Supporting materials

Comparison of hydroxycarboxylato imidazole molybdenum(IV) complexes and nitrogenase protein structures : indirect evidence for the protonation of homocitrato FeMo-cofactor

Si-Yuan Wang, Wan-Ting Jin, Hong-Bin Chen, Zhao-Hui Zhou*

State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, zhzhou@xmu.edu.cn Tel: + 86-592-2184531; Fax: + 86-592-2183047, zhzhou@xmu.edu.cn

Figure and Table Options

Figure S1. 2D layered structure of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1). **Figure S2**. The 3D supramolecular are linked through hydrogen bonds in $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1) viewed along *a* axis.

Figure S3. The 3D supramolecular are linked through hydrogen bonds in $[(Mo_3SO_3)(glyc)_2(im)_5]$ ·im·H₂O (**1**) viewed along *b* axis.

Figure S4. 2D layered structure of Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃][•]10H₂O (**2**).

Figure S5. The 3D supramolecular are linked through hydrogen bonds in $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (**2**) viewed along *c* axis.

Figure S6. 2D layered structure of [(Mo₆O₁₀)(*R*,*S*-lact)₂(im)₁₀]⁻16H₂O (**3**).

Figure S7. 3D water layers in $[(Mo_6O_{10})(R, S-lact)_2(im)_{10}] \cdot 16H_2O(3)$.

Figure S8. 2D layered structure of $Na_6[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (4).

Figure S9. IR spectra of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1),

 $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (**2**), and $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (**3**) **Figure S10**. IR spectrum of $Na_6[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (**4**).

Figure S11. UV-vis spectra of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1), $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (2), and $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (3).

Figure S12. UV-vis spectrum of Na₆[(Mo₂O₄)₃(*R*,*S*-mal)₄] 5H₂O (**4**).

Figure S13. G–DTG curves of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1).

Figure S14. G–DTG curves of Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃][•]10H₂O (**2**).

Figure S15. G–DTG curves of [(Mo₆O₁₀)(*R*,*S*-lact)₂(im)₁₀]⁻16H₂O (3).

Figure S16. G–DTG curves of $Na_6[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (4).

Table S1. Comparisons of selected bond distances (Å) for $[Mo_3SO_3(glyc)_2(im)_5]$ ·im·H₂O(1), $Na_2[Mo_3SO_3(R,S-lact)_3(im)_3]$ $10H_2O$ (2), $[Mo_6O_{10}(R,S-lact)_2(im)_{10}]$ $16H_2O$ (3), trans- $[(MoO)_2O(glyc)_2(bpy)_2]$ $3H_2O$ (5),

 $trans-[(MoO)_2O(glyc)_2(phen)_2] 5H_2O$ (6), $trans-[(MoO)_2O(glyc)_2(phen)_2]$ (7), **(9)**.¹ **(8**),¹ $(PyH)_4[Mo_4O_8Cl_4(glyc)_2]$ 2EtOH $(PyH)_2[Mo_2O_4(glyc)_2Py_2]$ **(10)**,¹ $(11)^{2}$ $K_6[(MoO_2)_8(glyc)_6(Hglyc)_2]$ 10H₂O $[Mo_4O_8(glyc)_2Py_4]$ $[Mo_3S_4(PPh_3)_3(Hlact)_2lact]$ (15),³ trans- $[(MoO)_2O(R,S-lact)_2(bpy)_2]$ 3H₂O (16), $trans-[(MoO)_2O(R,S-lact)_2(phen)_2] 4H_2O$ (17), $Mo_3O_8(im)_4$ im H_2O $(20),^4$ $Mo_3O_8(im)_4 H_2O (21)$, $Mo_2O_6(im)_4 (22)$, $cis-Na_2[Mo_2O_4(ox)_2(im)_2] 4.5H_2O (21)$ $cis-K_2[Mo_2O_4(ox)_2(im)_2] 3H_2O (24)$, $K(Him)[Mo_3O_4(ox)_3(im)_3] 3H_2O$ $(23),^4$ $(25),^4$ $(26)^{6}$ $(4-MePyH)(H_3O)[Mo_3O_4(C_2O_4)_3(4-MePy)_3]H_2O$ $(27)^{6}$ $(MeNC_6H_7)(H_3O)[Mo_3O_4(C_2O_4)_3(4-MePy)_3] \frac{1}{2}(4-MePy)$ $Na_{2}[Mo_{3}O_{4}((O_{2}CCH_{2})_{2}NCH_{3})_{3}]$ 7H₂O (**28**),⁷ [Mo_{3}O(OH)_{3}(Hnta)_{3}] Cl 3H₂O (**29**),⁸ (30),⁹ **(31)**,¹⁰ $Na_4[Mo_6O_8(EDTA)_3]$ 14H₂O $[Mo_3S_4(Clqn)_3(H_2O)_3]^+$ and $[Mo_6O_{10}(bpy)_4(Hnta)_2]$ 10H₂O (**37**)¹¹.

Table S3. Crystallographic data and structural refinements for complexes $[(Mo_3SO_3)$ $(glyc)_2(im)_5]$ ·im·H₂O(1), Na₂ $[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O(2), $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O(3), and Na₆ $[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O(4).

Table S4. Selected bond distances (Å) and angles (°) for $[(Mo_3SO_3)(glyc)_2(im)_5]$ ·im·H₂O (1).

Table S5. Selected bond distances (Å) and angles ($^{\circ}$) for Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃]·10H₂O (**2**).

Table S6. Selected bond distances (Å) and angles (°) for $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (**3**).

Table S7. Selected bond distances (Å) and angles ($^{\circ}$) for Na₆[(Mo₂O₄)₃(*R*,*S*-mal)₄] 5H₂O (**4**).

Table S8. Selected bond distances (Å) and angles (°) within the water layer in $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (**2**).

Table S9. Bond valence calculations for complexes $[(Mo_3SO_3) (glyc)_2(im)_5] \cdot im \cdot H_2O$ (1), Na₂ $[(Mo_3SO_3)(R,S-lact)_3(im)_3] \cdot 10H_2O$ (2), $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}] \cdot 16H_2O$ (3), and Na₆ $[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (4).

Table S10. The bond distances of Mo– $O_{\alpha-alkoxy/hydroxy}$, Mo– $O_{\alpha-carboxy}$ and C– $O_{\alpha-alkoxy/hydroxy}$ from FeMo-cofactors of MoFe-proteins in nitrogenases.

Figure S2. The 3D supramolecular are linked through hydrogen bonds in $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1) viewed along *a* axis.

Figure S3. The 3D supramolecular are linked through hydrogen bonds in $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (**1**) viewed along *b* axis.

Figure S4. 2D layered structure of Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃][•]10H₂O (**2**).

