Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Exploiting coumarin-6 as ancillary ligands in 1,10-phenanthroline Ir(III) complexes: generating triplet photosensitisers with high upconversion capabilities

Yue Lu,^a Robert Conway-Kenny,^a Junsi Wang,^a Xiaoneng Cui,^b Jianzhang Zhao,^b Sylvia M. Draper^{*a}

Contents

Experimental Section
General experiment2
Experiments
Spectroscopic Characterisation
Figure S1. ¹ H NMR spectrum of Ir-15
Figure S2. ¹³ C NMR spectrum of Ir-15
Figure S3. ¹ H NMR spectrum of Ir-26
Figure S4. ¹³ C NMR spectrum of Ir-26
Figure S5. ¹ H NMR spectrum of Ir-37
Figure S6. ¹³ C NMR spectrum of Ir-37
Figure S7. ¹ H NMR spectrum of Ir-48
Figure S8. ¹³ C NMR spectrum of Ir-48
Figure S9. ¹ H NMR spectrum of Ir-59
Figure S10. ¹³ C NMR spectrum of Ir-59
Figure S11. UV-vis absorption spectra of Ir-1–Ir-5 in different solvents10
Figure S12. Normalised excitation spectra of Ir-1–Ir-510
Figure S13. Emission spectra of $\mbox{Ir-1-Ir-5}$ measured in the air and under N_2 11
Figure S14. Photoluminescence spectra of Ir-1–Ir-5 at RT and 77 K in CH_2Cl_2 11
Figure S15. Nanosecond time-resolved transient difference absorption spectra (left) and
decay traces of the triplet lifetimes (right) of Ir-1 to Ir-512
Figure S16. The absorption change of DPBF in the presence of the respective photosensitiser
(Ir-1–Ir-5) after each irradiation13
Figure S17. Photographs of the emissions of the triplet photosensitisers (Ir-1–Ir-5) alone, and
with the triplet annihilator (DPA)13
Figure S18. Stern-Volmer plots generated from the quenching of the lifetime of Ir-1–Ir-513
Reference

Experimental Section

General experiment

The di-µ-chlorido-bridged Ir(III) dimer of Coumarin 6 (**Ir-0**) was prepared following a modified literature procedure.^[1] 3-Bromo-phen and 3,8-dibromo-phen, and Pd(PPh₃)Cl₂ were synthesised according to the methods reported by Y. Saitoh *et al* and S. Grim *et al* respectively.^[2-3] Starting materials 1,10-phenanthroline, bromine, ethyltrimethylsiliane, pyrene, triphenylamine, Cul, PPh₃ and solvents CH₂Cl₂, MeOH, THF, toluene, CD₃CN, CD₂Cl₂, ethyl acetate and diethyl ether were purchased from Sigma-Aldrich or Alfa Aesar without further purification. Flash chromatography was performed using silica gel as the stationary phase. Triethylamine and acetonitrile were distilled before use.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded with a Bruker Advance DPX-400 MHz, Bruker AV-400 MHz, or a Bruker AV-600 MHz spectrometer in CD_2Cl_2 or CD_3CN with tetramethylsilane as internal standard. MALDI-TOF mass spectra were recorded on a Waters MALDI-QTOF Premier spectrometer using an α -cyano-4-hydroxy cinnamic acid matrix. UV/Vis absorption spectra were recorded on a Shimadzu UV-2450 spectrophotometer. Fluorescence lifetimes and low temperature emissions were measured on an OB920 spectrometer (TCSPC, Edinburgh instruments, U.K.). Nanosecond time-resolved transient absorption spectra were measured on a LP920 laser flash photolysis spectrometer (Edinburgh Instruments, UK). All samples in laser flash photolysis experiments were de-aerated with Ar or N₂ for ~15 mins before measurement, and the gas flow was kept constant during the measurement.

Geometry optimization were calculated by using B3LYP functional with the 6-31G(d)/LanL2DZ basis set with density functional theory (DFT). The spin-density of the triplet excited state was calculated with their energy-minimized triplet geometries. The solvents were used in the calculations (CPCM model). All calculations were performed with the Gaussian 09W software (Gaussian Inc.).

