Electronic Supplementary Information

Reactant or Reagent? Oxidation of H_2 at Electronically Distinct Nickel-Thiolate Sites $[Ni_2(\mu$ -SR)₂]⁺ and [Ni-SR]⁺

Felix Koch and Andreas Berkefeld*

Table of contents

1.	General Information	2
2.	Supplementary NMR Spectroscopic Data	4
3.	UV/vis Data	23
4.	Additional Kinetic Data for H ₂ Oxidation by [2](NTf ₂) ₂	32
5.	Determination of $pK_a(1,2-C_6H_4F_2)$ of $[HNi(PMe_3)_4]^+$	33
6.	Supplementary CV Data of Ni(PMe ₃) ₄	34
7.	Additional Details on Product Mixture from [1]NTf ₂ and Na[HB(OAc) ₃]	35
8.	References	40

1. General Information

All manipulations of air- and moisture-sensitive compounds were carried out under an atmosphere of dry argon using standard Schlenk or glove-box techniques. Compounds [1]NTf₂,¹ [1-H]NTf₂,¹ [2][NTf₂]₂,² [Fc]NTf₂,¹ Ni(cod)₂,³ and Ni(PMe₃)₄⁴ were prepared according to literature procedures. NTf₂ denotes the (F₃CSO₂)N-anion. N,N,N',N'-Tetrametyl-1,8diaminonaphthalene (= base; 99%, Sigma Aldrich), sodium tris(acetoxy)borohydride (Na[HB(OAc)₃]; 95%, ABCR), and PMe₃ (1M in toluene, Sigma Aldrich) were used as received and stored under argon. Bis(trifluoromethanesulfonyl)amide (HNTf₂; 99%, Acros Organics) and cobaltocene (Cp₂Co; 99%, ABCR) were sublimed once before use. Solvents were purified and dried prior to use. Dichloromethane and hexane were dried using an MBraun solvent purification system (SPS). Diethyl ether and THF were predried over activated 3 Å molecular sieves (MS) and distilled from sodium benzophenone ketyl or potassium metal under argon. 2-Methyltetrahydrofuran (2-Me-THF; >99%, inhibitor free, Sigma Aldrich), d₈-THF and C₆D₆ were dried over and distilled from NaK alloy and stored in the glove box. CDCl₃ and CD₂Cl₂ were dried over and vacuum transferred from 3 Å MS. Acetonitrile (MeCN) for use in electrochemical experiments was sequentially dried over and distilled from CaH₂ and P₂O₅, and finally percolated through activated neutral alumina. 1,2-C₆H₄F₂ (ABCR) was percolated through activated neutral alumina and distilled under argon. All solvents were stored over 3 Å MS or activated neutral alumina (MeCN, 1,2-C₆H₄F₂) under argon. Molecular sieves and neutral alumina were activated by heating under dynamic vacuum (10⁻³ mbar) at 250°C for 24-48 h. NMR data were recorded on Bruker AVII+500, Avance II 400 and DRX 250 NMR spectrometers. δ values are given in ppm, J values in Hz. ¹H and ¹³C{¹H} NMR chemical shifts are referenced to the residual ¹H and natural abundance ¹³C resonances of the solvents: $\delta = 7.16/128.06$ (C₆D₆), 1.72/67.21 (C₄D₈O), 5.32/53.84