Figure S5. The 3D supramolecular are linked through hydrogen bonds in $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (**2**) viewed along *c* axis.

Figure S6. 2D layered structure of $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (3)

c 🔺

Figure S7. 3D water layers in $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (**3**).

Figure S8. 2D layered structure of $Na_6[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (4).

Figure S9. IR spectra of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1), $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (2), and $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (3).

Figure S10. IR spectrum of Na₆[(Mo₂O₄)₃(*R*,*S*-mal)₄] 5H₂O (4).

Figure S11. UV-vis spectra of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1), $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (2), and $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (3).

Figure S12. UV-vis spectrum of Na₆[(Mo₂O₄)₃(*R*,*S*-mal)₄] 5H₂O (4).

Figure S13. G–DTG curves of $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1).

Figure S14. G–DTG curves of Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃][•]10H₂O (2).

Figure S15. G–DTG curves of [(Mo₆O₁₀)(*R*,*S*-lact)₂(im)₁₀]⁻16H₂O (3).

Figure S16. G–DTG curves of Na₆[(Mo₂O₄)₃(*R*,*S*-mal)₄] 5H₂O (**4**).

Table **S1**. Comparisons selected bond distances (Å) for of $Na_2[Mo_3SO_3(R,S-lact)_3(im)_3]$ 10H₂O $[Mo_3SO_3(glyc)_2(im)_5]$ ·im·H₂O (1), (2), $[Mo_6O_{10}(R,S-lact)_2(im)_{10}]$ 16H₂O (3), trans- $[(MoO)_2O(glyc)_2(bpy)_2]$ 3H₂O (5), $trans-[(MoO)_2O(glyc)_2(phen)_2] 5H_2O$ (6), $trans-[(MoO)_2O(glyc)_2(phen)_2]$ (7), **(9)**,¹ $(8),^1$ (PyH)₄[Mo₄O₈Cl₄(glyc)₂] 2EtOH $(PyH)_2[Mo_2O_4(glyc)_2Py_2]$ (**10**),¹ K₆[(MoO₂)₈(glyc)₆(Hglyc)₂] 10H₂O $[Mo_4O_8(glyc)_2Py_4]$ $(11)^{2}$ $[Mo_3S_4(PPh_3)_3(Hlact)_2lact]$ (15),³ trans- $[(MoO)_2O(R,S-lact)_2(bpy)_2]$ 3H₂O (16), $trans-[(MoO)_2O(R, S-lact)_2(phen)_2] 4H_2O$ (17), $(20),^4$ $Mo_3O_8(im)_4$ im H_2O $Mo_3O_8(im)_4 H_2O$ (21),⁴ $Mo_2O_6(im)_4$ (22),⁵ *cis*-Na₂[Mo₂O₄(ox)₂(im)₂] 4.5H₂O $cis-K_2[Mo_2O_4(ox)_2(im)_2] 3H_2O$ (24),⁴ K(Him)[Mo_3O_4(ox)_3(im)_3] 3H_2O $(23),^4$ $(25),^4$ $(26)^{6}$ $(4-MePyH)(H_3O)[Mo_3O_4(C_2O_4)_3(4-MePy)_3]H_2O$ $(27),^{6}$ $(MeNC_{6}H_{7})(H_{3}O)[Mo_{3}O_{4}(C_{2}O_{4})_{3}(4-MePy)_{3}]$ ^{1/2}(4-MePy) Na₂[Mo₃O₄((O₂CCH₂)₂NCH₃)₃] 7H₂O (**28**),⁷ [Mo₃O(OH)₃(Hnta)₃] Cl 3H₂O (**29**),⁸ $Na_4[Mo_6O_8(EDTA)_3]$ 14H₂O $(30),^{9}$ $[Mo_3S_4(Clqn)_3(H_2O)_3]^+$ **(31)**.¹⁰ and $[Mo_6O_{10}(bpy)_4(Hr)]$

$y_4(Hnta)_2] 10H_2O$	(37) .		
Complexes(Mo ⁿ⁺)	$Mo-\mu_2-O/S$	Mo–Mo	
1 (+4)	1.929(2) _{av}	2.610(1) _{av}	
5 (+5)	1.871(3) _{av}		
6 (+5)	1.861(3) _{av}		
7 (+5)	1.864(2) _{av}		
8 ¹ (+5)	1.937(2) _{av}	2.559(1)	
9 ¹ (+5)	1.935(3) _{av}	2.612(1)	
10 ¹ (+5)	1.926(3) _{av}	2.588(1)	
11 ² (+5)	1.930(6) _{av}	2.600(1) _{av}	
2(+4)	1.936(6) _{av}	2.612(1) _{av}	
15 ³ (+4)	2.296(1) _{av}	2.761(1) _{av}	
16 (+5)	1.865(6) _{av}		
17 (+5)	1.865(2) _{av}		
	$1.905(4)_{av}/1.906(4)_{av}/$	2,520(1)	
3(+4)	$1.928(4)_{av}/2.002(4)_{av}$	$2.329(1)_{\rm av}$	
20 ⁴ (+5/6)	1.947(4) _{av}	2.573(1)	
21 ⁴ (+5/6)	1.952(4) _{av}	2.573(1)	
22 ⁵ (+6)	1.940(3) _{av}		
23 ⁴ (+5)	1.938(3) _{av}	2.560(1)	
24 ⁴ (+5)	1.940(3) _{av}	2.548 (1)	
25 ⁴ (+4)	1.910(4) _{av}	2.494(1) _{av}	
26 ⁶ (+4)	1.914(3) _{av}	2.499(5) _{av}	
27 ⁶ (+4)	1.927(2) _{av}	2.503(3) _{av}	
28 ⁷ (+4)	1.918(4) _{av}	2.495(1) _{av}	
29 ⁸ (+4)	1.903(8) _{av}	2.482(1) _{av}	
30 ⁹ (+4)	1.920(7) _{av}	2.506(1) _{av}	
31 ¹⁰ (+4)	2.301(1) _{av}	2.766(1) _{av}	
2711(4)	$1.903(3)_{av}/1.932(3)_{av}/$	2 522(2)	
37 (+4)	2.002(3) _{av}	$2.352(2)_{\rm av}$	

Table S2. Comparisons of selected bo/*nd distances (Å) for $[Mo_6O_{10}(R,S-lact)_2(im)_{10}]$ 16H₂O (**3**), $K_6[(MoO_2)_8(glyc)_6(Hglyc)_2]$ 10H₂O (**11**)², (PyH)₃[Mo_2O_4Cl_4(Hglyc)] 1/2CH₃CN (**38**)¹, (PyH)₃[Mo_2O_4Br_4(Hglyc)] PrⁱOH (**39**),¹ and $K_2[(MoO_2)_2O(H_2cit)_2]$ ·4H₂O (**40**)¹²

