (right), taken by optical microscope.

¹H NMR spectroscopy

Solution ¹H NMR spectroscopy was also employed to follow the cyclization reaction in the gel for both anthracene and MAMA. Figure S6a shows how the intensity of the aromatic CH signals decreases upon increasing the irradiation time, while signals corresponding to the tertiary bridgehead aliphatic CH protons start to appear (however they immediately disappear again due to precipitation of the anthracene dimer, which is insoluble in the gel). In the case of MAMA (see Fig. S6b), which is only slightly soluble in toluene, no crystal formation was observed, although the NMR spectra show - as in the case of anthracene - a decrease in the intensity of the aromatic CH signals and, after a much longer time, the appearance of resonances assigned to bridgehead aliphatic CH protons. Interaction of MAMA with gel fibres, together with its low concentration, might be the reason why formation of the photocyclization product could only be detected after a long time, and no crystal growth could be observed.

CH	bridgehead CH		
		-	
		-	
		-	
i a shi		-	
		-	
1		-,	
		-	
		-	
		-	
		-	

Fig. S6a Solution ¹H NMR spectra of anthracene in gel: the intensity of the aromatic CH signals decreases upon increasing the irradiation time, while signals corresponding to the tertiary bridgehead aliphatic CH start to appear after a few minutes (however they immediately disappear again due to precipitation of the anthracene dimer, which is insoluble in the gel).

Fig. S6b Solution ¹H NMR spectra of MAMA in gel: the intensity of the aromatic CH signals decreases upon increasing the irradiation time, while signals corresponding to the tertiary bridgehead aliphatic CH start to appear only after many hours.

Synthesis of the gelator G1

To a stirred solution of *n*-butylamine (0.1 cm³, 1.01 mmol) in chloroform (20 cm³) at 20 °C was added 1,3-bis(1-isocyanato-1-methylethyl)benzene (0.1 cm³, 0.43 mmol). The reaction mixture was left to stand under air for 24 hours at 20 °C then concentrated *in vacuo* and filtered under suction. The collected solids were washed with chloroform (2 x 20 cm³) and dried in a drying pistol. Compound **1** was obtained as a white solid (152 mg, 0.39 mmol, 90%), m/z (ESI-MS) 413.8 [M+Na]⁺. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.33 (t, *J* = 1.8 Hz, 1H, *h*), 7.20 – 7.08 (m, 3H, *i*, *j*), 6.12 (s, 2H, *f*), 5.75 (t, *J* = 5.7 Hz, 2H, *e*), 2.92 (dt, *J* = 6.3, 5.7 Hz, 4H, *d*), 1.51 (s, 12H, *g*), 1.38 – 1.18 (m, 8H, *b*, *c*), 0.95 – 0.73 (m, 6H, *a*). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.59, 148.97, 127.68, 122.75, 121.75, 54.65, 38.96, 32.71, 30.63, 19.99, 14.17. Anal. Calc. (%) (C₂₂H₃₈N₄O₂) C 67.66, H 9.81, N 14.35; Found (%) C 67.40, H 9.72, N 14.27.

Raman spectroscopy

Table S2 Main Raman band wavenumbers and assignments for MAMA and DMAMA. The band wavenumbers of dianthracene are reported for comparison. The bands characteristic of fused benzene rings are highlighted in bold. The bands characteristic of the dimer are indicated in red.

Assignments	MAMA	DMAMA	Dianthracene ¹	Assignments
CC ring stretching in	1625 vw			
anthracene ^{2,3} , in alkyl-				
substituted anthracenes ⁴ , and				
9-substituted derivatives ^{5,6}				
		1597-1591 m	1603-1592	Phenyl CC stretching in 9,10-
				dihydroanthracene7 and ortho-
				xylene ^{8,9}
CC ring stretching in	1575 sh	1576 sh	1582	Phenyl CC stretching in
anthracene and 9-substituted				dianthracene ¹ and 9,10-
derivatives ^{2,3,5}				dihydroanthracene ⁷
CC ring stretching in	1558 s			
anthracene and 9-substituted				
derivatives ^{2,3,5,6}				
Aromatic CH in plane	1503-			
bending ⁵ and CC ring	1493 w			
stretching ⁶ in anthracene ¹⁰ and				