¹O₂ Sensitization: The singlet oxygen quantum yield (Φ_A) was determined and calculated using tris(bipyridine)ruthenium(II) dichloride [Ru(bpy)₃]Cl₂ (Φ_A = 0.57 in CH₃CN) as a reference standard and 1,3-diphenylisobenzofuran (DPBF) as an ¹O₂ scavenger. The reaction between DPBF and ¹O₂ to give *o*-dibenzoylbenzene as an end product was monitored by the decrease of the absorbance intensity at 410 nm. The absorbance of the ¹O₂ scavenger DPBF was adjusted around 1.0 in air-saturated CH₂Cl₂. The photosensitiser was then added to the cuvette, and the photosensitiser absorbance was adjusted to around 0.2–0.3. The solution in the cuvette was irradiated with monochromatic light at the peak absorption wavelength. The absorbance was measured after each irradiation at 5, 10 or 20 second intervals for 45, 90 or 160 seconds respectively. The slope of the absorbance maxima of DPBF at λ = 410 nm versus the accumulated photoirradiation time was calculated. The singlet-oxygen quantum yield was then calculated using the following equation:^[4]

$$\boldsymbol{\varPhi}_{\Delta unk} = \boldsymbol{\varPhi}_{\Delta ref} \times \frac{k_{unk}}{k_{ref}} \times \frac{F_{ref}}{F_{unk}} \times \left(\frac{\eta_{unk}}{\eta_{ref}}\right)^2$$

The subscripts "unk" and "ref" refer to the photosensitiser and the reference, respectively; k is the slope of the difference in change in absorbance of DPBF (λ = 410 nm) with irradiation time, and F refers to the absorption correction factor, which is given by F = 1 – 10^{–OD} (OD (optical density)) at the irradiation wavelength. η_{unk} and η_{ref} are the refractive indices of the corresponding solutions.

TTA Upconversion: A diode-pumped solid-state laser (473 nm, continuous wave, CW) was used for the upconversion measurements. The diameter of the laser spot was ~ 3 mm. For the upconversion experiments, the mixed solution of the photosensitisers and DPA (triplet acceptor) was degassed in CH_2Cl_2 for at least 15 min with N₂, and the gas flow was kept constant during the measurement. The solution was excited with a laser. The upconverted fluorescence of DPA was recorded with a spectrofluorometer. In order to reduce the scattered laser, a small black box was put behind the cuvette to trap the laser beam after it passed through the cuvette. The upconversion quantum yields (Φ_{UC}) were determined with the prompt fluorescence of bodipy as the standard ($\Phi_{F} = 71.2$ % in CH₃CN) using the following equation:^[5]

$$\boldsymbol{\varPhi}_{UC} = 2\boldsymbol{\varPhi}_{std} \times \left(\frac{1 - 10^{-A_{sad}}}{1 - 10^{-A_{sad}}}\right) \times \left(\frac{I_{sam}}{I_{std}}\right) \times \left(\frac{\eta_{sam}}{\eta_{std}}\right)$$

The subscripts "sam" and "std" refer to the photosensitiser and the standard, respectively. Φ , A, I, and η represent the quantum yield, absorbance, integrated photoluminescence intensity, and the refractive index of the solvents used for the standard and the samples, respectively. The equation is multiplied by a factor of 2 in order for the maximum quantum yield to be unity.

