Supporting Information for:

Oligothienyl catenated germanes and silanes: synthesis, structure, properties

Kirill V. Zaitsev,*^{*a*} Kevin Lam, *^{*b*} Oleg Kh. Poleshchuk,^{*c,d*} Lyudmila G. Kuz'mina,^{*e*} Andrei V. Churakov^{*e*}

^a Department of Chemistry, Moscow State University, Leninskye Gory 1, Moscow 119991, Russia. Fax: +7(495)932 8846; Tel: +7(495)939 3887

^b Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science,

University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom

^c National Research Tomsk Polytechnic University, Lenin Av., 30, Tomsk, Russia

^d Tomsk State Pedagogical University, Kievskaya Str., 60, Tomsk, Russia

^e Russian Academy of Sciences, N.S. Kurnakov General and Inorganic Chemistry Institute, Leninskii pr., 31, Moscow, Russia

E-mail: k.lam@greenwich.ac.uk (KL); zaitsev@org.chem.msu.ru (KVZ)

Table of Contents:

Synthetic procedures	
Synthesis of initial germanium derivatives	S4
Synthesis of thienyl compounds	S5
Crystallographic Data	
Description of the Experiment	S7
Table S1. Crystallographic Data for Compounds 2a, 2b, 3a and 3b	S7
Spectral NMR Data	
NMR spectra of initial germanium compounds	
Figure S1. ¹ H NMR spectrum for Me ₂ GePh ₂ (CDCl ₃ , RT)	S8
Figure S2. ¹³ C NMR spectrum for Me ₂ GePh ₂ (CDCl ₃ , RT)	S8

Figure S3. ¹H NMR spectrum for Me₂GePhBr (CDCl₃, RT) **S**9 Figure S4. ¹³C NMR spectrum for Me₂GePhBr (CDCl₃, RT) **S**9 Figure S5. ¹H NMR spectrum for Me₂GePhH (CDCl₃, RT) S10 Figure S6. ¹³C NMR spectrum for Me₂GePhH (CDCl₃, RT) S10 Figure S7. ¹H NMR spectrum for PhMe₂GeGeMe₃ (CDCl₃, RT) S11 Figure S8. ¹³C NMR spectrum for PhMe₂GeGeMe₃ (CDCl₃, RT) S11 Figure S9. ¹H NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT) S12 Figure S10. ¹³C NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT) S12 Figure S11. ¹⁹F NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT) S13 Figure S12. ¹H NMR spectrum for Me₃GeGeMe₂Cl (CDCl₃, RT) S13

NMR spectra of oligothienyl catenated Group 14 derivatives

Figure S14. ¹ H NMR spectrum for 1a (CDCl ₃ , RT)	S15
Figure S15. ¹³ C NMR spectrum for 1a (CDCl ₃ , RT)	S15
Figure S16. ²⁹ Si NMR spectrum for 1a (CDCl ₃ , RT)	S16
Figure S17. ¹ H NMR spectrum for 1b (CDCl ₃ , RT)	S16
Figure S18. ¹³ C NMR spectrum for 1b (CDCl ₃ , RT)	S17
Figure S19. ¹ H NMR spectrum for 2a (CDCl ₃ , RT)	S17
Figure S20. ¹³ C NMR spectrum for 2a (CDCl ₃ , RT)	S18
Figure S21. ²⁹ Si NMR spectrum for 2a (CDCl ₃ , RT)	S18
Figure S22. ¹ H NMR spectrum for 2b (CDCl ₃ , RT)	S19
Figure S23. ¹³ C NMR spectrum for 2b (CDCl ₃ , RT)	S19
Figure S24. ¹ H NMR spectrum for 2c (CDCl ₃ , RT)	S20
Figure S25. ¹³ C NMR spectrum for 2c (CDCl ₃ , RT)	S20
Figure S26. ¹ H NMR spectrum for 3a (CDCl ₃ , RT)	S21
Figure S27. ¹³ C NMR spectrum for 3a (CDCl ₃ , RT)	S21
Figure S28. ²⁹ Si NMR spectrum for 3a (CDCl ₃ , RT)	S22
Figure S29. ¹ H NMR spectrum for 3a' (CDCl ₃ , RT)	S22
Figure S30. ¹³ C NMR spectrum for 3a' (CDCl ₃ , RT)	S23
Figure S31. ²⁹ Si NMR spectrum for 3a' (CDCl ₃ , RT)	S23
Figure S32. ¹ H NMR spectrum for 3b (CDCl ₃ , RT)	S24
Figure S33. ¹³ C NMR spectrum for 3b (CDCl ₃ , RT)	S24
Figure S34. ¹ H NMR spectrum for 3c (CDCl ₃ , RT)	S25
Figure S35. ¹³ C NMR spectrum for 3c (CDCl ₃ , RT)	S25
Figure S36. ²⁹ Si NMR spectrum for 3c (CDCl ₃ , RT)	S26
Figure S37. ¹ H NMR spectrum for 3d (CDCl ₃ , RT)	S26
Figure S38. ¹³ C NMR spectrum for 3d (CDCl ₃ , RT)	S27

