Electronic supplementary information (ESI)

Water-Soluble Platinum Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes: Influence of the Synthetic Approach

Edwin A. Baquero,^{a,b} Simon Tricard,^c Yannick Coppel,^d Juan C. Flores,^{*a} Bruno Chaudret^{*c} and Ernesto de Jesús^{*a}

^aDepartamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid (Spain)

E-mail: juanc.flores@uah.es, ernesto.dejesus@uah.es

^bDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, 111321 Bogotá (Colombia)

^cLaboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS-UPS Institut des Sciences appliquées, 135, Avenue de Rangueil, 31077 Toulouse (France) E-mail: chaudret@insa-toulouse.fr

^dLaboratoire de Chimie de Coordination, CNRS, Université de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse (France)

Table of Contents

1. ¹ H- and ¹³ C-NMR spectra of the ¹³ C-labelled compound (¹³ C-C2c)	S3
2. TEM images of the Pt nanoparticles	S4
3. X-Ray diffractograms of the Pt nanoparticles	S7
4. ATR-FTIR spectra of the imidazolium salts, Pt complexes and Pt nanoparticles	S12
5. ¹ H-NMR spectra of the Pt nanoparticles	S17
6. ¹ H- ¹³ C CP-MAS NMR spectra of the imidazolium salts, Pt complexes and PtNPs	S20
7. ¹ H- and ¹³ C-NMR spectra of intermediates C4a-c and ¹³ C-C4c	S24
8. Characterization of the nano-object NP1a ^{CO} /C3a	S30

Figure S1. ¹H- (300 MHz) and ¹³C-NMR (75 MHz) spectra for ¹³C-C2c in DMSO- d_6 .

2. TEM images of the Pt nanoparticles

Figure S2. TEM image with the corresponding size distribution obtained for PtNPs NP1b^{CO} $(1.3 \pm 0.4 \text{ nm}).$

Figure S3. TEM image with the corresponding size distribution obtained for PtNPs NP1c^{CO} $(1.0 \pm 0.3 \text{ nm}).$

Figure S4. TEM image with the corresponding size distribution obtained for PtNPs 13 C-NP1c^{CO} (1.1 ± 0.4 nm).

Figure S5. TEM image with the corresponding size distribution obtained for PtNPs 13 CO-NP1c^{CO} (1.0 ± 0.3 nm).

Figure S6. TEM image with the corresponding size distribution obtained for PtNPs $NP2c^{H2}$ (3 ± 2 nm).

Figure S7. TEM image with the corresponding size distribution obtained for PtNPs NP2e^{H2} $(4.0 \pm 0.8 \text{ nm}).$

Figure S8. TEM image with the corresponding size distribution obtained for PtNPs 13 C-NP2c H2 (3 ± 2 nm).

3. X-Ray diffractograms of the Pt nanoparticles

Figure S9. X-Ray Diffractogram of NP1a^{CO} (Crystallite size 1.3 nm).

Figure S10. X-Ray Diffractogram of NP1b^{CO} (Crystallite size 1.5 nm).

Figure S11. X-Ray Diffractogram of NP1c^{CO} (Crystallite size 1.2 nm).

Figure S12. X-Ray Diffractogram of ¹³C-NP1c^{CO} (Crystallite size 1.2 nm).

Figure S13. X-Ray Diffractogram of ¹³CO-NP1c^{CO} (Crystallite size 1.3 nm).

Figure S14. X-Ray Diffractogram of NP2a^{H2} (Crystallite size 1.8 nm).

Figure S15. X-Ray Diffractogram of **NP2c^{H2}** (Crystallite size 3.2 nm).

Figure S16. X-Ray Diffractogram of NP2e^{H2} (Crystallite size 3.8 nm).

Figure S17. X-Ray Diffractogram of ¹³C-NP2c^{H2} (Crystallite size 2.6 nm).