Complexes(Mo ⁿ⁺)	Mo– O _{α-carboxy} (C=O)	Mo– O _{α-carboxy} (C– O)	$C=O_{\alpha\text{-carboxy}}$	C– O _{α-carboxy}
38 ¹ (+5)	2.389(2)	2.307(2)	1.260(4)	1.268(4)
39 ¹ (+5)	2.373(3)	2.314(3)	1.258(5)	1.272(6)
$11^{2}(+5)$	2.318(6)	2.298(5)		
3 (+4)	2.165(4)	2.201(4)	1.312(7)	1.324(7)
40 ¹² (+6)	2.538(2)		1.227(5)	

Iterativite I <thi< th=""> I <thi< th=""> I <thi< th=""> <thi<< th=""><th>Identification code</th><th>1</th><th>7</th></thi<<></thi<></thi<></thi<>	Identification code	1	7
Formula weight942.461062.45Temperature/K173.0173.0Crystal systemtriclinictriclinicSpace group $P-1$ $P-1$ $a'Å$ 8.6290(3)12.4659(7) $b'Å$ 12.1305(4)12.7032(7) $c'Å$ 17.0785(6)14.8254(9) a'° 109.173(3)105.896(5) β'° 104.625(3)94.713(5) γ'° 90.077(3)119.364(6)Volume/Å ³ 1626.9(1)1901.1(2) Z 22 d_{categ}/cm^3 1.9241.856 μ/mm^{-1} 1.2749.513F(000)844.01068.0Crystal size/mm ³ 0.3 × 0.2 × 0.040.28 × 0.28 × 0.02RadiationMoKα ($\lambda = 0.71073$)CuKa ($\lambda = 1.54184$)20 range for data collection/°-11 ≤ h ≤ 12, -14 ≤ h ≤ 13, -16 ≤ k ≤ 16, -11 ≤ k ≤ 14, -23 ≤ 1 ≤ 22-16 ≤ 1 ≤ 15Reflections collected256981060884185910Independent reflections[Rint = 0.0413, wR2 = 0.0552] $R_{sigma} = 0.0727$]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F ² 1.0191.123Final R indexes [$I \ge 2\sigma$ (I) $R1 = 0.0508$, wR2 = 0.0913 $R_1 = 0.0731$, wR2 = 0.1832	Empirical formula	CarHaoMooNuoOuoS	
Tormina weight $3/2.40$ 1002.45 Temperature/K173.0173.0Crystal systemtriclinictriclinicSpace group $P-1$ $P-1$ $a/Å$ $8.6290(3)$ $12.4659(7)$ $b/Å$ $12.1305(4)$ $12.7032(7)$ $c/Å$ $17.0785(6)$ $14.8254(9)$ a'° $109.173(3)$ $105.896(5)$ β/\circ $104.625(3)$ $94.713(5)$ γ/\circ $90.077(3)$ $119.364(6)$ Volume/Å ³ $1626.9(1)$ $1901.1(2)$ Z 2 2 $d_{cakc}g/cm^3$ 1.924 1.856 μ/mm^{-1} 1.274 9.513 $F(000)$ 844.0 1068.0 Crystal size/mm ³ $0.3 \times 0.2 \times 0.04$ $0.28 \times 0.28 \times 0.02$ Radiation $MoK\alpha (\lambda = 0.71073)$ $CuK\alpha (\lambda = 1.54184)$ 2θ range for data $e^{-111 \le h \le 12}$ $-14 \le h \le 13$ $collection/\circ$ $-11 \le h \le 12$ $-16 \le 1 \le 15$ Reflections collected 25698 10608 8418 5910 114254 $collected$ 76978 10608 8418 $5910/119/520$ $6004nes - 06727$ $Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F21.0191.123Final R indexes [I \ge 2\sigma (I)]R1 = 0.0388R_1 = 0.0731wR_2 = 0.0913wR_2 = 0.1832$	Empirical formula	942.46	1062 45
Crystal systemtriclinictriclinicSpace group $P-1$ $P-1$ $a'Å$ $8.6290(3)$ $12.4659(7)$ $b'Å$ $12.1305(4)$ $12.7032(7)$ $c'Å$ $17.0785(6)$ $14.8254(9)$ a'° $109.173(3)$ $105.896(5)$ $\beta/^{\circ}$ $104.625(3)$ $94.713(5)$ $\gamma/^{\circ}$ $90.077(3)$ $119.364(6)$ Volume/Å ³ $1626.9(1)$ $1901.1(2)$ Z 2 2 $d_{calc}g/cm^3$ 1.924 1.856 μ/mm^{-1} 1.274 9.513 $F(000)$ 844.0 1068.0 Crystal size/mm ³ $0.3 \times 0.2 \times 0.04$ $0.28 \times 0.28 \times 0.02$ RadiationMoKa ($\lambda = 0.71073$)CuKa ($\lambda = 1.54184$) 20 range for data collection/° $-11 \le h \le 12$, $-14 \le h \le 13$, $-16 \le k \le 16$, $-11 \le k \le 14$, $-23 \le 1 \le 22$ $-16 \le 1 \le 15$ Reflections collected 25698 10608 8418 5910 1.123 Independent reflections $[Rint = 0.0413, [R_{int} = 0.0538, R_{sigma} = 0.0727]$ Data/restraints/parameters $8418/181/406$ $5910/119/520$ Goodness-of-fit on F^2 1.019 1.123 Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0508, R_1 = 0.0731, wR_2 = 0.0855$ $wR_2 = 0.0913$ $wR_2 = 0.1832$	Temperature/K	173.0	173.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Crystal system	triclinic	triclinic
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Space group		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Space group	<i>F</i> -1	<i>Г</i> -1
$\begin{array}{c ccccc} b) A & 12.1305(4) & 12.7032(7) \\ c/Å & 17.0785(6) & 14.8254(9) \\ a/^{\circ} & 109.173(3) & 105.896(5) \\ \beta/^{\circ} & 104.625(3) & 94.713(5) \\ \gamma/^{\circ} & 90.077(3) & 119.364(6) \\ Volume/Å^3 & 1626.9(1) & 1901.1(2) \\ Z & 2 & 2 \\ d_{categ}/cm^3 & 1.924 & 1.856 \\ \mu/mm^{-1} & 1.274 & 9.513 \\ F(000) & 844.0 & 1068.0 \\ Crystal size/mm^3 & 0.3 \times 0.2 \times 0.04 & 0.28 \times 0.28 \times 0.02 \\ Radiation & MoK\alpha (\lambda = 0.71073) & CuK\alpha (\lambda = 1.54184) \\ 20 \ range \ for \ data \\ collection/^{\circ} & -11 \le h \le 12, \\ 1.1 \le h \le 12, \\ -14 \le h \le 13, \\ 1ndex \ ranges & -16 \le k \le 16, \\ -11 \le k \le 14, \\ -23 \le 1 \le 22 & -16 \le 1 \le 15 \\ Reflections \ collected & 25698 & 10608 \\ 8418 & 5910 \\ Independent \ reflections & [Rint = 0.0413, \\ Risigma = 0.0552] & R_{sigma} = 0.0727] \\ Data/restraints/parameters & 8418/181/406 & 5910/119/520 \\ Goodness-of-fit on \ F^2 & 1.019 & 1.123 \\ Final R \ indexes \ [all \ data] & R1 = 0.0508, \\ wR2 = 0.0913 & wR_2 = 0.1832 \\ \end{array}$		8.0290(3)	12.4659(7)