Experiments

[Ir(III)(coumarin)₂(3-bromo-1,10-phenanthroline)](PF₆) (Ir-1): Di-µ-chlorido-bridged Ir(III) dimer of coumarin 6 (Ir-0) (150.0 mg, 0.081 mmol) and 3-bromo-1,10-phenanthroline (44.0 mg, 0.17 mmol) were dissolved in CH₂Cl₂ (10 mL) and MeOH (1 mL). The reaction mixture was refluxed at 40 °C for 4 h. The product was precipitated out by adding saturated NH₄PF₆ solution (in MeOH). The red solid was filtered and washed with diethyl ether. The product was dried under vacuum. Yield: 195.1 mg, 93%. ¹H-NMR (400 MHz, 20 °C, CD₃CN, δ in ppm): 9.12 (d, 1H, *J* = 5.2 Hz), 9.08 (d, 1H, *J* = 1.8 Hz), 8.92 (d, 1H, *J* = 1.8 Hz), 8.71 (d, 1H, *J* = 8.3 Hz), 8.08-8.03 (m, 2H), 7.96 (d, 1H, *J* = 8.9 Hz), 7.83 (d, 1H, *J* = 8.0 Hz), 7.13-7.07 (m, 2H), 6.80 (td, 1H, *J* = 7.9 Hz), 6.69 (t, 1H, *J* = 7.9 Hz), 6.44 (m, 2H), 6.14-6.03 (m, 4H), 5.83 (d, 1H, *J* = 8.5 Hz), 5.61 (d, 1H, *J* = 8.5 Hz), 3.32-3.26 (m, 8H), 1.03-0.99 (m, 12H). ¹³C-NMR (101 MHz, 20 °C, CD₃CN, δ in ppm): 181.2, 180.1, 178.7, 178.7, 158.6, 158.5, 156.2, 156.1, 153.7, 153.7, 152.8, 152.4, 148.8, 148.8, 147.4, 146.1, 143.6, 141.4, 133.1, 133.1, 132.4, 132.3, 132.1, 132.0, 130.4, 128.7, 128.2, 128.1, 128.0, 125.6, 125.5, 124.5, 124.4, 123.1, 122.8, 122.7, 120.0, 119.3, 116.4, 116.0, 110.8, 110.7, 97.3, 97.2, 45.3, 12.6. MALDI-HRMS: calcd ([C₅₂H₄₁N₆O₄S₂BrIr]⁺) *m/z* = 1149.1444, found *m/z* = 1149.1423.

[Ir(III)(coumarin)₂(3,8-dibromo-1,10-phenanthroline)](PF₆) (Ir-2): Ir-0 (250.0 mg, 0.135 mmol) and 3,8-dibromo-1,10-phenanthroline (91.3 mg, 0.27 mmol) were dissolved in a mixture of CH₂Cl₂ (20 mL) and MeOH (a few drops). The mixture was refluxed at 40 °C for 4 h. The product was precipitated out by adding saturated NH₄PF₆ solution (in MeOH). The red solid was filtered and washed with diethyl ether. The product was dried under *vacuo*. Yield: 287.3 mg, 78%. ¹H-NMR (400 MHz, 20 °C, CD₂Cl₂, *δ* in ppm): 8.93 (d, 2H, *J* = 1.8 Hz), 8.86 (d, 2H, *J* = 1.8 Hz), 8.04 (s, 2H), 7.79 (d, 2H, *J* = 8.0 Hz), 7.15 (t, 2H, *J* = 7.5 Hz), 6.79 (t, 2H, *J* = 7.5 Hz), 6.43 (d, 2H, *J* = 2.5 Hz), 6.03 (d, 2H, *J* = 9.5 Hz), 5.94 (dd, 2H, *J* = 9.5 Hz), 5.62 (d, 2H, *J* = 8.5 Hz), 3.35-3.26 (m, 8H), 1.08 (t, 12H, *J* = 7.0 Hz). ¹³C-NMR (101 MHz, 20 °C, CD₂Cl₂, *δ* in ppm): 178.2, 178.0, 157.9, 155.7, 153.3, 151.8, 148.1, 145.7, 142.9, 132.4, 132.1, 131.7, 129.4, 128.0, 125.3, 124.0, 123.3, 121.8, 118.8, 115.3, 110.4, 97.1, 45.3, 12.6. MALDI-HRMS: calcd ([C₅₂H₄₀N₆O₄S₂Br₂Ir]⁺) *m/z* = 1227.0548, found *m/z* = 1227.0551.