UV/vis absorption and luminescence spectra

S28
S28
S28
S29
S29
S29
S 30
S 30
S 30
S30

DFT calculations

Description of the experiment			
Table S2. UV/vis absorption of a series of $Me_3\underline{M'}Me_2\underline{M}[Th]_n\underline{M}Me_2\underline{M'}Me_3$ (n= 1-3, M= Si, Ge, Sn)	S32		
Table S3. UV/vis absorption data forTh ₂ MMe ₂ M'Me ₂ Th ₂ [B3LYP/6-31+G(d,p)]	S32		
Table S4. UV/vis absorption and luminescence data according DFT calculations	S33		
Table S5. Calculated UV/vis absorption and luminescence data for Me ₃ GeGeMe ₂ [Th] _n GeMe ₂ GeMe ₃	S33		
$\label{eq:calculated} \textbf{Table S6.} Calculated UV/vis absorption data for Th(Th)_nGeMe_2GeMe_2(Th)_nTh$	S33		
Figure S49. HOMO molecular orbital for Th ₂ Ge ₂ Me ₄ Th ₂	S34		
Figure S50. HOMO-1 molecular orbital for Th ₂ Ge ₂ Me ₄ Th ₂	S34		
Figure S51. LUMO molecular orbital for Th ₂ Ge ₂ Me ₄ Th ₂	S34		
Figure S52. LUMO+1 molecular orbital for Th ₂ Ge ₂ Me ₄ Th ₂	S34		
Figure S53. HOMO molecular orbital for Me ₅ Ge ₂ Th ₂ Ge ₂ Me ₅	S35		
Figure S54. HOMO-1 molecular orbital for Me ₅ Ge ₂ Th ₂ Ge ₂ Me ₅	S35		
Figure S55. LUMO molecular orbital for Me ₅ Ge ₂ Th ₂ Ge ₂ Me ₅	S35		

Electrochemical data according to CV

Description of the experiment

S36

Figure S57. Cyclic voltammogram of 1.0 mM 2a in dichloromethane - [NBu4][TFAB] solution	S36
Figure S58. Cyclic voltammogram of 1.0 mM 2b in dichloromethane - [NBu4][TFAB] solution	S37
Figure S59. Cyclic voltammogram of 1.0 mM 3a in dichloromethane - [NBu4][TFAB] solution	S37
Figure S60. Cyclic voltammogram of 1.0 mM 3a in dichloromethane - [NBu4][TFAB] solution	S38
Figure S61. Cyclic voltammogram of 1.0 mM 3b in dichloromethane - [NBu4][TFAB] solution	S38
Figure S62. Cyclic voltammogram of 1.0 mM 3b in dichloromethane - [NBu4][TFAB] solution	S39
Figure S63. Cyclic voltammogram of 1.0 mM 3c in dichloromethane - [NBu4][TFAB] solution	S39
Figure S64. Cyclic voltammogram of 1.0 mM 3c in dichloromethane - [NBu4][TFAB] solution	S40
Figure S65. Cyclic voltammogram of 1.0 mM 3d in dichloromethane - [NBu4][TFAB] solution	S40
Figure S66. Cyclic voltammogram of 1.0 mM 3d in dichloromethane - [NBu4][TFAB] solution	S41
Figure S67. Cyclic voltammogram of 1.0 mM 3a' in dichloromethane - [NBu4][TFAB] solution	S41
Figure S68. Cyclic voltammogram of 0.7 mM 5 in dichloromethane - [NBu4][TFAB] solution	S42

S35

Synthetic procedures

Synthesis of initial germanium derivatives

Dimethyldiphenylgermane, Me₂GePh₂. The solution of Ph₂GeCl₂ (28.68 g, 96.30 mmol) in Et₂O (50 ml) was added dropwise to the solution of the MeMgI in ether (80 ml) prepared by typical way from MeI (19.12 ml, 43.60 g, 307.00 mmol) and Mg (6.86 g, 282.20 mmol). After reflux for 2 h the reation mixture was poured into the saturated aq. solution of NH₄Cl, water phase was extracted with ether (3x50 ml), dried over MgSO₄. Then all volatile materials were removed under reduced pressure, and the residue was purified by distillation. Dimethyldiphenylgermane (20.78 g, 84 %) was isolated as colorless liquid. B.p. 125-126 °C (3 mm Hg),¹ b.p. 93-94 (3 mm Hg). NMR data corresponds to literature data.² ¹H NMR (δ , ppm, CDCl₃): 7.58-7.54 (m, 4H), 7.43-7.40 (m, 6H) (aromatic protons), 0.72 (s, 6H, GeMe₂). ¹³C NMR (δ , ppm, CDCl₃): 140.20 (quaternary aromatic carbon), 133.62, 128.05 (aromatic *o/m*-CH carbons), 128.56 (aromatic *p*-CH carbon), -3.14 (GeMe₂).

Bromodimethylphenylgermane, Me₂GePhBr. The solution of dry bromine (2.00 ml, 6.22 g, 38.92 mmol) distilled over P_4O_{10} in 1,2-dibromoethane (5 ml) was added dropwise to the solution of Ph_2GeMe_2 (10.00 g, 38.92 mmol) 1,2-dibromoethane (30 ml) at 85 °C. The mixture obtained was refluxed for 2 h, then all volatile materials were removed under reduced pressure. The target compound (7.88 g, 78 %) was isolated by distillation. Colorless liquid. B.p. 63-65 °C (4 mm Hg). ¹H NMR (δ , ppm, CDCl₃): 7.65-7.61 (m, 2H), 7.47-7.42 (m, 3H) (aromatic protons), 1.10 (s, 6H, GeMe₂). ¹³C NMR (δ , ppm, CDCl₃): 138.26 (quaternary aromatic carbon), 132.33, 128.42 (aromatic *o/m*-CH carbons), 130.02 (aromatic *p*-CH carbon), 4.00 (GeMe₂).