(CD₂Cl₂) and 7.26/77.16 (CDCl₃). ³¹P NMR chemical shifts are referenced to external standard sample of 85% H₃PO₄ set to $\delta_P = 0$ ppm. Electronic spectra were recorded with a PerkinElmer Lambda 35 UV/vis photospectrometer equipped with a Unisoku CoolSpeK UV USP-203-B cryostat, using a gas tight, four-side-transparent fused 1 cm quartz cuvette fused with a 25 mL flask (cf. Figure S20). Cyclic voltammetric (CV) studies were carried out at controlled temperature (thermostat set to 24°C) under an argon atmosphere using an ECi 200 potentiostat (Nordic Electrochemistry) in a gas-tight, full-glass, three-electrode cell setup. nBu₄NPF₆ electrolyte (Alfa Aesar) was recrystallized 3 times from acetone/water, dried unter dynamic vacuum at 150°C, and employed as a 0.1 M solution in 1,2-C₆H₄F₂ and MeCN. AgClO₄ (anhydrous, Alfa Aesar) was used as received. The potentiostat was controlled using the EC4 DAQ (version 4.1.90.1, Nordic Electrochemistry) software, and data were treated with EC4 VIEW (version 1.2.36.1, Nordic Electrochemistry). A glassy carbon disc (Metrohm, electro-active area = 0.08 ± 0.002 cm²) and a 1 mm coiled Pt-wire were employed as working and counter electrodes, respectively. A 0.5 mm Ag wire in a 0.01 M AgClO₄/ 0.1 M nBu₄NPF₆ MeCN solution served as a reference electrode. IR compensation was applied during data collection, and CV data were corrected for background currents of electrolyte solutions for different potential sweep rates. Potentials are reported relative to $E^{0}(Fc/[Fc]^{+}, 0.1 \text{ M nBu_4NPF_6/1,2-C_6H_4F_2}, 24^{\circ}C) = 0.222 \pm 0.003 \text{ V vs } Ag/Ag^{+}$. The electroactive area of the working electrode was calculated from Fc/[Fc]⁺ measurements in 0.1 M nBu₄NPF₆ solution in MeCN at various concentrations and potential sweep rates, using $D(Fc/MeCN, 20^{\circ}C) = 2.40 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$. The working electrode was rinsed with acetone, polished very gently with a paste of 0.3 µm alumina (Metrohm) in deionized water, rinsed thoroughly with plenty of deionized water, and finally acetone after each use and stored in a desiccator over P₂O₅. Periodic Fc/[Fc]⁺ reference measurements verify the integrity of the working

electrode as well as the stability of the Ag/Ag⁺ reference potential. X-band cw-EPR spectra were collected using 4 mm O.D. Wilmad quartz (CFQ) sample tubes on a Bruker ESP 300E cw-spectrometer, and are referenced to the Bruker Strong Pitch standard $g_{iso} = 2.0028$. EasySpin⁵ (version 5.0.21) implemented in MATLAB (Statistic Toolbox Release R2016a, The MathWOrks, Inc., Natick, Massachusetts, United States) was used for digital simulation of EPR data. Spectral fitting was carried out using the easyfit tool included in EasySpin package, using either pepper for solid state or garlic for solution EPR data.

2. Supplementary NMR Spectroscopic Data

General remark. Complexes [1]NTf₂ and [2][NTf₂]₂ were used as crystalline starting materials in reactions discussed in this work. Compound [2][NTf₂]₂ is subject to a slow loss of Ni(NTf₂)₂ in donor solvents like THF which affords mononuclear 3^6 (Figure S1). Characteristic resonances owing to the formation of **3** are highlighted by **\$** in the following.

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃ (#), 26°C): Representative spectrum of complex

3; Inset: characteristic N-line pattern of trans-Ni(PMe₃)₂.⁶

Treatment of [1]NTf2 with H2 in d8-THF solution.

Figure S2. ¹H NMR spectrum (250 MHz, d₈-THF (#), 26°C): Reaction mixture from [1]⁺ (broad resonances) exposed to 1 atm of H₂ (+) after 5 days at r.t., product [1-H]⁺ (**O**), 1,5-cycloocadiene (*, internal standard); *Inset*: characteristic *N*-line pattern of *trans*-Ni(PMe₃)₂ of [1-H]⁺.¹

Figure S3. ¹H NMR spectrum (500 MHz, d₈-THF (#), 26°C): Mixture of products from [1]⁺ under 1 atm of H₂ after 30 days at r.t., product [1-H]⁺ (**O**), 1,5-cycloocadiene (*, internal standard); *Inset*: characteristic *N*-line pattern owing to *trans*-Ni(PMe₃)₂ and Ni-H of [HNi(PMe₃)₄]⁺ at 1.47 and -17.1 ppm, respectively; **\$** = co-product **3**.

Treatment of [1]NTf₂ with H₂ in propylene carbonate solution. A solution of [1]NTf₂ (10 mg, 0.084 mmol) in propylene carbonate (0.5 mL) and 50 mg C₆D₆ was placed in an NMR tube. The solution was degassed by three freeze-pump-thaw cycles and exposed to 1 atm of H₂. After 7 days at r.t., complete conversion of [1]⁺ and formation of [1-H]⁺ was evident from ¹H and ³¹P{¹H} NMR spectra.¹

Figure S4. ¹H NMR spectrum (400 MHz, C₆D₆ (#), propylene carbonate (*), 26°C): Reaction mixture from [1]⁺ under 1 atm of H₂ after 7 days at r.t., [1-H]⁺ (**O**, product); *Insets*: characteristic resonances of μ - η ²: η ²-cyclohexadienide moiety (*left*) and *trans*-Ni(PMe₃)₂ (*right*) of [1-H]⁺.¹

Figure S5. ¹H NMR spectrum (400 MHz, d_8 -THF (#), 26°C): Reaction mixture from [1]⁺ (16 mg, 0.013 mmol) and Ni(PMe₃)₄ (5 mg, 0.014 mmol) in d_8 -THF (#, 0.5 mL) at r.t.; Signals found for 1 (O) match those reported previously.⁶

Treatment of [2](NTf2)2 with Ni(PMe3)4.

