Electronic Supplementary Information (ESI)

Adsorptive removal of organic dyes from aqueous solution by a Zr-

based metal-organic framework: Effects of Ce(III) doping

Ji-Min Yang, *a Rong- Jian Ying, *a Chun-Xiang Han, a Qi-Tu Hu, a Hui-Min Xu, a Jian-Hui

Li, ^{a,} Qiang Wang, ^{*b} and Wei Zhang *a

^aSchool of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P.R. China

^bLaboratory for Micro-sized Functional Materials & College of Elementary Education and

Department of Chemistry, Capital Normal University, Beijing, 100048, P.R. China

Tel.: +86 539 7258620; fax: +86 539 7258620; e-mail: yangjimin@lyu.edu.cn; yingrongjian@lyu.edu.cn; qwchem@gmail.com zhangweiqust@126.com

Fig. S1 EDS spectra of Ce(III)-doped UiO-66.

Fig. S2 Zeta potential of different nanoparticles directly dispersed in water: (a) UiO-66 and (b) Ce(III)-doped UiO-66.

Fig. S3 Effect of pH on dye adsorption on the Ce(III)-doped UiO-66 nanocrystals: (a) MB and (b) MO.

Type of adsorbent	$q (\text{mg g}^{-1})$	Reference	
Ce(III)-doped UiO-66	145.1	This work	
UiO-66-P composite	91.1	13	
PZS nanotubes	69.2	34	
FMAs	40	35	
CS-MCM	31.8	36	
Fe ₃ O ₄ @ZIF-8	20.2	37	
HKUST-1	15.3	14	

Table S1 Summary of MB maximum adsorption capacities (q) on various adsorbents.

Type of adsorbent	$q (\text{mg g}^{-1})$	Reference
Ce(III)-doped UiO-66	639.6	This work
MOF-235	477	15
MIL-100(Cr)	211	16
NMC-3-600	170.1	44
AC/ferrospinel composite	95.8	45
Acrylic acid grafted Ficus carica fiber	51.55	46
Functionalized CNTs loaded TiO	42.85	47

Table S2 Summary of MO maximum adsorption capacities (q) on various adsorbents.

Type of adsorbent	$q (\text{mg g}^{-1})$	Reference
Ce(III)-doped UiO-66	825.7	This work
In-based ICP hierarchical architectures	577	37
Hierarchical hollow NiO	440	39
a-FeOOH	275	40
Activated carbon	200	41
Graphene oxide/chitosan/silica fibers	120	42
Fe ₃ O ₄ @mTiO ₂ @GO microspheres	89.5	43

Table S3 Summary of CR maximum adsorption capacities (q) on various adsorbents.

Table S4 Characteristic parameters of the adsorption of dyes on the Ce(III)-doped UiO-66nanostructures.

		parameters	CR	MB	МО		AC
Adsorption Pseudo- kinetics first-order	$q_{e,Exp}$ (mg q^{-1})	94.3	72.4	53.4		92.5	
	$q_{e,Cal} (mg g^{-1})$	20.1	47.5	22.1		56.6	
	$k_1 (\min^{-1})$	0.0078	0.0083	0.00507		0.0121	
	R^2	0.9234	0.9599	0.9898		0.9890	
Pseudo-second- order		$q_{e,Exp}$ (mg q^{-1})	94.3	72.4	53.4		92.5
		$q_{e,Cal} (mg g^{-1})$	83.1	48.2	54.4		72.6
		$k_2 (g mg^{-1})$	0.0116	0.0207	0.0184		0.0138
		R^2	0.9999	0.9984	0.9995		0.9965
Adsorption isotherm Tempkin Freundlich	A (L g ⁻¹)	2.64	28.41	Low content 0.298	High content 0.028	16.22	
	В	127.9	16.1	52.98	264.6	28.1	
		R^2	0.9945	0.9609	0.9981	0.9834	0.9887
	n	2.96	2.70	1.81	1.63	5.65	
	$k_F (\text{mg g}^{-1})$	143.6	62.6	16.3	10.2	86.7	
	$(L \operatorname{Ing}^{-})^{+})$ R^{2}	0.9639	0.9411	0.9883	0.9973	0.9922	
Langmuir	$q_{m,Exp}$ (mg σ^{-1})	826.7	145.3	276.9	639.6	245.4	
	$q_{m,Cal} (mg \sigma^{-1})$	854.7	147.3	227.6	2041.3	250.6	
	$b (L mg^{-1})$	0.0986	0.1313	0.0342	0.0018	0.0680	
		R^2	0.9994	0.9999	0.9998	0.9739	0.9991
Thermodyna	mic constant	⊿G (kJ mol ⁻¹)	-5.7	-5.0	-8.4	-15.7	-6.7

Fig. S4 PXRD patterns of (a) simulation and (b)Ce(III)-doped UiO-66@CR composites

Fig.S5 FT-IR spectra of CR, Ce(III)-doped UiO-66 and Ce(III)-doped UiO-66@CR composites

Fig. S6 TEM images of Ce(III)-doped UiO-66@CR composites.

Fig. S7 Recycle of the removal efficiency of (a) Ce(III)-doped UiO-66 for MB and (b) Ce(III)-doped UiO-66 for MO.