4. ATR-FTIR spectra of the imidazolium salts, Pt complexes and Pt nanoparticles

Figure S18. ATR-FTIR spectra for aH (black), C1a (red) and NP1a^{CO} (blue).

Figure S19. ATR-FTIR spectra for bH (black), C1b (red) and NP1b^{CO} (blue).

Figure S20. ATR-FTIR spectra for cH (black), C1c (red) and NP1c^{CO} (blue).

Figure S21. ATR-FTIR spectra for ¹³C-cH (black), ¹³C-C1c (red) and ¹³C-NP1c^{CO} (blue).

Figure S22. ATR-FTIR spectra for aH (black), C2a (red) and NP2a^{H2} (blue).

Figure S23. ATR-FTIR spectra for cH (black), C2c (red) and NP2c^{H2} (blue).

Figure S24. ATR-FTIR spectra for eH (black), C2e (red) and NP2e^{H2} (blue).

Figure S25. ATR-FTIR spectra for ¹³C-cH (black), ¹³C-C2c (red) and ¹³C-NP2c^{H2} (blue).

5. ¹H-NMR spectra of the Pt nanoparticles

Figure S26. ¹H-NMR (300 MHz) for PtNPs **NP1a**^{CO} (*i.e.*, pair **NP1a**^{CO}/**C3a**) in D₂O. Resonances marked with an asterisk correspond to the bis(carbene) complex **C3a**, which is located in a second coordination sphere around NPs **NP1a**^{CO}.

Figure S27. ¹H-NMR (300 MHz) for PtNPs NP1b^{CO} in D₂O.

Figure S28. ¹H-NMR (300 MHz) for PtNPs $NP1c^{CO}$ in D₂O.

Figure S29. ¹H-NMR (500 MHz) for PtNPs $NP2a^{H2}$ in D_2O .

Figure S30. ¹H-NMR (500 MHz) for PtNPs $NP2c^{H2}$ in D₂O.

Figure S31. ¹H-NMR (500 MHz) for PtNPs $NP2e^{H2}$ in D₂O.

6. ¹H-¹³C CP-MAS NMR spectra of the imidazolium salts, Pt complexes and PtNPs

Figure S32. ¹H–¹³C CP-MAS and ¹³C MAS NMR spectra for **NP1a**^{co}. Resonance (I) corresponds to the carbenic ¹³C resonance. This resonance is not observed in the MAS experiment probably due to a long T_1 relaxation time associated to restricted motions and remoteness to ¹H nuclei (H atoms of the ligands or residual water).

Figure S33. ¹H-¹³C CP-MAS NMR spectra for **bH**, C1b and NP1b^{CO}. Resonances (I) and (II) correspond to C^{2}_{Imz} -H and Pt- C^{2}_{NHC} carbons, respectively.

Figure S34. ¹H-¹³C CP-MAS NMR spectra for **cH**, **C1c** and **NP1c**^{CO}. Resonances (I) and (II) correspond to C^{2}_{Imz} -H and Pt- C^{2}_{NHC} carbons, respectively.

Figure S35. ¹H-¹³C CP-MAS NMR spectra for ¹³C-cH, ¹³C-C1c and ¹³C-NP1c^{CO}. Resonances (I) and (II) correspond to ${}^{13}C^{2}_{Imz}$ -H and Pt- ${}^{13}C^{2}_{NHC}$ carbons, respectively.

Figure S36. a) ¹H-¹³C CP-MAS NMR spectra for NP1c^{CO}, b) ¹H-¹³C CP-MAS NMR spectra for ¹³CO-NP1c^{CO} and c) direct polarization ¹³C MAS NMR for ¹³CO-NP1c^{CO}. Resonances (I), (II), and (III) correspond to Pt- C^{2}_{NHC} , Pt-¹³CO in terminal mode, and Pt-¹³CO in multiterminal mode, respectively.

Figure S37. ¹H-¹³C CP-MAS NMR spectra for **cH**, C2c and NP2c^{H2}. Resonances (I) and (II) correspond to C^{2}_{Imz} -H and Pt- C^{2}_{NHC} carbons, respectively.