Figure S6. ¹H NMR spectrum (400 MHz, d₈-THF (#), 26°C): Reaction mixture from $[2]^{2+}$ (10 mg, 0.0068 mmol) and Ni(PMe₃)₄ (5 mg, 0.014 mmol) in d₈-THF (#, 0.5 mL) at r.t.; Signals found for **1** (**O**) match those reported previously,⁶ residual CH₂Cl₂ (+), and (η^{5} -MeC(O)C₄H₄)₂Fe (*) derive from synthesis of [2](NTf₂)₂.

Treatment of [2](NTf₂)₂ with Ni(PMe₃)₄.

Figure S7. ¹H NMR spectrum (400 MHz, CD_2Cl_2 (#), 26°C): Reaction mixture from $[2]^{2+}$ (10 mg, 0.0068 mmol) in CD_2Cl_2 (0.5 mL) and Ni(PMe₃)₄ (2.5 mg, 0.0068 mmol) in C_6D_6 (*, 100 mg) at r.t.; Resonances of paramagnetic $[1]^+$ (**O**) match those reported previously,¹ **\$** = decomposition product **3**.

Treament of Ni(PMe3)⁴ with H₂. A solution of Ni(PMe₃)⁴ (17 mg, 0.046 mmol) and base (10 mg, 0.046 mmol) in d₈-THF (#, 0.5 mL) was placed in an NMR tube. The solution was degassed by three freeze-pump-thaw cycles and exposed to 1 atm of H₂. All resonances in ¹H and ³¹P{¹H} NMR spectra arise from starting materials and no visual colour change was observed over a period of 1 day.

Figure S8. ¹H NMR spectra (400 MHz, d_8 -THF (#), 26°C): Reaction mixture from Ni(PMe₃)₄ (**O**), N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, +) under 1 atm of H₂ (**X**) after 0.5 h (*bottom*) and 24 h (*top*) at r.t.

Treatment of [(Me₃P)₄Ni]NTf₂ with H₂.

Figure S9. ¹H NMR spectrum (400 MHz, d₈-THF (#), 26°C): Reaction mixture from $[Ni(PMe_3)_4]^+$ (X) under 1 atm of H₂ in presence of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, +) after 7 days at r.t.; Mesitylene (*) used as internal standard; *Inset*: Ni-H resonance assigned to $[HNi(PMe_3)_4]^+$.

Figure S10. ¹H NMR spectra (400 MHz, d₈-THF (#), 26°C): Reaction mixture from $[Ni(PMe_3)_4]^+$ under 1 atm of H₂ (*bottom*), and after replacing H₂ by argon (*top*); Characteristic resonance of $[HNi(PMe_3)_4]^+$ (**X**). Inset: Characteristic resonance of $[HNi(PMe_3)_4]^+$ (**X**) under 1 atm of H₂ (*bottom*), and after replacing H₂ by argon (*top*).

Treatment of [(Me₃P)₄Ni]NTf₂ with Na[HB(OAc)₃].

Figure S11. ¹H NMR spectrum (400 MHz, d₈-THF (#), 26°C): Reaction mixture from $[Ni(PMe)_4]^+$ and 0.5 equiv. of Na[HB(OAc)_3]; Characteristic resonances of $[HNi(PMe_3)_4]^+$ (**X**), unreacted $[HB(OAc)_3]^-$ (**O**₁), and B(OAc)_3 co-product (**O**₂).

Figure S12. ³¹P{¹H} NMR spectrum (162 MHz, d₈-THF (#), 26°C): Reaction mixture from $[Ni(PMe_3)_4]^+$ and 0.5 equiv. of Na[HB(OAc)_3]; $\delta_P = -19.1$ ppm ([HNi(PMe_3)_4]^+).

H/D-Exchange in [HNi(PMe₃)₄]NTf₂.

Figure S13. ²H NMR spectrum (76 MHz, d₈-THF, 26°C): $\delta_D = -17.05 \text{ ppm} ([DNi(PMe_3)_4]^+)$ owing to H-D exchange from [HNi(PMe_3)_4]⁺ under 1 atm of D₂ at 24°C.