Dimethylphenylgermane, Me₂GePhH. LiAlH₄ (2.19 g, 57.76 mmol) was added dropwise to the solution of Me₂GePhBr (10.00 g, 38.50 mmol) in ether (100 ml). After reflux during 2 h, saturated aq. solution of NH₄Cl was added, water phase was ectracted with ether (3x30 ml), dried over MgSO₄, and then all volatile materials were removed under reduced pressure. The target compound (5.85 g, 84 %) was isolated by distillation. Colorless liquid, b.p. 80 °C (50 mm Hg),³ b.p. 98-99 (64 mm Hg). ¹H NMR (δ , ppm, CDCl₃): 7.52-7.47 (m, 2H), 7.36-7.31 (m, 3H) (aromatic protons), 4.47 (sept, ³*J*_{H-H} = 3.5 Hz, 1H), 0.47 (s, 6H, GeMe₂). ¹³C NMR (δ , ppm, CDCl₃): 139.54 (quaternary aromatic carbon), 133.67, 128.04 (aromatic *o/m*-CH carbons), 128.48 (aromatic *p*-CH carbon), -4.32 (GeMe₂).

Pentamethylphenyldigermane, Me₃GeGeMe₂Ph. At 0°C to the solution of Me₂GePhH (4.00 g, 22.12 mm^o) in ether (30 ml) *n*-BuLi (8.85 ml, 2.5 M in *n*-hexane, 22.12 mmol) was added slowly, and then reaction mixture was stirred at room temperature for 3 h. The solution of Me₃GeBr (2.84 ml, 4.37 g, 22.12 mmol) in ether (20 ml) was added to the solution of Me₂GePhLi obtained as described earlier. After stirring overnight aq. saturated solution of NH₄Cl was added, organic phase was extracted with ether (3x20 ml), dried over MgSO₄, and then all volatile materials were removed under reduced pressure. The target compound (5.53 g, 84%) was isolated by distillation on oil. Colorless oil, b.p. 82-84 °C; b.p. 120 (8),⁴ 110 (12).⁵ UV/vis (CH₂Cl₂) λ_{max} nm (ϵ , M⁻¹ cm⁻¹): 230 (3.4×10⁴). ¹H NMR (δ , ppm, CDCl₃): 7.45-7.40 (m, 2H), 7.35-7.30 (m, 3H) (aromatic protons), 0.47 (s, 6H, GeMe₂), 0.25 (s, 9H, GeMe₃). ¹³C NMR (δ , ppm, CDCl₃): 142.10 (quaternary aromatic carbon), 133.41, 128.88 (aromatic *o/m*-CH carbons), 127.79 (aromatic *p*-CH carbon), -2.23, -3.85 (2GeMe).

Pentamethyldigermyl triflate, Me₃GeGeMe₂OTf. At 0°C HOTf (0.883 ml, 9.98 mmol) was added to the solution of Me₃GeGeMe₂Ph (2.91 g, 9.78 mmol) in CH₂Cl₂ (20 ml). Reaction mixture was stirred overnight overnight at room temperature, and then all volatile materials were removed under reduced pressure giving the target compound (3.39 g, 98%) as colorless oil. ¹H NMR (δ , ppm, CDCl₃): 0.88 (s, 6H, GeMe₂), 0.47 (s, 9H, GeMe₃). ¹³C NMR (δ , ppm, CDCl₃): 118.76 (¹J_{C-F} = 317.6 Hz, CF₃), 4.00, -2.36 (2GeMe). ¹⁹F NMR (δ , ppm, CDCl₃): -77.63 (s).

Chloropentamethyldigermane, Me₃GeGeMe₂Cl. Finely ground NH₄Cl (5.50 g, 102.80 mmol) dried over P₄O₁₀ was added to the solution of Me₃GeGeMe₂OTf (5.50 g, 14.88 mmol) in CH₂Cl₂ (60 ml). The reaction mixture was stirred overnight, and then all volatile materials were removed under reduced pressure. The target compound (3.27 g, 86 %) was isolated by distillation, b.p. 72-73 (28 mm Hg). Colorless liquid. NMR data corresponds to literature data.⁶ B.p. 64-65 (15),⁷ 62-63 (18).⁸ ¹H NMR (δ , ppm, CDCl₃): 0.75 (s, 6H, GeMe₂), 0.39 (s, 9H, GeMe₃). ¹³C NMR (δ , ppm, CDCl₃): 4.53 (GeMe₂), -2.48 (GeMe₃).

Synthesis of thienyl compounds

2-Iodothiophene.⁹

Freshly distilled thiopene (42.00 g, 39.00 ml, 500.00 mmol) and iodine (38.00 g, 150.00 mmol) were placed in a three-necked flask (250 ml) equipped with reflux condenser, dropping funnel. At vigorous stirring a mixture of HNO₃ concentrated (27.72 g, 440.00 mmol, 59%, d 1.352 g/ml) and water (21.00 ml) was added dropwise at internal temperature below 40 °C. The mixture obtained was refluxed for 0.5 h, then organic layer was separated and mixed with 10 % aq. NaOH. Organic phase was separated, dried over MgSO₄ and distilled. 2-Iodothiophene (6.93 g, 44 %) was isolated as yellowish oil, b. p. 71-71 °C (12 mm Hg).