Figure S38. ¹H-¹³C CP-MAS NMR spectra for eH, C2e and NP2e^{H2}. Resonances (I) and (II) correspond to C^{2}_{Imz} -H and Pt- C^{2}_{NHC} carbons, respectively.

Figure S39. ¹H-¹³C CP-MAS NMR spectra for ¹³C-cH, ¹³C-C2c and ¹³C-NP2c^{H2}. Resonances (I) and (II) correspond to ¹³C²_{Imz}–H and Pt-¹³C²_{NHC} carbons, respectively. The assignation of the carbonic carbon for ¹³C-NP2c^{H2} was based on the signal with the ¹⁹⁵Pt satellite (176 ppm).

Figure S40. ¹H-¹³C CP-MAS NMR spectrum for ¹³C-NP2c^{H2}, displaying its corresponding deconvolution curves. The estimated ¹³C-¹⁹⁵Pt coupling constant for the resonance signal of the carbonic carbon (176 ppm) is 1050 ± 50 Hz. This is a rough estimation because of the presence of an overlapped resonance at 165 ppm.

7. ¹H- and ¹³C-NMR spectra of the intermediates C4a-c and ¹³C-C4c

Figure S41. ¹H-NMR (500 MHz) for intermediate **C4a** in D₂O.

Figure S42. ¹³C-NMR (125 MHz) for intermediate C4a in D₂O.

Figure S44. ¹³C-NMR (125 MHz) for intermediate C4b in D₂O.

Figure S45. ¹H-NMR (500 MHz) for intermediate C4c in D₂O.

Figure S46. ¹³C-NMR (125 MHz) for intermediate C4c in D₂O.

Figure S47. ¹H-NMR (500 MHz) for intermediate 13 C-C4c in D₂O.

Figure S48. ¹³C-NMR (125 MHz) for intermediate ¹³C-C4c in D_2O .

Figure S49. ¹H-¹³C HSQC for Pt–CH₃ moieties in intermediate ¹³C-C4c in D₂O.

Figure S50. TEM images taken from solutions of C1a (left) and C1c (right) in D₂O after 1 h of reaction with ¹³CO (3 bar).

Figure S51. ¹H-¹³C HMBC in the region of Pt–CH₃ moiety for byproduct C5c.

8. Characterization of the nano-object NP1a^{CO}/C3a

The complex C3a was found in a second coordination sphere in PtNPs NP1a^{CO} (resonances marked with an asterisk in Figure S27). The solution of PtNPs NP1a^{CO} was analyzed by NMR spectroscopy and ESI mass spectrometry of samples of the nanoparticles after 36 and 60 h of dialysis, showing that complex C3a is still associated to the nanoparticle.

Trisodium*trans*-carbonylmethylbis[1,3-bis(3-sulfo-natepropyl)imidazol-2-ylidene]platinate(3–)(C3a): ¹H-NMR(300 MHz, D₂O): δ 7.31 (s, 4H, Imz), 4.30 (m, 8H, NCH₂), 2.87(t, ³J_{HH} = 8.4, 8H, CH₂S), 2.31 (m, 8H, CH₂CH₂CH₂), 0.22 (s with¹⁹⁵Pt satellites, ²J(¹H-¹⁹⁵Pt) = 63.0, 3H, PtMe). ESI-MS (negative

ion, H₂O): m/z 904.0237 [C3a - Na]⁻ (calcd 904.0215) 6%; 503.9850 [C3a - CO - NHC - 3Na - CH₄]⁻ (calcd 503.9868) 100%.

Figure S52. ROESY spectral region showing the cross peaks between Pt–CH₃ and methylene groups of the propylsulfonate chain in nano-object NP1a^{CO}/C3a.

Figure S53. Calculated and experimental isotopic distributions of the molecular fragment [C3a – Na]⁻ detected in the ESI mass spectra of NP1a^{CO}/C3a.