$\begin{array}{ccccccc} c/A & 17.0783(6) & 14.8254(9) \\ a/^{\circ} & 109.173(3) & 105.896(5) \\ \beta/^{\circ} & 104.625(3) & 94.713(5) \\ \gamma/^{\circ} & 90.077(3) & 119.364(6) \\ Volume/Å^3 & 1626.9(1) & 1901.1(2) \\ Z & 2 & 2 \\ d_{calc}g/cm^3 & 1.924 & 1.856 \\ \mu/mm^{-1} & 1.274 & 9.513 \\ F(000) & 844.0 & 1068.0 \\ Crystal size/mm^3 & 0.3 \times 0.2 \times 0.04 & 0.28 \times 0.28 \times 0.02 \\ Radiation & MoK\alpha (\lambda = 0.71073) & CuK\alpha (\lambda = 1.54184) \\ 2\theta range for data \\ collection/^{\circ} & -11 \le h \le 12, \\ -11 \le h \le 12, \\ -14 \le h \le 13, \\ 1ndex ranges & -16 \le k \le 16, \\ -11 \le k \le 14, \\ -23 \le 1 \le 22 & -16 \le 1 \le 15 \\ Reflections collected & 25698 & 10608 \\ 8418 & 5910 \\ Independent reflections & [Rint = 0.0413, \\ Rsigma = 0.0552] & Rsigma = 0.0727] \\ Data/restraints/parameters & 8418/181/406 & 5910/119/520 \\ Goodness-of-fit on F^2 & 1.019 & 1.123 \\ Final R indexes [I \ge 2\sigma (I)] & R1 = 0.0508, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ Final R indexes [all data] & wR2 = 0.0913 & wR_2 = 0.1832 \\ \end{array}$	b/A	12.1305(4)	12.7032(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c/A	17.0785(6)	14.8254(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\alpha/^{\circ}$	109.173(3)	105.896(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β/°	104.625(3)	94.713(5)
Volume/Å31626.9(1)1901.1(2)Z22 $d_{calc}g/cm^3$ 1.9241.856 μ/mm^{-1} 1.2749.513F(000)844.01068.0Crystal size/mm³0.3 × 0.2 × 0.040.28 × 0.28 × 0.02RadiationMoK α ($\lambda = 0.71073$)CuK α ($\lambda = 1.54184$)2 θ range for data4.898 to 59.8326.416 to 124.254collection/°-11 ≤ h ≤ 12, -14 ≤ h ≤ 13,Index ranges-16 ≤ k ≤ 16, -11 ≤ k ≤ 14,-23 ≤ 1 ≤ 22-16 ≤ 1 ≤ 15Reflections collected256981060884185910Independent reflections[Rint = 0.0413, [Rint = 0.0538, Rsigma = 0.0727]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F²1.0191.123Final R indexes [I≥2 σ (I)]R1 = 0.0388, R1 = 0.0686, wR2 = 0.1790Final R indexes [all data]R1 = 0.0508, R1 = 0.0731, wR2 = 0.1832	γ/°	90.077(3)	119.364(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Volume/Å ³	1626.9(1)	1901.1(2)
$\begin{array}{cccccccc} d_{calc}g/cm^3 & 1.924 & 1.856 \\ \mu/mm^{-1} & 1.274 & 9.513 \\ F(000) & 844.0 & 1068.0 \\ Crystal size/mm^3 & 0.3 \times 0.2 \times 0.04 & 0.28 \times 0.28 \times 0.02 \\ Radiation & MoK\alpha (\lambda = 0.71073) & CuK\alpha (\lambda = 1.54184) \\ 2\theta \ range \ for \ data \\ collection/^{\circ} & -11 \leq h \leq 12, & -14 \leq h \leq 13, \\ 1ndex \ ranges & -16 \leq k \leq 16, & -11 \leq k \leq 14, \\ -23 \leq 1 \leq 22 & -16 \leq 1 \leq 15 \\ Reflections \ collected & 25698 & 10608 \\ 8418 & 5910 \\ Independent \ reflections & [Rint = 0.0413, & [R_{int} = 0.0538, \\ Rsigma = 0.0552] & R_{sigma} = 0.0727] \\ Data/restraints/parameters & 8418/181/406 & 5910/119/520 \\ Goodness-of-fit \ on \ F^2 & 1.019 & 1.123 \\ Final \ R \ indexes \ [I \geq 2\sigma \ (I)] & R1 = 0.0388, & R_1 = 0.0686, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ Final \ R \ indexes \ [all \ data] & wR2 = 0.0913 & wR_2 = 0.1832 \\ \end{array}$	Z	2	2
$ \mu/\text{mm}^{-1} \qquad 1.274 \qquad 9.513 \\ F(000) \qquad 844.0 \qquad 1068.0 \\ Crystal size/mm^3 \qquad 0.3 \times 0.2 \times 0.04 \qquad 0.28 \times 0.28 \times 0.02 \\ \text{Radiation} \qquad \text{MoK}\alpha (\lambda = 0.71073) \qquad \text{CuK}\alpha (\lambda = 1.54184) \\ 2\theta \text{ range for data} \\ \text{collection/}^\circ \qquad 4.898 \text{ to } 59.832 \qquad 6.416 \text{ to } 124.254 \\ -11 \leq h \leq 12, \qquad -14 \leq h \leq 13, \\ -11 \leq h \leq 12, \qquad -14 \leq h \leq 13, \\ -11 \leq h \leq 12, \qquad -14 \leq h \leq 14, \\ -23 \leq 1 \leq 22 \qquad -16 \leq 1 \leq 15 \\ \text{Reflections collected} \qquad 25698 \qquad 10608 \\ 8418 \qquad 5910 \\ \text{Independent reflections} \qquad [Rint = 0.0413, \qquad [R_{int} = 0.0538, \\ R_{sigma} = 0.0552] \qquad R_{sigma} = 0.0727] \\ \text{Data/restraints/parameters} \qquad 8418/181/406 \qquad 5910/119/520 \\ \text{Goodness-of-fit on F}^2 \qquad 1.019 \qquad 1.123 \\ \text{Final R indexes $[I \geq 2\sigma$ (I)]} \qquad R1 = 0.0508, \qquad R_1 = 0.0731, \\ wR2 = 0.0913 \qquad wR_2 = 0.1832 \\ Lementify for a black of the last $	$d_{calc}g/cm^3$	1.924	1.856