¹H NMR (δ , ppm, CDCl₃): 7.38 (dd, ³*J*_{*H*-*H*} = 5.5 Hz, ⁴*J*_{*H*-*H*} = 1.3 Hz, 1H), 7.28 (dd, ³*J*_{*H*-*H*} = 3.5 Hz, ⁴*J*_{*H*-*H*} = 1.3 Hz, 1H), 6.83 (dd, ³*J*_{*H*-*H*} = 3.5 Hz, ³*J*_{*H*-*H*} = 5.5 Hz, 1H) (thienyl protons). ¹³C NMR (δ , ppm, CDCl₃): 136.82, 131.44, 128.81 (3 thienyl CH carbons), 73.10 (thienyl CI carbons).

2,2'-Bithiophene (2,2'-Th₂).¹⁰

The mixture of 2-iodothiophene (13.75 g, 65.00 mmol), copper bronze (4.45 g, 70.00 mmol) and DMF (20 ml) was refluxed for 12 h. Then water (50 ml) and CH_2Cl_2 (100 ml) was added, and mixture obtained was filtered. Organic phase was washed with water (5x50 ml), dried over MgSO₄, and then all volatile materials were removed under reduced pressure. The residue was distilled, and the fraction, b.p. 102-108 °C (4 mm Hg) was collected, and then recrystallized from *n*-hexane. 2,2'-Th₂ (7.78 g, 72 %) was isolated as yellowish crystals, m.p. 33-34 °C.

¹H NMR (δ , ppm, CDCl₃): 7.21 (dd, ⁴*J*_{*H*-*H*} = 1.2 Hz, ³*J*_{*H*-*H*} = 5.1 Hz, 2H), 7.19 (dd, ⁴*J*_{*H*-*H*} = 1.2 Hz, ³*J*_{*H*-*H*} = 3.5 Hz, 2H), 7.02 (dd, ³*J*_{*H*-*H*} = 3.5 Hz, ³*J*_{*H*-*H*} = 5.1 Hz, 2H) (thienyl protons). ¹³C NMR (δ , ppm, CDCl₃): 137.33 (quaternary thienyl carbon), 127.70, 124.28, 123.70 (thienyl CH carbons).

1,4-Di-(2-thienyl)-1,4-butanedione

- a) Synthesis of succinyl chloride. Succinic acid (29.64 g, 251.00 mmol) was added portionwise to the SOCl₂ (60 ml, 97.86 g, 822.56 mmol). After reflux for 4 h, all volatile compounds were removed under reduced pressure. The residue obtained (38.62 g, >99%) was used further without purification.
- b) Synthesis of 1,4-Di-(2-thienyl)-1,4-butanedione.¹¹ At 0°C the solution of thiophene (48.00 ml, 602.4 mmol) and succinyl chloride (38.62 g, 248.49 mmol) in CH₂Cl₂ (75 ml) obtained as described above was added dropwise to the suspension of AlCl₃ (80.32 g, 602.40 mmol) in CH₂Cl₂ (75 ml). Reaction mixture was stirred for 18 h, then poured into mixture of ice (400 g) and concentrated HCl (30 ml). Then organic phase was separated, washed with water (2x50 ml), aq. NaHCO₃ and dried over MgSO₄. After removing all volatile materials the residue was treated with EtOH (100 ml), filtered off and recrystallized with charcoal from toluene. Greenish powder (30.16 g, 48 %), m. p. 130-131 °C. ¹H NMR (δ , ppm, CDCl₃): 7.78 (dd, ³J_{H-H} = 3.9 Hz, ⁴J_{H-H} 0.9 Hz 2H), 7.61 (dd, ³J_{H-H} = 5.0 Hz, ⁴J_{H-H} = 0.9 Hz, 2H), 7.10 (dd, ³J_{H-H} = 5.0 Hz, ³J_{H-H} = 3.9 Hz, 2H) (thienyl protons). ¹³C NMR (δ , ppm, CDCl₃): 191.21 (C=O), 143.60 (quaternary thienyl carbon), 133.50, 131.98, 128.03 (thienyl CH carbons), 33.01 (CH₂).

2,2',5',2"-Terthienyl (2,2':5',2"-Th₃)¹²

P₄S₁₀ (11.11 g, 25.00 mmol) was added portionwise to the suspension of 1,4-di-(2-thienyl)-1,4-butanedione (5.00 g, 20.00 mmol) in ether (50 ml). Then NaHCO₃ (10.08 g, 120.00 mmol) was added portionwise so that CO₂ evolved slowly. After stirring for 3 h water (50 ml) was added, the mixture was filtered, and water phase was extracted with CH₂Cl₂ (3x40 ml), dried over MgSO₄. Then all volatile materials were removed under reduced pressure. The residue was purified by chromatogtaphy (SiO₂, petroleum ether, R_f 0.3), and recrystallized from MeOH. Target compound (4.07 g, 82 %) was isolated as yellowish plates, m.p. 93-94 °C. ¹H NMR (*δ*, ppm, CDCl₃): 7.20 (dd, ⁴J_{H-H} 1.2 Hz, ³J_{H-H} 5.1 Hz, 2H), 7.16 (dd, ³J_{H-H} = 3.7 Hz, ⁴J_{H-H} = 1.2 Hz, 2H), 7.06 (s, 2H), 7.10 (dd, ³J_{H-H} = 5.1 Hz, ³J_{H-H} = 3.7 Hz, 2H) (thienyl protons). ¹³C NMR (*δ*, ppm, CDCl₃): 137.20, 136.23 (2 quaternary thienyl carbons), 127.85, 124.47, 124.34, 123.74 (thienyl CH carbons).