Figure S14. ¹H NMR spectrum (500 MHz, d₈-THF (#), 26°C): Reaction mixture from $[\text{HNi}(\text{PMe}_3)_4]^+$ (**X**) and 1 equiv. of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, +) under 1 atm of D₂; * denotes unknown species; *Inset*: $\delta_H = 4.58$ (s, H₂), and 4.54 ppm (t, ¹*J* = 42.7 Hz, H-D).

Treatment of [2][NTf₂]₂ with 2 equiv. of [Hbase]⁺. A solution of [2](NTf₂)₂ (20 mg, 0.014 mmol) and base (6 mg, 0.028 mmol) in CD₂Cl₂ (0.5 mL) was placed in a NMR tube. The reaction mixture was analysed by ¹H and ³¹P{¹H} NMR spectroscopy at 26°C over a period of 24 h.

(top) and 24h (bottom); residual Et₂O and n-hexane from synthesis of [2](NTf₂)₂.

Treatment of [2][NTf2]2 with H2. A solution of [2](NTf2)2 (20 mg, 0.014 mmol) and N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (3 mg, 0.014 mmol) in CD2Cl2 (0.5 mL) was placed in a NMR tube. The solution was degassed three times by freeze-pump-thaw technique and the evacuated tube was set under 4 atm of H2. Reaction progress was monitored by ¹H and ³¹P{¹H} NMR spectroscopy at 26°C.

Figure S16. ¹H NMR spectrum (400 MHz, CD₂Cl₂ (#), 26°C): Reaction mixture from $[\mathbf{2}]^{2+}$, 1 equiv. of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, **X**) under 4 atm of H₂ after 70 minutes of reaction time; ***** = $[\mathbf{1}]^+$, **O** = $[\mathbf{2}]^{2+}$, **§** = H₂, + = [Hbase]⁺; *Inset*: δ_H = 19.1 ppm (s, [*H*base]⁺).

Figure S17. ³¹P{¹H} NMR spectra (162 MHz, CD₂Cl₂, 26°C): Reaction mixture from [**2**]²⁺ and 1 equiv. of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene under 4 atm of H₂ after 30 (*top*) and 80 min (*bottom*) at r.t.; $\delta_P = -9.6$ ([**2**]²⁺), and -28 ppm (co-product **3**).

Treatment of [2](NTf₂)₂ with H₂ in the presence of a stoichiometric amount of [HNi(PMe₃)₄]NTf₂.

Figure S18. ¹H NMR spectrum (400 MHz, CD₂Cl₂, (#), 26°C): Reaction mixture from $[2]^{2^+}$, 1 equiv. of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, +), and 0.5 equiv. of $[HNi(PMe_3)_4]^+$ after 30 min. at r.t.; $\mathbf{O} = [2]^{2^+}$, $\mathbf{X} = [HNi(PMe_3)_4]^+$; *Inset*: $\delta_H = 2.81$ (base), and 3.19 (d, ${}^{3}J = 2.7$ Hz, [Hbase]⁺), corresponding to a 10 % conversion.

Figure S19. ³¹P{¹H} NMR spectra (162 MHz, CD₂Cl₂, 26°C): Reaction mixture composed of $[2]^{2+}$, 1 equiv. of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene, and 0.5 equiv. of $[HNi(PMe_3)_4]^+$ after 30 min under argon (*top left*), 15 min under 1 atm of H₂ (*bottom left*), and 45 min under 1 atm of H₂ (*bottom right*) at r.t.; $\delta_P = -9.7$ ([2]²⁺), and -19.8 ppm ([HNi(PMe_3)_4]⁺).

Stoichiometric Reaction of [1]NTf2 and [HNi(PMe3)4]NTf2 under H2/argon.

A solution of [1]NTf₂ (28.0 mg, 0.023 mmol), N,N,N',N'-tetramethyl-1,8-diaminonaphthalene (base, 5 mg, 0.023 mmol), and [HNi(PMe₃)₄]NTf₂ (15 mg, 0.023 mmol) in 1 mL CD₂Cl₂ was split into two NMR samples. One of the samples was degassed by three freeze-pump-thaw cycles and exposed to 1 atm of H₂ whereas the other sample was kept under argon. Reaction progress was monitored by ¹H NMR spectroscopy.