F(000)844.01068.0Crystal size/mm³ $0.3 \times 0.2 \times 0.04$ $0.28 \times 0.28 \times 0.02$ RadiationMoKa ($\lambda = 0.71073$)CuKa ($\lambda = 1.54184$)20 range for data collection/° 4.898 to 59.832 6.416 to 124.254 20 ranges $-11 \le h \le 12$, $-14 \le h \le 13$, $-16 \le k \le 16$, $-23 \le 1 \le 22$ $-14 \le h \le 13$, $-11 \le k \le 14$, $-23 \le 1 \le 22$ Reflections collected 25698 10608 8418 5910 Independent reflectionsIndependent reflections $[Rint = 0.0413,$ $Rsigma = 0.0552]$ $R_{sigma} = 0.0727$]Data/restraints/parameters $8418/181/406$ $5910/119/520$ Goodness-of-fit on F² 1.019 1.123 Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0388,$ $wR2 = 0.0855$ $R_1 = 0.0731,$ $wR2 = 0.1832$ Final R indexes [all data] $R1 = 0.0913$ $wR_2 = 0.1832$	μ/mm^{-1}	1.274	9.513
$\begin{array}{cccc} {\rm Crystal\ size/mm}^3 & 0.3 \times 0.2 \times 0.04 & 0.28 \times 0.28 \times 0.02 \\ {\rm Radiation} & {\rm MoK}\alpha\ (\lambda=0.71073) & {\rm CuK}\alpha\ (\lambda=1.54184) \\ 2\theta\ {\rm range\ for\ data} \\ {\rm collection/}^\circ & 4.898\ {\rm to\ }59.832 & 6.416\ {\rm to\ }124.254 \\ {\rm collection/}^\circ & -11 \le {\rm h} \le 12, & -14 \le {\rm h} \le 13, \\ -11 \le {\rm h} \le 12, & -14 \le {\rm h} \le 13, \\ -11 \le {\rm k} \le 16, & -11 \le {\rm k} \le 14, \\ -23 \le 1 \le 22 & -16 \le 1 \le 15 \\ {\rm Reflections\ collected} & 25698 & 10608 \\ 8418 & 5910 \\ {\rm Independent\ reflections} & [Rint=0.0413, & [R_{\rm int}=0.0538, \\ R_{\rm sigma}=0.0552] & R_{\rm sigma}=0.0727] \\ {\rm Data/restraints/parameters} & 8418/181/406 & 5910/119/520 \\ {\rm Goodness-of-fit\ on\ F}^2 & 1.019 & 1.123 \\ {\rm Final\ R\ indexes\ }[I\ge 2\sigma\ (I)] & R1=0.0388, & R_1=0.0686, \\ wR2=0.0855 & wR_2=0.1790 \\ {\rm Final\ R\ indexes\ [all\ data]} & wR2=0.0913 & wR_2=0.1832 \\ \end{array}$	F(000)	844.0	1068.0
RadiationMoK α ($\lambda = 0.71073$)CuK α ($\lambda = 1.54184$) 2θ range for data collection/°4.898 to 59.8326.416 to 124.254 $11 \le h \le 12$, $-11 \le h \le 12$, $-16 \le k \le 16$, $-23 \le 1 \le 22$ $-14 \le h \le 13$, $-11 \le k \le 14$, $-23 \le 1 \le 22$ $-16 \le 1 \le 15$ Reflections collected256981060884185910Independent reflections[Rint = 0.0413, Rsigma = 0.0552][R_{int} = 0.0538, R_{sigma} = 0.0727]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F ² 1.0191.123Final R indexes [$I \ge 2\sigma$ (I)] $R1 = 0.0388,$ $wR2 = 0.0855$ $R_1 = 0.0731,$ $wR_2 = 0.1832Final R indexes [all data]wR2 = 0.0913wR_2 = 0.1832$	Crystal size/mm ³	$0.3 \times 0.2 \times 0.04$	$0.28\times 0.28\times 0.02$
$\begin{array}{cccc} 20 \ \text{range for data} \\ \text{collection/}^{\circ} & 4.898 \ \text{to } 59.832 & 6.416 \ \text{to } 124.254 \\ & -11 \leq h \leq 12, & -14 \leq h \leq 13, \\ -16 \leq k \leq 16, & -11 \leq k \leq 14, \\ -23 \leq 1 \leq 22 & -16 \leq 1 \leq 15 \\ \hline \text{Reflections collected} & 25698 & 10608 \\ & 8418 & 5910 \\ \hline \text{Independent reflections} & [Rint = 0.0413, & [R_{int} = 0.0538, \\ Rsigma = 0.0552] & R_{sigma} = 0.0727] \\ \hline \text{Data/restraints/parameters} & 8418/181/406 & 5910/119/520 \\ \hline \text{Goodness-of-fit on F}^2 & 1.019 & 1.123 \\ \hline \text{Final R indexes $[I \geq 2\sigma$ (I)] } & R1 = 0.0388, & R_1 = 0.0686, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ \hline \text{Final R indexes $[all data] } & wR2 = 0.0913 & wR_2 = 0.1832 \\ \hline \end{array}$	Radiation	MoKa ($\lambda = 0.71073$)	$CuK\alpha (\lambda = 1.54184)$
$\begin{array}{cccc} -11 \leq h \leq 12, & -14 \leq h \leq 13, \\ -16 \leq k \leq 16, & -11 \leq k \leq 14, \\ -23 \leq 1 \leq 22 & -16 \leq 1 \leq 15 \end{array}$ Reflections collected $\begin{array}{cccc} 25698 & 10608 \\ 8418 & 5910 \\ \text{Independent reflections} & [Rint = 0.0413, & [R_{int} = 0.0538, \\ Rsigma = 0.0552] & R_{sigma} = 0.0727] \end{array}$ Data/restraints/parameters $\begin{array}{ccccc} 8418/181/406 & 5910/119/520 \\ \text{Goodness-of-fit on F}^2 & 1.019 & 1.123 \\ \text{Final R indexes $[I \geq 2\sigma$(I)]$} & R1 = 0.0388, & R_1 = 0.0686, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ \text{Final R indexes $[all data]$} & R1 = 0.0508, & R_1 = 0.0731, \\ wR2 = 0.0913 & wR_2 = 0.1832 \end{array}$	2θ range for data collection/°	4.898 to 59.832	6.416 to 124.254