References

- 1. M. Kumada, M. Ishikawa, S. Sakamoto, S. Maeda, J. Organomet. Chem. 1969, 17 (2), 223.
- 2. K. L. Bobbitt, V. M. Maloney, P. P. Gaspar, Organometallics 1991, 10 (8), 2772.
- 3. J. Escudie, C. Couret, J. Satge, J. D. Andriamizaka, *Organometallics* **1982**, *1* (10), 1261.
- 4. P. Riviére, J. Satgé, Synth. React. Inorg. Met.-Org. Chem. 1971, 1 (1), 13.
- 5. A. Castel, P. Riviere, B. Saintroch, J. Satge, J. P. Malrieu, J. Organomet. Chem. 1983, 247 (2), 149.
- 6. C. H. Yoder, J. E. Crouse, D. A. Wilson, J. Organomet. Chem. 1984, 276 (1), 9.
- 7. K. Yamamoto, M. Kumada, J. Organomet. Chem. 1972, 35 (2), 297.
- 8. E. J. Bulten, J. G. Noltes, J. Organomet. Chem. 1968, 15 (2), P18.
- 9. H.Y. Lew, C.R. Noller, Org. Synth., **1963**, Coll. Vol. 5, 545; **1950**, 30, 53.
- 10. H. Wynberg, A. Logothetis, J. Am. Chem. Soc., 1956, 78, 1958.
- 11. A. Merz, F. Ellinger, *Synthesis*, **1991**, 462.
- 12. H. Wynberg, J. Metselaar, Synth. Commun., 1984, 14, 1.

Crystallographic Data

Description of the Experiment

Experimental intensities for **2a**, **2b**, **3a** and **3b** were measured on a Bruker SMART APEX II diffractometer (graphite monochromatized Mo-*K* α radiation, λ = 0.71073 Å) using ω scan mode. The structures were solved by direct methods and refined by full matrix least-squares on F^2 (*SHELXTL*) with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions and refined using a riding model. In **2a** SiMe₃ group is rotationally disordered over two positions with occupancy ratio 0.80(1)/0.20(1).

Crystal data, data collection, structure solution and refinement parameters are listed in Table S-1. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-1810961-1810964.

	2a	2b	3a	3b
empirical formula	$C_{18}H_{34}S_2Si_4$	$C_{18}H_{34}Ge_4S_2$	$C_{20}H_{22}S_4Si_2$	$C_{20}H_{22}Ge_2S_4$
M_w	426.93	604.93	446.80	535.80
temperature (K)	150(2)	170(2)	150(2)	150(2)
size (mm)	0.35 x 0.20 x 0.10	0.38 x 0.32 x 0.26	0.25 x 0.20 x 0.20	0.20 x 0.15 x 0.10
cryst. system	triclinic	triclinic	monoclinic	monoclinic
space group	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	6.6294(5)	6.7760(10)	7.6131(4)	7.6171(3)
<i>b</i> (Å)	6.7581(5)	8.4190(13)	8.7828(4)	8.9311(4)
<i>c</i> (Å)	14.6108(11)	12.5300(19)	16.7001(8)	16.6999(7)
α (deg)	85.8080(10)	90.805(2)	90	90
β (deg)	81.3960(10)	94.883(2)	95.931(1)	96.6462(6)
γ (deg)	79.9180(10)	112.136(2)	90	90
$V(Å^3)$	636.49(8)	658.89(17)	1110.66(9)	1128.44(8)
Z	1	1	2	2
$\rho_{\rm cald} ({\rm g*cm}^{-3})$	1.114	1.525	1.336	1.577
abs coeff. (mm ⁻¹)	0.398	4.676	0.539	3.036
<i>F</i> (000)	230	302	468	540
θ range (deg)	3.07 - 27.00	2.62-29.00	2.45 - 29.00	2.46 - 29.00
no. of collected/unique rflns.	6151 / 2763	7182 / 3464	12179 / 2951	12365 / 3001
R _{int}	0.0107	0.0173	0.0155	0.0159
data/restraints/params	2763/30/135	3464/0/114	2951 / 1 / 120	3001 / 1 / 120
goodness of fit on F^2	1.064	1.099	1.075	1.064
final <i>R</i> indices $(I > 2\sigma(I))$	$\begin{array}{l} R_1 \ = \ 0.0257, \\ wR_2 \ = \ 0.0704 \end{array}$	$R_1 = 0.0302,$ $wR_2 = 0.0782$	$R_1 = 0.0284, wR_2 = 0.0838$	$\begin{array}{ll} R_1 &=& 0.0187,\\ wR_2 &=& 0.0536 \end{array}$
R indices (all data)	$\begin{array}{l} R_1 \ = \ 0.0278, \\ wR_2 \ = \ 0.0724 \end{array}$	$\begin{array}{l} R_1 \ = \ 0.0408, \\ wR_2 \ = \ 0.0814 \end{array}$	$\begin{array}{l} R_1 \ = \ 0.0307, \\ wR_2 \ = \ 0.0860 \end{array}$	$\begin{array}{l} R_1 \ = \ 0.0200, \\ wR_2 \ = \ 0.0544 \end{array}$
largest diff. peak/hole $(e/Å^3)$	0.335 / -0.243	1.204 / -0.466	0.531 / -0.511	0.583 / -0.551

Table S1. Crystallographic Data for Compounds 2a, 2b, 3a and 3b.