Table S1. Conversion of N,N,N',N'-tetramethyl-1,8-diaminonaphthalene with reaction time under an atmosphere of H₂/argon.

reaction time	%-conversion under argon	%-conversion under H ₂
0.5 h	7 ± 5	20 ± 5
2 h	16 ± 5	40 ± 5
5 h	48 ± 5	65 ± 5
21 h	80 ± 5	95 ± 5

3. UV/vis Data

General information on stoichiometric H₂ oxidation by [2](NTf₂)₂. The conversion of [2](NTf₂)₂ into [1]NTf₂ under 1 atm of H₂ with time was quantified by UV/vis spectroscopy from samples prepared *in situ* in a gas tight, four-side transparent, fused quartz cuvette connected to a 10 mL round bottom flask (Figure S20). Reactant solutions were prepared and transferred to the apparatus inside a glove box, degassed by three freeze-pump-thaw cycles and exposed to 1 atm of H₂ using the round bottom compartment, and finally decanted into the cuvette after warming to r.t. Temperature was kept constant at T = 297 K using a thermostat, and magnetic stirring was stopped during data acquisition.

Figure S20. Apparatus of four-sided quartz cuvette connected to a 10 mL round bottom flask for quantitative monitoring of H₂ oxidation by UV/vis spectroscopy.

Figure S21. Logarithmic plots of normalized concentrations of $[2]^{2+}$ vs time under the following conditions: (**o**) $P(H_2) \le 1$ atm; (**x**) $P(H_2) \le 4$ atm; (*****) $P(H_2) \le 1$ atm/1 equiv. of $[Hbase]^+$; (+) $P(H_2) \le 1$ atm/10 mol-% $[HNi(PMe_3)_4]^+$; k_{obs} calculated from linear regressions: (**o**) = (*****) = 1.3, (**x**) = 7.2, (+) = 12.3 × 10^{-4}. Details of each run are provided in Figures S22-S30.

Reaction under $P(H_2) \le 4$ atm. 4 mL of a 0.143 mM stock solution of [2](NTf₂)₂ in CH₂Cl₂ and 0.033 mL of a 16.98 mM stock solution of N,N,N',N'-tetrametyl-1,8-naphthalenediamine (proton sponge = base) in C₆H₆ were combined and degassed as described. H₂ was admitted to the sample at -196°C. Reaction started after careful warming to r.t., and spectra were collected every two minutes for 2 hours. The experiment was repeated twice, and an averaged first order plot is shown in Figure S21.

Figure S22. Plot of $\log([2]^{2+t}/[2]^{2+t}=0)$ vs time under $P(H_2) \le 4$ atm, $k_{obs}(24^{\circ}C) = -slope/60 = 7 \times 10^{-4} s^{-1}$.

Figure S23. Plot of $\log([2]^{2+t}/[2]^{2+t}=0)$ vs time under $P(H_2) \le 4$ atm, $k_{obs}(24^{\circ}C) = -slope/60 = -slope/60$

 $8 \times 10^{-4} \text{ s}^{-1}$.

Figure S24. Representative example of time dependent conversion of $[2](NTf_2)_2$ into $[1]NTf_2$ in the presence of 1 equiv. of base under $P(H_2) \le 4$ atm in CH₂Cl₂ solution at T = 24°C as monitored by UV/vis spectroscopy at time intervals = 2 min.

Reaction under $P(H_2) = 1$ atm. 4 mL of a 0.136 mM stock solution of $[2][NTf_2]_2$ in CH₂Cl₂ and 0.032 mL of a 16.98 mM stock solution of base in C₆H₆ were combined, degassed, warmed to r.t. and exposed to 1 atm of H₂. Decrease of electronic transition at $\lambda(\epsilon/M^{-1} \text{ cm}^{-1}) = 460$ (5000) nm was probed every two minutes.

Figure S25. Plot of $\log([2]^{2+t}/[2]^{2+t}=0)$ vs time under $P(H_2) = 1$ atm, $k_{obs}(24^{\circ}C) = -slope/60 = 1.3 \times 10^{-4} s^{-1}$.

Effect of [HNi(PMe₃)₄]NTf₂ as additive. 4 mL of a 0.136 mM stock solution of [2](NTf₂)₂ in CH₂Cl₂, 32 μ L of a 16.98 mM stock solution of base in C₆D₆, and 6 μ L of a 9.34 mM stock solution of [HNi(PMe₃)₄]NTf₂ in C₆H₆ were combined, degassed, warmed to r.t., and finally exposed to 1 atm of H₂. UV/vis spectra were collected every two minutes over a period of 1 h. This experiment was repeated two times and an averaged logarithmic plot is shown Figure 2 in the main text.