9-substituted derivatives				
CC ring stretching in	1477 m	1479 mw	1464	Phenyl CC stretching in 9,10-
anthracene and 9-substituted				dihydroanthracene ⁷
derivatives ^{2,5} , aromatic CH in				
plane bending in anthracene ^{3, 5}				
CH ₃ symmetric deformation ⁸	1453 w	1453 w		
CC ring stretching in	1408 vs	1410 w		
antharacene ^{2,3,5} and 9-				
substituted anthracene ^{8,11}				
characteristic of fused				
benzene rings ¹²				
Aromatic CH in plane	1381 m			
bending in anthracene ^{3,5} CC				
ring stretching in 9-substituted				
anthracene ^{6,8,11} , CH ₃				
antisymmetric deformation ^{6,8}				
Aromatic CH in plane	1356 ms			
bending in anthracene and 9-				
substituted anthracene ⁵				
		1348 vw	1338	Tertiary CH deformation ⁸
Aromatic CH in plane	1278 m	1271 vw	1265	CH in plane bending in 9,10-
bending in anthracene ^{3,5}				dihydroanthracene ⁷
CC ring stretching ^{2,3} and	1258 m	1261 sh	1263	CH out of phase bending in 9,10-
aromatic CH in plane				dihydroanthracene ⁷
bending ⁵ in anthracene				
		1211 vs	1228	CC symmetric stretching in 9,10-
				dihydroanthracene7, ortho-
				dialkylbenzenes ^{8,9}
		1194 sh br	1187	CC antisymmetric stretching in
				9,10-dihydroanthracene ⁷ , internal
				quaternary carbon atom ⁸
CH in plane bending in	1181 m		1178	
anthracene ^{2,3,5}				
		1167 mw	1158	Internal tertiary carbon atom ⁸
CH in plane bending in	1155-	1153-1141 vw		
anthracene and 9-substituted	1142 vw			
anthracene ^{3,5,6} , aliphatic CH				
bending ^{6,8}				
Aromatic CH in plane	1101 vw			
bending ⁵ and CC ring				

stretching ³ in anthracene and				
9-substituted anthracene				
		1085 w		CH bending out of phase in 9,10-
				dihydroanthracene ⁷ , aliphatic CC
				stretching ¹³
	1043 vw	1042 vs	1038	CH bending in plane in 9,10-
				dihydroanthracene ⁷ , phenyl ring
				stretching + deformation in 9,10-
				dihydroanthracene ¹⁴ , ortho-
				disubstituted benzene ⁸ , internal
				tertiary carbon atom ⁸
Aromatic CH in plane	1020 m	1016 mw	1024	Phenyl ring breathing in 9,10-
bending in anthracene ⁵				dihydroanthracene ¹⁴
Aromatic CH out of plane	985 vw	989 mw	996	CH out of plane bending in 9,10-
bending in anthracene ² , CC				dihydroanthracene ⁷
ring stretching + aliphatic CH				
out of plane wagging in 9-				
substituted anthracene ¹⁵				
Aromatic CH out of plane	972 sh			
bending in anthracene and 9-				
substituted anthracene ^{3,5,6}				
Aromatic CH out of plane	957 sh			
bending ^{3,5} in anthracene and				
ring in plane bending ⁵ in 9-				
substituted anthracene				
Aromatic CH out of plane	949 w	951-938 vw	950	CH out of plane bending in 9,10-
bending in anthracene ⁵ , CH ₃				dihydroanthracene ⁷
bending ⁶				
Ring in plane bending ^{5,6} and	904 vw			
aromatic CH out of plane				
bending ^{3,6} in 9-substituted				
anthracene				
		898-888 m	890-885	Aliphatic CC stretching in dimers
				of anthracene derivatives, ¹⁶
				skeletal bending in 9,10-
				dihydroanthracene ⁷
Aromatic CH out of plane	879 w			
bending ^{5,6} of the group				
approximately perpendicular				
to the longer axis of the				