Index ranges $-16 \le k \le 16$, $-23 \le 1 \le 22$ $-11 \le k \le 14$, $-16 \le 1 \le 15$ Reflections collected256981060884185910Independent reflections[Rint = 0.0413, Rsigma = 0.0552][R_{int} = 0.0538, R_{sigma} = 0.0727]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F ² 1.0191.123Final R indexes [I \ge 2\sigma (I)]R1 = 0.0388, wR2 = 0.0855R_1 = 0.0686, wR_2 = 0.1790Final R indexes [all data]R1 = 0.0508, wR2 = 0.0913R_1 = 0.0731, wR_2 = 0.1832		$-11 \le h \le 12$,	$-14 \le h \le 13$,
$\begin{array}{cccc} -23 \leq l \leq 22 & -16 \leq l \leq 15 \\ \mbox{Reflections collected} & 25698 & 10608 \\ 8418 & 5910 \\ \mbox{Independent reflections} & [Rint = 0.0413, & [R_{int} = 0.0538, \\ Rsigma = 0.0552] & R_{sigma} = 0.0727] \\ \mbox{Data/restraints/parameters} & 8418/181/406 & 5910/119/520 \\ \mbox{Goodness-of-fit on F}^2 & 1.019 & 1.123 \\ \mbox{Final R indexes $[I \geq 2\sigma$ (I)]$} & R1 = 0.0388, & R_1 = 0.0686, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ \mbox{Final R indexes $[all data]$} & R1 = 0.0508, & R_1 = 0.0731, \\ wR2 = 0.0913 & wR_2 = 0.1832 \\ \end{array}$	Index ranges	$-16 \le k \le 16$,	$-11 \le k \le 14$,
Reflections collected256981060884185910Independent reflections[Rint = 0.0413, Rsigma = 0.0552][R_{int} = 0.0538, R_{sigma} = 0.0727]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F^2 1.0191.123Final R indexes [I $\ge 2\sigma$ (I)]R1 = 0.0388, wR2 = 0.0855R_1 = 0.0686, wR_2 = 0.1790Final R indexes [all data]R1 = 0.0508, wR2 = 0.0913R_1 = 0.0731, wR_2 = 0.1832		$-23 \le l \le 22$	$-16 \le l \le 15$
$\begin{array}{ccc} 8418 & 5910 \\ \mbox{Independent reflections} & [Rint = 0.0413, & [R_{int} = 0.0538, \\ Rsigma = 0.0552] & R_{sigma} = 0.0727] \\ \mbox{Data/restraints/parameters} & 8418/181/406 & 5910/119/520 \\ \mbox{Goodness-of-fit on F}^2 & 1.019 & 1.123 \\ \mbox{Final R indexes $[I \ge 2\sigma$ (I)]$} & R1 = 0.0388, & R_1 = 0.0686, \\ wR2 = 0.0855 & wR_2 = 0.1790 \\ \mbox{Final R indexes $[all data]$} & R1 = 0.0508, & R_1 = 0.0731, \\ wR2 = 0.0913 & wR_2 = 0.1832 \\ \end{array}$	Reflections collected	25698	10608
Independent reflections $[Rint = 0.0413, Rsigma = 0.0552]$ $[R_{int} = 0.0538, R_{sigma} = 0.0727]$ Data/restraints/parameters $8418/181/406$ $5910/119/520$ Goodness-of-fit on F ² 1.019 1.123 Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0388, R_1 = 0.0686, WR_2 = 0.0855$ $WR_2 = 0.1790$ Final R indexes [all data] $R1 = 0.0508, R_1 = 0.0731, WR_2 = 0.1832$		8418	5910
R sigma = 0.0552] $R_{sigma} = 0.0727$]Data/restraints/parameters8418/181/4065910/119/520Goodness-of-fit on F ² 1.0191.123Final R indexes [I $\geq 2\sigma$ (I)]R1 = 0.0388, WR2 = 0.0855R_1 = 0.0686, WR_2 = 0.1790Final R indexes [all data]R1 = 0.0508, R_1 = 0.0731, WR2 = 0.0913R_1 = 0.0731, WR_2 = 0.1832	Independent reflections	[Rint = 0.0413,	$[R_{\rm int} = 0.0538,$
Data/restraints/parameters $8418/181/406$ $5910/119/520$ Goodness-of-fit on F2 1.019 1.123 Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0388$, $wR2 = 0.0855$ $R_1 = 0.0686$, $wR_2 = 0.1790$ Final R indexes [all data] $R1 = 0.0508$, $wR2 = 0.0913$ $R_1 = 0.0731$, $wR_2 = 0.1832$	-	<i>R</i> sigma = 0.0552]	$R_{\rm sigma} = 0.0727$]
Goodness-of-fit on F^2 1.0191.123Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0388$, $wR2 = 0.0855$ $R_1 = 0.0686$, $wR_2 = 0.1790$ Final R indexes [all data] $R1 = 0.0508$, $wR2 = 0.0913$ $R_1 = 0.0731$, $wR_2 = 0.1832$	Data/restraints/parameters	8418/181/406	5910/119/520
Final R indexes $[I \ge 2\sigma(I)]$ $R1 = 0.0388,$ $wR2 = 0.0855$ $R_1 = 0.0686,$ $wR_2 = 0.1790$ Final R indexes [all data] $R1 = 0.0508,$ $wR2 = 0.0913$ $R_1 = 0.0731,$ $wR_2 = 0.1832$	Goodness–of–fit on F^2	1.019	1.123
Final R indexes $[I \ge 2\sigma(I)]$ $wR2 = 0.0855$ $wR_2 = 0.1790$ Final R indexes [all data] $R1 = 0.0508$, $wR2 = 0.0913$ $R_1 = 0.0731$, $wR_2 = 0.1832$		R1 = 0.0388,	$R_1 = 0.0686$.
Final <i>R</i> indexes [all data] $R1 = 0.0508, \qquad R_1 = 0.0731, \\ wR2 = 0.0913 \qquad wR_2 = 0.1832$	Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	wR2 = 0.0855	$wR_2 = 0.1790$
Final R indexes [all data] $wR2 = 0.0913$ $wR_2 = 0.1832$		R1 = 0.0508,	$R_1 = 0.0731.$
	Final <i>R</i> indexes [all data]	wR2 = 0.0913	$wR_2 = 0.1832$
Largest diff. peak/hole / e Å ⁻³ 1.00/-0.84 1.79/-1.40	Largest diff. peak/hole / e Å ⁻³	1.00/-0.84	1.79/-1.40