Spectral NMR Data

NMR spectra of initial germanium compounds

Figure S1. ¹H NMR spectrum for Me₂GePh₂ (CDCl₃, RT).

Figure S2. ¹³C NMR spectrum for Me₂GePh₂ (CDCl₃, RT).

Figure S3. ¹H NMR spectrum for Me₂GePhBr (CDCl₃, RT).

Figure S4. ¹³C NMR spectrum for Me₂GePhBr (CDCl₃, RT).

Figure S5. ¹H NMR spectrum for Me₂GePhH (CDCl₃, RT).

Figure S6. ¹³C NMR spectrum for Me₂GePhH (CDCl₃, RT).

Figure S7. ¹H NMR spectrum for PhMe₂GeGeMe₃ (CDCl₃, RT).

Figure S8. ¹³C NMR spectrum for PhMe₂GeGeMe₃ (CDCl₃, RT).

Figure S9. ¹H NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT).

Figure S10. ¹³C NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT).

Figure S11. ¹⁹F NMR spectrum for Me₃GeGeMe₂OTf (CDCl₃, RT).

Figure S12. ¹H NMR spectrum for Me₃GeGeMe₂Cl (CDCl₃, RT).

Figure S13. ¹³C NMR spectrum for Me₃GeGeMe₂Cl (CDCl₃, RT).

NMR spectra of oligothienyl catenated Group 14 derivatives

Figure S14. ¹H NMR spectrum for **1a** (CDCl₃, RT).

Figure S15. ¹³C NMR spectrum for 1a (CDCl₃, RT).

Figure S16. ²⁹Si NMR spectrum for 1a (CDCl₃, RT).

Figure S17. ¹H NMR spectrum for 1b (CDCl₃, RT).

Figure S18. ¹³C NMR spectrum for 1b (CDCl₃, RT).

Figure S19. ¹H NMR spectrum for **2a** (CDCl₃, RT).

Figure S20. ¹³C NMR spectrum for 2a (CDCl₃, RT).

Figure S21. ²⁹Si NMR spectrum for 2a (CDCl₃, RT).

Figure S22. ¹H NMR spectrum for 2b (CDCl₃, RT).

Figure S23. ¹³C NMR spectrum for 2b (CDCl₃, RT).

Figure S24. ¹H NMR spectrum for 2c (CDCl₃, RT).

Figure S25. ¹³C NMR spectrum for 2c (CDCl₃, RT).

Figure S26. ¹H NMR spectrum for 3a (CDCl₃, RT).

Figure S27. ¹³C NMR spectrum for 3a (CDCl₃, RT).

Figure S28. ²⁹Si NMR spectrum for 3a (CDCl₃, RT).

Figure S29. 1 H NMR spectrum for 3a' (CDCl₃, RT).

Figure S30. ¹³C NMR spectrum for 3a' (CDCl₃, RT).

Figure S31. ²⁹Si NMR spectrum for 3a' (CDCl₃, RT).

Figure S32. ¹H NMR spectrum for 3b (CDCl₃, RT).

Figure S33. ¹³C NMR spectrum for 3b (CDCl₃, RT).

Figure S34. ¹H NMR spectrum for **3c** (CDCl₃, RT).

Figure S35. 13 C NMR spectrum for 3c (CDCl₃, RT).

Figure S36. ²⁹Si NMR spectrum for 3c (CDCl₃, RT).

Figure S37. ¹H NMR spectrum for **3d** (CDCl₃, RT).

Figure S38. ¹³C NMR spectrum for 3d (CDCl₃, RT).

UV/vis absorption and luminescence spectra

Figure S39. UV/vis absorption of Th₂ and Th₃ (CH₂Cl₂, room temperature).

Figure S40. Emission of Th₂ and Th₃ in solid state (room temperature).

Figure S41. Emission of Th₂ and Th₃ in solution (CH₂Cl₂, room temperature).

Figure S42. Emission of Me₃SiSiMe₃ and Me₃GeGeMe₃ in solution (CH₂Cl₂, room temperature).

Figure S43. UV/visible absorption spectra (CH₂Cl₂, room temperature) for compounds: a) 1a, 2a, 3a, and 3a'; b) 1b, 2c and 3d.

Figure S44. UV/visible absorption spectra (CH_2Cl_2 , room temperature) for compounds: a) **2b** and **3b**; b) **3c** and **3d**.

Figure S45. Luminescence emission for compounds 1a, 2a, 3a and 3a' at room temperature: a) in solid state; b) in solution (CH_2Cl_2) .

Figure S46. Luminescence emission for compounds 1b, 2c, and 3d at room temperature: a) in solid state; b) in solution (CH_2Cl_2) .

Figure S47. Luminescence emission for compounds 2b and 3b at room temperature: a) in solid state; b) in solution (CH₂Cl₂).

Figure S48. Luminescence emission for compounds **3c** and **3d** at room temperature: a) in solid state; b) in solution (CH_2Cl_2).

DFT calculations

Description of the experiment

The nonlocal hybrid three-parameter $B3LYP^1$ density functional has been used throughout the study because previous theoretical calculations have shown that B3LYP approach is a cost-effective method for studying metal containing systems.² Even at calculations of the thermodynamic parameters, B3LYP results compare well to the highly exact G2 (MP2, SVP) methods, as well as to the experimental values.³ We have used PM3 level for large systems with phenyl and fluorophenyl rings. Than we have used the time-dependent density functional computations [6-31G(d) basis set], as implemented by Gaussian 09, were utilized to explore the excited manifold and compute the possible electronic transitions.