anthracene molecule (i.e. at				
the 10 position) ¹⁷				
Aromatic CH out of plane	866 w	869 vw		CH out of plane bending in 9,10-
bending in anthracene and 9-				dihydroanthracene ⁷
substituted anthracene5,6				
Aromatic CH out of plane	848 w	854 vw	851	CH out of plane bending in 9,10-
bending in anthracene ⁵ , CH ₃				dihydroanthracene ⁷
bending ⁶				
Ring in plane bending in	834 w	832 w, sh		
anthracene ⁵ and aromatic CH				
out of plane bending in 9-				
substituted anthracene ⁶ , CH ₂				
bending ^{6,8}				
Ring in plane bending in	818 w	816 mw	820	Aliphatic CH out of plane
anthracene ⁵				bending in dianthracene ¹⁷
aromatic CH out of plane	750 w	750 mw	760	CH out of plane bending in 9,10-
bending ³ of the groups				dihydroanthracene7 and ortho-
approximately parallel to the				disubstituted benzene ¹⁷
longer axis of the anthracene				
molecule (i.e. no 10				
position) ¹⁷				
aromatic CH out of plane	733 w br			
bending in anthracene ^{5,17} ; ring				
out of plane bending in 9-				
substituted anthracene ^{5,15}				
Ring in plane bending in	703 m	701 m	711	
anthracene ²				
Ring in plane bending in	693 m			
anthracene and 9-substituted				
anthracene ^{5,6}				
		685 m		Ring torsion in anthrone ¹³
Ring in plane bending in	637 vw	636-627 w	637	
anthracene ^{2,5}				
Ring out of plane bending ³	576 vw	571 w	584	Ring in plane bending in ortho-
and ring torsion ⁵ in anthracene				xylene ^{8,18}
Ring in plane bending in 9-	548 w	555 w	555	
substituted anthracene ⁶				
Ring in plane bending in	535 vw	528 w		Skeletal bending in 9,10-
anthracene ²				dihydroanthracene ⁷
Ring in plane bending in	520 w	513 w	516	Phenyl out of phase bending in

anthracene ^{2,5}				9,10-dihydroanthracene ⁷
Ring torsion ^{5,6} , ring out of	476 w			
plane bending ³ in anthracene				
and 9-substituted anthracene				
		445 w		Ring deformation in ortho-
				xylene, ¹⁸ internal tertiary carbon
				atom ⁸
Ring in plane bending in 9-	421 ms			
methyl anthracene ^{8,18}				
		406 m		Phenyl out of plane bending in
				9,10-dihydroanthracene ⁷
Ring bending in plane ^{2,5,6} , ring	394 ms			
torsion ⁶ , in 9-methyl				
anthracene ^{8,18} characteristic				
of fused benzene rings ¹²				
Ring out of plane bending in	366 w	365 m	361	Skeletal bending in 9,10-
anthracene ²				dihydroanthracene ⁷
ring torsion in 9-substituted	334 w	332 sh		
anthracene ⁶				
		326 s	327	CC deformation in dianthracene ¹
Ring torsion ⁵ and ring out of	237 w	242 w		Ring out of phase flapping in
plane bending ³ in anthracene				9,10-dihydroanthracene ⁷
Ring out of plane bending in	214 vw			
anthracene ² , ring torsion in 9-				
substituted ⁶				
		153 vs		Lattice modes in dianthracene ¹ ,
				central ring in plane bending in
				9,10-dihydroanthracene ⁷
Ring torsion in anthracene ⁵ ,	148 w			
CC bending in plane in 9-				
methyl anthracene ¹⁸				
		137 vs	141	Lattice modes in dianthracene ¹
Ring torsion in anthracene and	105 s	116 s	110	Lattice modes in dianthracene ¹
9-substituted anthracene ^{5,6}				
	74 vs	75 vs	71	Lattice modes in dianthracene ¹

v = very; w = weak; m = medium; s = strong; br = broad; sh = shoulder

Fig. S7 Raman spectra of MAMA before (blue) and after irradiation (red).