Table S3. Crystallographic data and structural refinements for complexes $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O(1), Na₂ $[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O(2), $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O(3), and Na₆ $[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O(4)

Identification code	3	4
Empirical formula	$C_{36}H_{82}Mo_6N_{20}O_{32}$	$C_{16}H_{22}Mo_6Na_6O_{37}$

Formula weight	1882.85	1519.91
Temperature/K	173	173
Crystal system	triclinic	orthorhombic
Space group	<i>P</i> -1	<i>I</i> mm2
a/Å	10.6194(5)	15.0786(10)
b/Å	11.9177(5)	18.8242(10)
c/Å	14.7094(10)	7.2176(5)
$\alpha/^{\circ}$	90.197(4)	90
β/°	106.313(5)	90
$\gamma/^{\circ}$	110.829(4)	90
Volume/Å ³	1658.78(16)	2048.7(2)
Z	1	2
d _{calc} g/cm ³	1.885	2.464
μ/mm^{-1}	1.200	16.317
F(000)	946.0	1364.0
Crystal size/mm ³	$0.2 \times 0.1 \times 0.04$	$0.04\times 0.02\times 0.01$
Radiation	MoK α ($\lambda = 0.71073$)	CuK α (λ = 1.54184)
2θ range for data collection/°	4.304 to 50	7.512 to 124.37
	$-12 \le h \le 11$,	$-17 \le h \le 16$,
Index ranges	$-14 \le k \le 13$,	$-21 \le k \le 21,$
	$-13 \le 1 \le 17$	$-8 \le l \le 5$
Reflections collected	11292	5531
	5853	1451
Independent reflections	$[R_{\rm int} = 0.0453,$	$[R_{\rm int} = 0.0465,$
	$R_{\rm sigma} = 0.0794$]	$R_{\rm sigma} = 0.0416$]
Data/restraints/parameters	5853/419/364	1451/153/149
Goodness-of-fit on F ²	1.031	1.068
Einal Dindayas [D]-(D]	$R_1 = 0.0520,$	$R_1 = 0.0546,$
Final K indexes $[I \ge 2\sigma(I)]$	$wR_2 = 0.1138$	$wR_2 = 0.1513$
	$R_1 = 0.0689,$	$R_1 = 0.0559,$
Final R indexes [all data]	$wR_2 = 0.1199$	$wR_2 = 0.1544$
Largest diff. peak/hole / e Å ⁻³	1.15/-1.03	2.74/-1.16
Flack parameter		0.03(6)

$(giyc)_2(iii)_5]^{iiii}H_2C$	J (1).		
Mo(1)–Mo(2)	2.6257(4)	Mo(2)–O(7)	1.988(2)
Mo(1)–Mo(3)	2.5980(4)	Mo(2)–O(8)	2.130(2)
Mo(1)–O(1)	1.942(2)	Mo(2)–N(3)	2.251(3)
Mo(1)–O(3)	1.926(2)	Mo(2)–S(1)	2.3604(8)
Mo(1)–O(4)	1.984(2)	Mo(3)–O(2)	1.925(2)
Mo(1)–O(5)	2.123(2)	Mo(3)–O(3)	1.916(2)
Mo(1)–N(1)	2.228(3)	Mo(3)–N(5)	2.236(3)
Mo(1)–S(1)	2.3433(8)	Mo(3)–N(7)	2.201(3)
Mo(2)–Mo(3)	2.6075(4)	Mo(3)–N(9)	2.198(3)
Mo(2)–O(1)	1.936(2)	Mo(3)–S(1)	2.3764(8)
Mo(2)–O(2)	1.927(2)		
Mo(2)-Mo(1)-Mo(3)	59.89(1)	N(3)–Mo(2)–S(1)	88.26(8)
O(1)-Mo(1)-Mo(2)	47.29(7)	S(1)-Mo(2)-Mo(1)	55.76(2)
O(1)-Mo(1)-Mo(3)	92.01(7)	S(1)–Mo(2)–Mo(3)	56.89(2)
O(1)-Mo(1)-O(3)	92.02(9)	Mo(1)-Mo(3)-Mo(2)	60.58(1)
O(1)-Mo(1)-O(4)	164.5(1)	O(2)-Mo(3)-Mo(1)	94.75(7)
O(1)-Mo(1)-O(5)	88.59(9)	O(2)–Mo(3)–Mo(2)	47.44(7)
O(1)-Mo(1)-N(1)	85.6(1)	O(2)–Mo(3)–O(3)	95.40(9)
O(1)–Mo(1)–S(1)	102.48(7)	O(2)–Mo(3)–N(5)	170.1(1)
O(3)-Mo(1)-Mo(2)	92.57(7)	O(2)-Mo(3)-N(7)	83.0(1)
O(3)-Mo(1)-Mo(3)	47.30(7)	O(2)-Mo(3)-N(9)	94.3(1)
O(3)-Mo(1)-O(4)	96.0(1)	O(2)–Mo(3)–S(1)	102.17(7)
O(3)-Mo(1)-O(5)	85.30(9)	O(3)-Mo(3)-Mo(1)	47.60(7)
O(3)–Mo(1)–N(1)	168.2(1)	O(3)-Mo(3)-Mo(2)	93.36(7)
O(3)–Mo(1)–S(1)	103.36(7)	O(3)-Mo(3)-N(5)	85.6(1)
O(4)-Mo(1)-Mo(2)	144.93(7)	O(3)-Mo(3)-N(7)	82.6(1)
O(4)-Mo(1)-Mo(3)	103.20(7)	O(3)-Mo(3)-N(9)	163.4(1)
O(4)-Mo(1)-O(5)	78.92(9)	O(3)–Mo(3)–S(1)	102.46(7)
O(4)-Mo(1)-N(1)	83.9(1)	N(5)-Mo(3)-Mo(1)	93.15(8)
O(4)–Mo(1)–S(1)	88.55(7)	N(5)-Mo(3)-Mo(2)	142.40(7)
O(5)-Mo(1)-Mo(2)	135.78(7)	N(5)-Mo(3)-N(7)	87.4(1)
O(5)-Mo(1)-Mo(3)	132.59(7)	N(5)-Mo(3)-N(9)	82.6(1)
O(5)–Mo(1)–N(1)	83.1(1)	N(5)-Mo(3)-S(1)	87.17(7)
O(5)–Mo(1)–S(1)	165.54(7)	N(7)-Mo(3)-Mo(1)	129.89(8)
N(1)-Mo(1)-Mo(2)	94.21(8)	N(7)-Mo(3)-Mo(2)	129.87(7)
N(1)-Mo(1)-Mo(3)	144.18(8)	N(7)-Mo(3)-N(9)	85.2(1)
N(1)-Mo(1)-S(1)	88.40(8)	N(7)-Mo(3)-S(1)	172.22(8)
S(1)-Mo(1)-Mo(2)	56.38(2)	N(9)-Mo(3)-Mo(1)	144.55(8)
S(1)-Mo(1)-Mo(3)	57.21(2)	N(9)-Mo(3)-Mo(2)	103.16(8)
Mo(1)-Mo(2)-Mo(3)	59.53(1)	N(9)-Mo(3)-S(1)	88.59(8)
O(1)-Mo(2)-Mo(1)	47.49(7)	S(1)-Mo(3)-Mo(1)	55.99(2)

Table S4. Selected bond distances (Å) and angles (°) for $[(Mo_3SO_3)(glyc)_2(im)_5]$ ·im·H₂O (1).