[Ir(III)(coumarin)₂(3-(1-ethynylpyrene)-1,10-phenanthroline)](PF₆) (Ir-3): Ir-1 (100.0 mg, 0.077 mmol), 1-ethynylpyrene (34.9 mg, 0.154 mmol), Pd(PPh)₃Cl₂ (2.7 mg, 0.004 mmol), Cul (1.5 mg, 0.008 mmol) and PPh₃ (2.0 mg, 0.008 mmol) were combined in a two-necked round bottom flask under an Ar atmosphere. A mixed solvent of 5.0 mL of anhydrous DMF and 2.0 mL Et₃N was deaerated and added into the round bottom flask. The reaction mixture was heated at 60 °C for 4 h. The solvent was removed by rotary evaporator and the crude product was subjected to column chromatography (silica gel, eluted with CH_2Cl_2 :ethyl acetate = 20:1, v/v). The product was obtained as a red solid. Yield: 84.8 mg, 77%. ¹H-NMR (400 MHz, 20 °C, CD₂Cl₂, δ in ppm): 9.21 (d, 1H, J = 1.2 Hz), 9.03 (d, 1H, J = 4.8 Hz), 8.88 (d, 1H, J = 1.2 Hz), 8.70 (d, 1H, J = 8.1 Hz), 8.62 (d, 1H, J = 8.0 Hz), 8.47 (d, 1H, J = 9.1 Hz), 8.40 (d, 1H, J = 7.6 Hz), 8.32 (d, 2H, J = 7.9 Hz), 8.23 (d, 2H, J = 7.5 Hz), 8.15-8.04 (m, 5H), 7.78 (d, 2H, J = 8.0 Hz), 7.13 (t, 2H, J = 7.6 Hz), 6.83 (d, 1H, J = 7.9 Hz), 6.75 (t, 1H, J = 7.9 Hz), 6.48 (d, 1H, J = 1.2 Hz), 6.45 (d, 1H, J = 1.2 Hz), 6.14 (d, 2H, J = 9.4 Hz), 5.97 (d, 2H, J = 9.4 Hz), 5.87 (d, 1H, J = 8.5 Hz), 5.67 (d, 1H, J = 8.5 Hz), 3.34-3.26 (m, 8H), 1.11-1.04 (m, 12H). ¹³C-NMR (101 MHz, 20 °C, CD₂Cl₂, δ in ppm): 180.2, 179.6, 178.4, 178.3, 158.2, 158.1, 155.8, 155.7, 153.3, 153.3, 152.3, 151.2, 148.4, 148.4, 147.4, 145.7, 141.6, 140.9, 133.2, 133.1, 132.7, 131.8, 131.8, 131.7, 131.6, 131.4, 131.2, 130.5, 130.1, 129.8, 129.8, 128.6, 127.9, 127.8, 127.7, 127.6, 127.1, 126.9, 126.9, 125.2, 125.1, 124.8, 124.8, 124.4, 123.9, 123.8, 122.3, 122.2, 119.3, 119.1, 115.7, 115.6, 115.2, 110.4, 110.4, 98.5, 97.2, 97.1, 89.8, 45.3, 45.2, 12.7. MALDI-HRMS: calcd $([C_{70}H_{50}N_6O_4S_2Ir]^+) m/z = 1295.2694$, found m/z = 1295.2990.

[Ir(III)(coumarin)₂(3-bromo-8-(1-ethynylpyrene)-1,10-phenanthroline)](PF₆) (Ir-4) and [Ir(III)(coumarin)₂(3,8-di(1-ethynylpyrene)-1,10-phenanthroline)](PF₆) (Ir-5): Under an atmosphere of Ar, Ir-15 (250.0 mg, 0.182 mmol), ethynylpyrene (41.2 mg, 0.182 mmol), Pd(PPh)₃Cl₂ (6.4 mg, 0.009 mmol), Cul (3.5 mg, 0.018 mmol) and PPh₃ (4.8 mg, 0.018 mmol) were combined in a two-necked round bottom flask. A mixture of 5.0 mL of anhydrous DMF and 2.0 mL Et₃N was deaerated and added into the round bottom flask. The reaction mixture was heated at 60 °C for 4 h. The solvent was removed by rotary evaporator and the crude product was subjected to column chromatography (silica gel, eluted with CH₂Cl₂:ethyl acetate = 20:1, v/v). The first and second red bands were collected separately to give Ir-4 and Ir-5 respectively. Yield: Ir-4: 95.5 mg, 34.6%. Ir-5: 32.6 mg, 10.8%.