Fig. S8 Raman spectra of MAMA (black) and $[Ag(MAMA)_2][BF_4]$ (red). The band assignable to the BF₄⁻ ion has been indicated (765 cm⁻¹: FBF symmetric stretching).

Fig. S9 Raman spectra of MAMA (black) and $[Ag(MAMA)_2][PF_6]$ (red). The band assignable to the PF_6^- ion has been indicated (742 cm⁻¹: FPF symmetric stretching).

Fig. S10 Raman spectra of MAMA (black) and $[Ag(MAMA)_2][NO_3]$ (red). The bands assignable to the NO₃⁻ ion have been indicated (1477 cm⁻¹: N=O stretching in bidentate NO₃⁻ coordination; 1032 cm⁻¹: ONO symmetric stretching; 739-723 cm⁻¹: in plane NO₃⁻ deformation).

References

- 1. Y. Ebisuzaki, T. J. Taylor, J. T. Woo and M. Nicol, *J. Chem. Soc., Faraday Trans*, 1977, **73**, 253-264.
- 2. N. Abasbegović, N. Vukotić and L. Colombo, J. Chem. Phys., 1964, 41, 2575-2577.
- 3. J. Räsänen, F. Stenman and E. Penttinen, Spectrochim. Acta A, 1973, 29, 395-403.
- L.H. Colthup and S.E. Daly, Wiberley. Introduction to Infrared and Raman Spectroscopy. 3rd Edition, Academic Press, San Diego, 1990.
- 5. A. Alparone, V. Librando, Spectrochim. Acta A, 2012, 89, 129–136.
- Y. S. Mary, H. T. Varghese, C. Y. Panicker, T. Thiemann, A. A. Al-Saadi, S. A. Popoola, C. Van Alsenoy and Y. A. Jasem, *Spectrochim. Acta A*, 2015, **150**, 533–542.
- 7. K. Morris and J. Laane, J. Mol. Struct., 1997, 413-414, 13-20.
- 8. F. R. Dollish, W. G. Fateley and F. F. Bentley, Characteristic Raman frequencies of organic compounds. Wiley-Interscience, Chichester, 1974.
- 9. K. S. Pitzer and D. W. Scott., J. Am. Chem. Soc., 1943, 65, 803-829.
- 10. W. F. Maddams, I. A. M. Royaud, Spectrochim. Acta A, 1990, 46, 309-314.
- 11. M. Brigodiot and J. M. Lebas, Spectrochim. Acta A, 1971, 27, 1325-1336.
- I. L. Tocón, J. C. Otero, J. F. Arenas, J. V. Garcia-Ramos and S. Sanchez-Cortes, *Anal. Chem.*, 2011, 83, 2518–2525.
- Y. S. Mary, T. S. Yamuna, C. Y. Panicker, H. S. Yathirajan, M. S. Siddegowda, A. A. Al-Saadi, C. Van Alsenoy and J. Ahmad, *Spectrochim. Acta A*, 2015, 135, 652–661.
- 14. M. Brigodiot and J. M. Lebas, J. Mol. Struct., 1976, 32, 297-309.
- S. Kou, H. Zhou, G. Tang, R. Li, Y. Zhang, J. Zhao and C.i Wei, *Spectrochim. Acta A*, 2012, 96, 768–775.
- L. Opilik, P. Payamyar, J. Szczerbinski, A. P. Schütz, M. Servalli, T. Hungerland, A. D. Schlüter and R. Zenobi, ACS Nano, 2015, 9, 4252–4259.
- 17. S. Singh and C. Sandorfy, Can. J. Chem., 1969, 47, 257-263.
- 18. M. Brigodiot and J. M. Lebas, Spectrochim. Acta A, 1971, 27, 1315-1324.