Figure S26. Representative example of time dependent conversion of $[2](NTf_2)_2$ into $[1]NTf_2$ in the presence of 1 equiv. of base, and 10 mol-% of $[HNi(PMe_3)_4]NTf_2$ under $P(H_2) \le 4$ atm in CH₂Cl₂ solution at $T = 24^{\circ}C$ as monitored by UV/vis spectroscopy at time intervals = 2 min.

Figure S27. Plot of $\log([2]^{2+t}/[2]^{2+t}=0)$ vs time under $P(H_2) = 1$ atm in the presence of 10 mol-% of [HNi(PMe_3)_4]NTf_2 in CH_2Cl_2 solution; $k_{obs}(24^{\circ}C) = -\text{slope}/60 = 1.3 \times 10^{-3} \text{ s}^{-1}$.

Figure S28. Plot of $\log([2]^{2+}t/[2]^{2+}t=0)$ vs time under $P(H_2) = 1$ atm in the presence of 10 mol-% of [HNi(PMe_3)_4]NTf_2 in CH_2Cl_2 solution; $k_{obs}(24^{\circ}C) = -slope/60 = 1.2 \times 10^{-3} s^{-1}$.

Effect of [Ni(PMe₃)₄]NTf₂ as additive. 4 mL of a 0.136 mM stock solution of [2][NTf₂]₂ in CH₂Cl₂, 27 μ L of a 17.15 mM stock solution of base in C₆H₆, and 6 μ L of a 8.33 mM stock solution of [Ni(PMe₃)₄]NTf₂ in 1,2-C₆H₄F₂ were combined, degassed, and exposed to *P*(H₂) = 1 atm. UV/vis spectra were collected every two minutes over a period of 2 hours.

Figure S29. Series of UV/vis spectra taken at $\Delta t = 2 \text{ min}$ (solid red: t = 0) that show the consumption of $[2]^{2+}$ in the presence of 1 equiv. of base and 10 mol-% of $[\text{Ni}(\text{PMe}_3)_4]$ NTf₂ under $P(\text{H}_2) = 1$ atm. Only decomposition of the starting material is evident.

Effect of [HBase]⁺ as additive. 4 mL of a 0.136 mM stock solution of [2][NTf₂]₂ in CH₂Cl₂, 32 μ L of a 16.98 mM stock solution of base in C₆H₆, and 4 μ L of a 0.0129 M stock solution of [HBase]NTf₂ in C₆H₆ were combined, degassed, warmed to r.t., and exposed to 1 atm of H₂. Decrease of electronic transition at $\lambda(\epsilon/M^{-1} \text{ cm}^{-1}) = 460$ (5000) nm was probed every two minutes.

Figure S30. Plot of $\log([2]^{2+}t/[2]^{2+}t=0)$ vs time under $P(H_2) = 1$ atm of H_2 in the presence of 10 mol-% of $[Hbase]^+$; $k_{obs}(24^{\circ}C) = -slope/60 = 1.3 \times 10^{-4} s^{-1}$.

4. Additional Kinetic Data for H₂ Oxidation by [2](NTf₂)₂.

The overall rate of H₂ oxidation is best described by a first order dependence in $[[2]^{2+}]_t$

$$\mathbf{v} \approx k_{\rm obs1} \times [[\mathbf{2}]^{2+}]_t$$

Under the condition that deliberately added $[HNi(PMe_3)_4]^+$ acts as catalyst, $[[HNi(PMe_3)_4]^+]_t \approx [[HNi(PMe_3)_4]^+]_0$ which gives

$$\mathbf{v} \approx k_{\text{obs2}} \times [[\text{HNi}(\text{PMe}_3)_4]^+]_0 \times [[\mathbf{2}]^{2+}]_t$$

For $[[2]^{2+}]_0 = 0.136$, and $[[HNi(PMe_3)_4]^+]_0 = 0.014 \text{ mmol/L}$, $k_{obs2} = 1.2 \times 10^{-3} \text{ s}^{-1}$ (average from linear regressions in Figures S27-S28). Correction for $[[HNi(PMe_3)_4]^+]_0 = 0.014 \text{ mmol/L}$ yields $k_{cat} = 8.6 \times 10^{-3} \text{ s}^{-1} \cdot \text{L} \cdot \text{mol}^{-1}$.

For reactions with no added [HNi(PMe₃)₄]⁺, $k_{obs1} = 1.3 \times 10^{-4} \text{ s}^{-1}$ (from linear regression in Figure S25). A concentration of *potentially* formed [HNi(PMe₃)₄]⁺ is estimated as follows:

$$[[HNi(PMe_3)_4]^+] = k_{obs1}/k_{cat} = 0.0015 \text{ mmol/ L}.$$

Since formation of $[HNi(PMe_3)_4]^+$ consumes 2 equiv. of $[2]^{2+}$ this corresponds to 2[$[HNi(PMe_3)_4]^+$]/[$[2^{2+}]]_0 \approx 0.003/0.136 = 0.022$ or $\leq 2 \%$.