Ir-4: ¹H-NMR (400 MHz, 20 °C, CD₂Cl₂, *δ* in ppm): 9.18 (d, 1H, *J* = 1.5 Hz), 8.97 (d, 1H, *J* = 1.8 Hz), 8.90 (d, 1H, *J* = 1.5 Hz), 8.85 (d, 1H, *J* = 1.8 Hz), 8.61 (d, 1H, *J* = 9.0 Hz), 8.47 (d, 1H, *J* = 9.1 Hz), 8.39 (d, 1H, *J* = 7.6 Hz), 8.33-8.31 (m, 2H), 8.25-8.22 (m, 2H), 8.15-8.11 (m, 2H), 8.04 (d, 1H, *J* = 8.9 Hz), 7.80 (d, 2H, *J* = 7.9 Hz), 7.19-7.13 (m, 2H), 6.86-6.82 (m, 2H), 6.48-6.45 (m, 2H), 6.13-6.09 (m, 2H), 6.00-5.95 (m, 2H), 5.79 (d, 1H, *J* = 8.5 Hz), 5.74 (d, 1H, *J* = 8.5 Hz), 3.35-3.26 (m, 8H), 1.12-1.04 (m, 12H). ¹³C-NMR (101 MHz, 20 °C, (CD₃)₂SO, *δ* in ppm): 179.2, 177.2, 157.2, 157.1, 155.0, 154.9, 152.5, 152.4, 151.5, 147.2, 144.2, 144.1, 142.8, 142.1, 132.1, 131.9, 131.9, 131.8, 131.7, 131.2, 130.7, 130.5, 130.5, 130.0, 129.6, 129.3, 129.1, 128.2, 127.4, 127.4, 127.3, 127.1, 126.6, 125.1, 124.7, 124.6, 124.1, 124.1, 123.6, 123.2, 122.9, 122.2, 121.5, 121.4, 118.8, 115.5, 115.4, 114.8, 109.6, 96.4, 96.3, 96.1, 90.8, 44.0, 12.4. MALDI-HRMS: calcd ([C₇₀H₄₉N₆O₄S₂BrIr]⁺) *m/z* = 1373.2070, found *m/z* = 1373.2067.

Ir-5: ¹H-NMR (400 MHz, 20 °C, CD_2CI_2 , δ in ppm): 9.21 (d, 2H, J = 1.5 Hz), 8.89 (d, 2H, J = 1.5 Hz), 8.63 (d, 2H, J = 9.1 Hz), 8.49 (d, 2H, J = 9.1 Hz), 8.40 (d, 2H, J = 7.5 Hz), 8.33 (d, 4H, J = 7.9 Hz), 8.24 (d, 4H, J = 7.9 Hz), 8.15 (d, 4H, J = 8.0 Hz), 8.12 (s, 2H), 7.82 (d, 2H, J = 7.9 Hz), 7.17 (t, 2H, J = 7.6

Hz), 6.88 (t, 2H, J = 7.9 Hz), 6.50 (d, 2H, J = 2.4 Hz), 6.18 (d, 2H, J = 9.4 Hz), 6.02-5.99 (m, 2H), 5.92 (d, 2H, J = 8.5 Hz), 3.35-3.26 (m, 8H), 1.07 (t, 12H, J = 7.0 Hz). ¹³C-NMR (101 MHz, 20 °C, CD₂Cl₂, δ in ppm): 179.4, 178.3, 158.1, 155.8, 153.3, 152.4, 148.4, 145.5, 141.5, 133.2, 133.1, 132.7, 131.8, 131.6, 131.4, 131.3, 130.5, 130.1, 129.8, 129.4, 128.0, 127.6, 127.1, 126.9, 126.9, 125.2, 125.1, 125.1, 124.8, 124.7, 124.4, 124.0, 122.2, 119.1, 115.8, 115.1, 110.4, 98.8, 97.2, 90.0, 45.2, 12.6. MALDI-HRMS: calcd ([C₈₈H₅₈N₆O₄S₂Ir]⁺) m/z = 1519.3590, found m/z = 1519.3621.

Spectroscopic Characterisation

Figure S1. ¹H NMR spectrum of Ir-1 (inset shows the expanded aromatic region).

Figure S2. ¹³C NMR spectrum of Ir-1 (inset shows the expanded aromatic region).