The calculations were performed with full geometry optimization and used the GAUSSIAN'09 program package.⁴ The absence of imaginary vibration frequencies confirmed the stationary character of the structures.

References

1. Becke, A. D. Phys. Rev. A **1988**, 38, 3098-3100.

2. Poleshchuk, O. K.; Shevchenko, E. L.; Branchadell, V.; Lein, M.; Frenking, G. Int. J. Quantum Chem. 2005, 101, 869-877.

3. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063-1079.

4. Frisch, M. J. T., G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V.; Ortiz, J. V.; Foresman, J. B.; Closlowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala P. Y.; Chen, W.; Wong M. W.; Andress, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defress, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, Gonzales, C.; Pople, J. A. *Gaussian 09, Revision C.01; Gaussian, Inc: Pittsburg, PA*, **2010**.

М'	М	n	λ, nm
Si	Si	1	229
		2	321
		3	369
	Ge	1	252
		2	322
		3	369
	Sn	1	262
		2	325
		3	373
Ge	Si	1	247
		2	317
		3	366
	Ge	1	247
		2	318
		3	367
	Sn	1	256
		2	318
		3	370

 $\textbf{Table S3. UV}/\overline{vis \ absorption \ data \ for Th_2MMe_2M'Me_2Th_2 \ [B3LYP/6-31+G(d,p)]}.$

М	M'	λ, nm UV	relation
Si	Si	325	HOMO-LUMO
	Ge	327	HOMO-LUMO
		321 (i)	HOMO-LUMO+1
	Sn	331	HOMO-LUMO
		321 (i)	HOMO-LUMO+1
Ge	Ge	314	HOMO-LUMO
		312	HOMO-LUMO+1
		298 (i)	HOMO-1-LUMO+1
	Sn	325	HOMO-LUMO
		321 (i)	HOMO-LUMO+1
Sn	Sn	321	HOMO-LUMO
		318 (i)	HOMO-LUMO+1

			Absorbance			Fluor	rescence
Compound	λ _{abs} , nm	oscillator strength	transition	HOMO/LUMO energy, eV ^a	λ_{em},nm	oscillator strength	transition
$Si_2Th_2Si_2$ (2a)	355	0.88	HOMO - LUMO	-5.67/-1.71 (313)	459	1.00	LUMO - HOMO
	281	0.01	HOMO-1 - LUMO		315	0.03	LUMO - HOMO-1
	270	0.02	HOMO - LUMO+1		316	0.32	LUMO+1 - HOMO
					292	0.03	LUMO – HOMO-2
$Ge_2Th_2Ge_2$ (2b)	350	0.88	HOMO - LUMO	-5.62/-1.60 (308)	455	1.00	LUMO - HOMO
	279	0.01	HOMO-1 - LUMO		313	0.03	LUMO - HOMO-1
	272	0.02	HOMO - LUMO+1		316	0.30	LUMO+1 -HOMO
					292	0.03	LUMO – HOMO-2
$\begin{array}{c} Th_2Si_2Th_2\\ (\textbf{3a})\end{array}$	353	1.00	HOMO - LUMO	-5.73/-1.76 (312)	452	1.00	LUMO - HOMO
	331	0.09	HOMO - LUMO+1		405	0.11	LUMO+1 - HOMO
	320	0.04	HOMO-1 - LUMO		378	0.09	LUMO - HOMO-1
	309	0.25	HOMO-1 - LUMO+1		354	0.26	LUMO+1 - HOMO-1
$\begin{array}{c} Th_2Ge_2Th_2\\ \textbf{(3b)}\end{array}$	346	1.00	HOMO - LUMO	-5.72/-1.69 (308)	443	1.00	LUMO - HOMO
	329	0.11	HOMO - LUMO+1		394	0.20	LUMO+1 - HOMO
	317	0.04	HOMO-1 - LUMO		376	0.06	LUMO - HOMO-1
	308	0.24	HOMO-1 - LUMO+1		350	0.31	LUMO+1 - HOMO-1

Table S4. UV/vis absorption and luminescence data according DFT calculations.

^a gap in nm in parentheses

Table S5. Calculated UV/vis absorption and luminescence data for Me₃GeGeMe₂[Th]_nGeMe₂GeMe₃.

	Absorption			Luminescence	
n	λ, nm	Transition	HOMO/LUMO (eV)	λ, nm	Transition
1	262	homo→lumo	-6.46/-1.22	394	LUMO-HOMO
2	344	homo→lumo	-5.89/-1.82	452	LUMO-HOMO
3	407	homo→lumo	-5.59/-2.12	561	LUMO-HOMO
4	456	homo→lumo	-5.42/-2.29	651	LUMO-HOMO
5	494	homo→lumo	-5.31/-2.39	728	LUMO-HOMO
6	531	homo→lumo	-5.23/-2.49	791	LUMO-HOMO
7	551	homo→lumo	-5.19/-2.53	832	LUMO-HOMO
8	570	homo→lumo	-5.15/-2.57	841	LUMO-HOMO
9	589	homo→lumo	-5.12/-2.60		

Table S6. Calculated UV/vis absorption data for Th(Th)_nGeMe₂GeMe₂(Th)_nTh.

n	λ, nm	Transition	HOMO/LUMO (eV)
0	270	HOMO→LUMO	-6.12/-0.98
1	346	HOMO→LUMO	-5.73/-1.69
2	419	HOMO→LUMO	-5.46/-2.09
3	476	HOMO→LUMO	-5.31/-2.31
4	523	HOMO→LUMO	-5.21/-2.46
6	595	HOMO→LUMO	-5.09/-2.63

Figure S49. HOMO molecular orbital for Th₂Ge₂Me₄Th₂.