5. Determination of $pK_a(1,2-C_6H_4F_2)$ of $[HNi(PMe_3)_4]^+$.

A solution of [HNi(PMe₃)4]NTf₂ (14.9 mg, 0.023 mmol) and N,N,N',N'-tetramethyl-1,8diaminonaphthalene (4.7 mg, 0.022 mmol) in 1,2-C₆H₄F₂ (0.5 mL) and C₆D₆ (90 mg) was prepared in an NMR tube. A ¹H NMR spectrum was recorded and the equilibrium molar ratio of [Hbase]⁺/([base]+[Hbase]⁺) calculated from integrated peak areas. The value used for calculation is the average from spectra recorded after t = 0.25 and 23 h.

$$[D]/([B]+[D]) = [D]/[B]_0 = 0.0035$$
$$[D] = 0.0035 \times [B_0] = 0.00015 \text{ mol/L}$$
$$[A] = [A_0]-[D] = (0.04627 - 0.00015) \text{ mol/L} = 0.04612 \text{ mol/L}$$
$$[B] = [B_0]-[D] = (0.04392 - 0.00015) \text{ mol/L} = 0.04377 \text{ mol/L}$$

[C] = [D] = 0.00015 mol/L

$$K_a(1,2-C_6H_4F_2) = \frac{0.00015^2}{0.04612 \cdot 0.04377} \frac{mol^2L^2}{mol^2L^2} = 1.1 \cdot 10^{-5}$$
$$pK_a(1,2-C_6H_4F_2) = -logK_a = 5$$

6. Supplementary CV Data of Ni(PMe₃)₄.

Figure S31. Experimental CV current-potential curves of 0.3 mM Ni(PMe₃)₄ in 0.1 M nBu₄NPF₆/ 1,2-C₆H₄F₂, $T = 24^{\circ}$ C at different scan rates: v = 50 (black), 100 (blue), 200 (red), and 500 mV s⁻¹ (green); initial scan direction is indicated by black arrow.

	<i>E</i> ⁰ /mV vs Fc/[Fc] ⁺	Δ <i>E</i> / mV	$i_{\rm p}({\rm red})/i_{\rm p}({\rm ox})$
$[Ni(PMe_3)_4]^{0/+}$	-1311	69 ± 5	1.039 ± 0.006 ^[a]
$[Ni(PMe_3)_4]^{+/2+}$	-332	282 ± 57	variable ^[b]

[a] $i_p(red)/i_p(ox)$ independent of potential sweep rate and concentration.

[b] $i_p(\text{red})/i_p(\text{ox})$ averaged over three concentrations (0.1, 0.2, and 0.3 mM); 50 mV s⁻¹: 1.261 ± 0.023; 100 mV s⁻¹: 1.257 ± 0.008; 200 mV s⁻¹: 1.299 ± 0.065; 500 mV s⁻¹: 1.119 ± 0.008.

7. Additional Details on Product Mixture from [1]NTf₂ and Na[HB(OAc)₃]

$$[1]^{+} + 2.5[HBOAc_{3}]^{-} \xrightarrow{\text{IHF, r.t.}} -2.5BOAc_{3} = 0.5[L_{4}NiH]^{+} + \text{ligand} + [1.5Ni^{0} + 2e^{-}]$$

$$L = PMe_{3} \quad (S(R)H)_{2} \qquad [1]^{+} \quad S = 1/2 \text{ product}$$

A suspension of sodium tris(acetoxy)borohydride (5.0 mg, 0.023 mmol) in 0.25 mL of d₈-THF was added dropwise to a solution of [1]NTf₂ (27.0 mg, 0.022 mmol) in 0.25 mL d₈-THF, and the mixture stirred for 0.5 h at r.t. Over this time, the colour changed from dark brown to red brown. The reaction mixture was filtered and product composition analyzed by ¹H NMR spectroscopy using 1,3,5-(MeO)₃C₆H₃ as internal standard; cf. Figures S32-33.