Figure S3. ¹H NMR spectrum of Ir-2 (inset shows the expanded aromatic region).

Figure S4. ¹³C NMR spectrum of **Ir-2** (inset shows the expanded aromatic region).

Figure S5. ¹H NMR spectrum of Ir-3 (inset shows the expanded aromatic region).

Figure S6. ¹³C NMR spectrum of Ir-3 (inset shows the expanded aromatic region).

Figure S7. ¹H NMR spectrum of Ir-4 (inset shows the expanded aromatic region).

Figure S8. ¹³C NMR spectrum of Ir-4 (inset shows the expanded aromatic region).

Figure S9. ¹H NMR spectrum of Ir-5 (inset shows the expanded aromatic region).

Figure S10. ¹³C NMR spectrum of Ir-5 (inset shows the expanded aromatic region).

Figure S11. UV-vis absorption spectra of Ir-1–Ir-5 in different solvents, c = 1 × 10⁻⁵ M, RT.

Figure S12. Normalised excitation spectra of **Ir-1**–**Ir-5**, c = 1 × 10⁻⁵ M, CH₂Cl₂, RT. **Ir-1**: λ_{em} = 640 nm; **Ir-2**: λ_{em} = 650 nm; **Ir-3**: λ_{em} = 680 nm; **Ir-4**: λ_{em} = 680 nm; **Ir-5**: λ_{em} = 690 nm.

Figure S13. Emission spectra of **Ir-1–Ir-5** measured in the air and under N₂, in CH₂Cl₂, c = 1 × 10⁻⁵ M, RT.

Figure S14. Photoluminescence spectra of Ir-1–Ir-5 at RT and 77 K in CH_2CI_2 , c = 1 × 10⁻⁵ M.

Figure S15. Nanosecond time-resolved transient difference absorption spectra (left) and decay traces of the triplet lifetimes (right) of **Ir-1** to **Ir-5**, **Ir-1** (λ_{ex} = 355 nm, λ_{em} = 486 nm), **Ir-2** (λ_{ex} = 355 nm, λ_{em} = 486 nm), **Ir-3** (λ_{ex} = 486 nm, λ_{em} = 690 nm), **Ir-4** (λ_{ex} = 486 nm, λ_{ex} = 684 nm) and **Ir-5** (λ_{ex} = 486 nm, λ_{ex} = 690 nm) in deaerated CH₂Cl₂, c = 1.0 × 10⁻⁵ M, RT.

Figure S16. The absorption change of DPBF in the presence of the respective photosensitiser (**Ir-1–Ir-5**) after each irradiation. **Ir-1** (λ_{ex} = 461 nm), **Ir-2** (λ_{ex} = 461 nm), **Ir-3** (λ_{ex} = 464 nm), **Ir-4** (λ_{ex} = 461 nm) and **Ir-5** (λ_{ex} = 454 nm) at 10 second intervals for 90 seconds.

Figure S17. Photographs of the emissions of the triplet photosensitisers (**Ir-1**–**Ir-5**) alone, and with the triplet annihilator (DPA), in deaerated CH_2Cl_2 , RT.

Figure S18. Stern-Volmer plots generated from the quenching of the lifetime of **Ir-1–Ir-5** (λ_{ex} = 486 nm) measured as a function of DPA (triplet quencher) concentration. [complex] = 1.0 × 10⁻⁵ M, in deaerated CH₂Cl₂, RT.

References

- [1] S.-y. Takizawa, C. Pérez-Bolívar, P. Anzenbacher, S. Murata, *Eur. J. Inorg. Chem.* **2012**, 2012, 3975-3979.
- [2] Y. Saitoh, T.-a. Koizumi, K. Osakada, T. Yamamoto, *Can. J. Chem.* **1997**, *75*, 1336-1339.
- [3] S. O. Grim, R. L. Keiter, W. McFarlane, *Inorg. Chem.* **1967**, *6*, 1133-1137.
- [4] L. Huang, J. Zhao, S. Guo, C. Zhang, J. Ma, J. Org. Chem. **2013**, 78, 8627-8637.
- [5] J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, *Chem Soc Rev* **2015**, *44*, 8904-8939.