Figure S50. HOMO-1 molecular orbital for Th₂Ge₂Me₄Th₂.

Figure S51. LUMO molecular orbital for Th₂Ge₂Me₄Th₂.

Figure S52. LUMO+1 molecular orbital for Th₂Ge₂Me₄Th₂.

Figure S53. HOMO molecular orbital for Me₅Ge₂Th₂Ge₂Me₅.

Figure S54. HOMO-1 molecular orbital for Me₅Ge₂Th₂Ge₂Me₅.

Figure S55. LUMO molecular orbital for Me₅Ge₂Th₂Ge₂Me₅.

Figure S56. LUMO+1 molecular orbital for Me₅Ge₂Th₂Ge₂Me₅.

Electrochemical data according to CV

Description of the experiment

Electrochemical measurements were carried out using an Autolab 302N potentiostat interfaced through Nova 2.0 software to a personal computer. Electrochemical measurements were performed in a glovebox under oxygen levels of less than 5 ppm using solvent that had been purified by passing through an alumina-based purification system. Diamond-polished glassy carbon electrodes of 3 mm diameter were employed for cyclic voltammetry (CV) scans. CV data were evaluated using standard diagnostic criteria for diffusion control and for chemical and electrochemical reversibility. The experimental reference electrode was a silver wire coated with anodically deposited silver chloride and separated from the working solution by a fine glass frit. The electrochemical potentials in this paper are referenced to ferrocene/ferrocenium couple, as recommended elsewhere.¹ The ferrocene potential was obtained by its addition to the analyte solution.² At an appropriate time in the experiment [NBu₄][B(C₆F₅)₄] was prepared as previously described.³

References

- 1. G. Gritzner and J. Kuta, Pure Appl. Chem., 1984, 56, 461.
- 2. R.R. Gagne, C.A. Koval, G.C. Lisensky, Inorg. Chem. 1980, 19, 2854.
- 3. K. Lam, K.; W.E. Geiger, J. Organomet. Chem. 2016, 817, 15.

Figure S57. Cyclic voltammogram of 1.0 mM **2a** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 3 oxidation peaks (E_{pa} = 0.73, 0.85 and 1.21 V *vs.* Fc⁺/Fc).

Figure S58. Cyclic voltammogram of 1.0 mM **2b** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 3 oxidation peaks (E_{pa} = 0.80, 0.95, 1.29 V vs. Fc⁺/Fc).

Figure S59. Cyclic voltammogram of 1.0 mM **3a** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 2 oxidation peaks (E_{pa} = 0.73 and 1.14 V vs. Fc⁺/Fc).

Figure S60. Cyclic voltammogram of 1.0 mM **3a** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (red. wave). 1 reduction peak (E_{pc} = -2.20 V vs. Fc⁺/Fc).

Figure S61. Cyclic voltammogram of 1.0 mM **3b** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 2 oxidation peaks (E_{pa} = 0.73 and 1.15 V vs. Fc⁺/Fc).

Figure S62. Cyclic voltammogram of 1.0 mM **3b** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (red. wave). 1 reduction peak (E_{pc} = -1.95 V vs. Fc⁺/Fc) and 1 reoxidation peak (E_{pa} = -0.80 V vs. Fc⁺/Fc).

Figure S63. Cyclic voltammogram of 1.0 mM **3c** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 3 oxidation peaks (E_{pa} = 0.58, 0.83 and 1.38 V vs. Fc⁺/Fc) and 3 rereduction peaks (E_{pc} = -0.01, 0.30 and 0.54 V vs. Fc⁺/Fc).

Figure S64. Cyclic voltammogram of 1.0 mM **3c** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (red. wave). 2 reduction peaks (E_{pc} = -1.96, -2.10 V vs. Fc⁺/Fc) and 1 reoxidation peak (E_{pa} = -0.81 V vs. Fc⁺/Fc).

Figure S65. Cyclic voltammogram of 1.0 mM **3d** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (ox. wave). 3 oxidation peaks (E_{pa} = 0.51, 0.79 and 1.38 V vs. Fc⁺/Fc) and 2 rereduction peaks (E_{pc} = 0.53 and 0.30 V vs. Fc⁺/Fc).

Figure S66. Cyclic voltammogram of 1.0 mM **3d** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature (red. wave). 2 reduction peaks (E_{pc} = -1.01 and -2.22 V vs. Fc⁺/Fc) and 2 reoxidation peaks (E_{pa} = -0.86 and -0.72 V vs. Fc⁺/Fc).

Figure S67. Cyclic voltammogram of 1.0 mM **3a'** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200 mV/s at room temperature. 2 oxidation peaks (E_{pa} = 0.73 and 1.33V *vs.* Fc⁺/Fc) and 2 rereduction peaks (E_{pc} = 0.17 and 0.42 V *vs.* Fc⁺/Fc).

Figure S68. Cyclic voltammogram of 0.7 mM **5** in dichloromethane - [NBu₄][TFAB] solution. Sweeping rate 200mV/s at room temperature (ox. wave). 3 oxidation peaks (E_{pa} = 0.90, 1.12 and 1.58 V vs. Fc⁺/Fc) and 2 rereduction peaks (E_{pc} = 0.37 and 0.60 V vs. Fc⁺/Fc).