Quantitative analysis by NMR spectroscopy corroborated the formation of 10 % of [HNi(PMe₃)₄]⁺, 20 % of 1,4-terphenyldithiophenol ligand, and \leq 80 % of a paramagnetic complex, cf. Figure S32. X-band cw-EPR spectra were acquired from a 2-Me-thf glass at 110 K and corroborated full conversion of [1]⁺ and the formation of a distinct S = 1/2 co-product as shown in Figure S33. Spectra are of rhombic appearance. Principal *g*-values and hyperfine coupling (hfc) by two distinct ³¹P rule out the formation of 1-H. The latter results from nucleophilic attack of hydride at the central π -system of [1]⁺. X-band cw-EPR data of the latter were obtained from a sample of 1-H that was prepared independently starting from [1-H]⁺ and Cp₂Co in 2-Me-THF solution at 24°C. Calculation of principal *g*-values and hfc constants from rhombic data indicates magnetically equivalent ³¹P nuclei (A_{iso}(³¹P) \approx 255 MHz) for 1-H; cf. Figure S 34-35. Taken together, treatment of [1]⁺ (= Ni¹/ Ni^{II}) with 2.5 equiv. of H⁻ (= 2.5 H⁺/ 5e⁻) affords 0.5 [HNi(PMe₃)₄]⁺ (= Ni⁰ + H⁺) and free ligand (2H⁺). It is assumed that remaining Ni^{2+/+} converts \approx 80 % of unreacted starting material [1]⁺ into paramagnetic co-product.

Figure S32. ¹H NMR spectrum (500 MHz, d₈-THF (#), 26°C): Products from treatment of $[2]^{2+}$ with 1 equiv. of $[HB(OAc)_3]^-$; 1,3,5-trimethoxybenzene (+, internal standard); *Bottom*, characteristic resonances of free dithiophenol ligand (**O**, *e.g.* SH at 3.3 ppm)⁶ and $[HNi(PMe_3)_4]^+$ (**X**); *Right inset*: magnification of high field region showing the Ni-H resonance of $[HNi(PMe_3)_4]^+$.

Figure S33. Digitally simulated (red) and experimental (black, 1:1 2-Me-THF/THF glass, 110 K) X-band cw-EPR spectra of a mixture of $[1]^+$ and $[HB(OAc)_3]^-$. Microwave frequency 9.30561 GHz, microwave power 2.00 mW, modulation amplitude 2 G. Simulated parameters: $g_x = 2.24$; $g_y = 2.09$; $g_z = 2.06$; $A_{x1} = 267$; $A_{y1} = 296$; $A_{z1} = 2285$; $A_{x2} = 72$; $A_{y2} = 20$; $A_{z2} = 28$ MHz, full line width at half maximum: 1.13 (Gaussian); 0.38 (Laurentzian).

A solution of Cp₂Co (46 mg, 0.1 mM in C₆D₆) was added dropwise to a solution of [**1-H**]NTf₂ (5 mg, 0.0042 mmol) in 2-Me-THF (2mL) at r.t. The solution was filtered to remove sparingly soluble [Cp₂Co]NTf₂ co-product and an X-band cw-EPR spectrum was recorded at 110 K.

Figure S34. Digitally simulated (red) and experimental (black, 2-Me-THF glass, 110 K) X-band cw-EPR spectra of **1**-H generated in situ from $[1-H]^+$ and Cp₂Co. Microwave frequency 9.304729 GHz, microwave power 2.00 mW, modulation amplitude 2 G. Simulated parameters: $g_x = 2.13$; $g_y = 2.08$; $g_z = 2.02$; $A_{x1} = 226$; $A_{y1} = 227$; $A_{z1} = 266$; $A_{x2} = 257$; $A_{y2} = 254$; $A_{z2} = 296$ MHz, full line width at half maximum: 0.935 (Gaussian); 0.29 (Laurentzian).

Figure S35. Superposition of X-band cw-EPR spectra of reaction mixture of $[1]^+$ and $[HB(OAc)_3]^-$

(black, cf. Figure S33) and starting material $[1]^+$ (red, *top*)¹ and 1-H (red, *bottom*).

8. References

- F. Koch, A. Berkefeld, H. Schubert and C. Grauer, Chem. Eur. J., 2016, 22, 14640-14647.
- F. Koch, A. Berkefeld, B. Speiser and H. Schubert, Chem. Eur. J., 2017, 23, 16681-16690.
- D. J. Krysan and P. B. Mackenzie, J. Org. Chem., 1990, 55, 4229-4230.
- C. A. Tolman, J. Am. Chem. Soc., 1970, 92, 2956-2965.
- S. Stoll and A. Schweiger, J. Magn. Res., 2006, 178, 42-55.
- F. Koch, H. Schubert, P. Sirsch and A. Berkefeld, Dalton Trans., 2015, 44, 13315-13324.