O(1)–Mo(2)–Mo(3)	91.86(7)	S(1)-Mo(3)-Mo(2)	56.31(2)
O(1)–Mo(2)–O(2)	94.05(9)	Mo(1)-O(1)-Mo(2)	85.22(9)
O(1)–Mo(2)–O(7)	96.9(2)	Mo(1)-O(3)-Mo(3)	85.10(9)
O(1)–Mo(2)–O(8)	86.2(1)	Mo(1)–S(1)–Mo(2)	67.87(2)
O(1)–Mo(2)–N(3)	169.6(1)	Mo(1)-S(1)-Mo(3)	66.79(2)
O(1)–Mo(2)–S(1)	102.07(7)	Mo(2)–O(2)–Mo(3)	85.19(9)
O(2)–Mo(2)–Mo(1)	93.83(7)	Mo(2)–S(1)–Mo(3)	66.80(2)
O(2)–Mo(2)–Mo(3)	47.37(7)	C(1)–O(4)–Mo(1)	117.0(2)
O(2)–Mo(2)–O(7)	160.6(1)	C(2)–O(5)–Mo(1)	115.3(2)
O(2)–Mo(2)–O(8)	87.04(9)	C(3)–N(1)–Mo(1)	127.4(3)
O(2)–Mo(2)–N(3)	84.2(1)	C(5)–N(1)–Mo(1)	126.9(3)
O(2)–Mo(2)–S(1)	102.68(7)	C(5A)–N(1)–Mo(1)	129.6(6)
D(7)-Mo(2)-Mo(1)	105.35(8)	C(6)-O(7)-Mo(2)	118.3(2)
D(7)-Mo(2)-Mo(3)	147.53(7)	C(7)–O(8)–Mo(2)	116.5(2)
O(7)–Mo(2)–O(8)	77.79(9)	C(8)-N(3)-Mo(2)	127.9(3)
O(7)–Mo(2)–N(3)	82.2(1)	C(10)–N(3)–Mo(2)	126.2(3)
O(7)–Mo(2)–S(1)	90.67(7)	C(11)-N(5)-Mo(3)	127.8(2)
O(8)–Mo(2)–Mo(1)	133.62(7)	C(13)-N(5)-Mo(3)	126.1(2)
O(8)–Mo(2)–Mo(3)	134.16(7)	C(14)-N(7)-Mo(3)	122.9(2)
O(8)–Mo(2)–N(3)	83.6(1)	C(16)-N(7)-Mo(3)	131.8(2)
O(8)–Mo(2)–S(1)	166.63(7)	C(17)–N(9)–Mo(3)	128.1(2)
N(3)–Mo(2)–Mo(1)	142.73(8)	C(19)–N(9)–Mo(3)	127.7(2)
N(3)–Mo(2)–Mo(3)	94.42(9)		

$Na_2[(Mo_3SO_3)(R,S-1)]$	$act_{3}(im)_{3}]$ ·10H ₂ O (2).		
Mo(1)–Mo(2)	2.6158(9)	Mo(2)–O(7)	1.999(7)
Mo(1)–Mo(3)	2.609(1)	Mo(2)–O(8)	2.133(6)
Mo(1)–O(1)	1.941(6)	Mo(2)–N(3)	2.237(8)
Mo(1)–O(3)	1.929(6)	Mo(2)–S(1)	2.366(2)
Mo(1)–O(4)	1.994(6)	Mo(3)–O(2)	1.946(6)
Mo(1)–O(5)	2.135(6)	Mo(3)–O(3)	1.934(6)
Mo(1)–N(1)	2.241(8)	Mo(3)–O(10)	2.003(6)
Mo(1)–S(1)	2.367(2)	Mo(3)–O(11)	2.131(6)
Mo(2)–Mo(3)	2.6114(9)	Mo(3)–N(5)	2.252(8)
Mo(2)–O(1)	1.944(6)	Mo(3)–S(1)	2.373(2)
Mo(2)–O(2)	1.921(6)		
Mo(2)-Mo(1)-Mo(3)	59.98(3)	N(3)-Mo(2)-Mo(3)	95.3(2)
O(1)-Mo(1)-Mo(2)	47.7(2)	N(3)–Mo(2)–S(1)	88.4(2)
O(1)-Mo(1)-Mo(3)	92.8(2)	S(1)-Mo(2)-Mo(1)	56.47(5)
O(1)-Mo(1)-O(4)	160.4(3)	S(1)-Mo(2)-Mo(3)	56.68(5)
O(1)-Mo(1)-O(5)	85.4(3)	Mo(1)-Mo(3)-Mo(2)	60.15(3)
O(1)-Mo(1)-N(1)	84.7(3)	O(2)-Mo(3)-Mo(1)	92.9(2)
O(1)–Mo(1)–S(1)	103.0(2)	O(2)–Mo(3)–Mo(2)	47.1(2)
O(3)-Mo(1)-Mo(2)	93.26(2)	O(2)–Mo(3)–O(3)	94.0(3)
O(3)-Mo(1)-Mo(3)	47.6(2)	O(2)-Mo(3)-O(10)	95.4(3)
O(3)-Mo(1)-O(1)	93.1(3)	O(2)–Mo(3)–O(11)	85.5(3)
O(3)–Mo(1)–O(4)	97.1(3)	O(2)–Mo(3)–N(5)	170.0(3)
O(3)–Mo(1)–O(5)	85.8(3)	O(2)–Mo(3)–S(1)	102.3(2)
O(3)–Mo(1)–N(1)	167.6(3)	O(3)–Mo(3)–Mo(1)	47.5(2)
O(3)–Mo(1)–S(1)	103.0(2)	O(3)–Mo(3)–Mo(2)	93.3(2)
O(4)-Mo(1)-Mo(2)	147.3(2)	O(3)–Mo(3)–O(10)	160.5(3)
O(4)-Mo(1)-Mo(3)	106.5(2)	O(3)–Mo(3)–O(11)	85.8(2)
O(4)-Mo(1)-O(5)	78.8(2)	O(3)–Mo(3)–N(5)	86.2(3)
O(4)-Mo(1)-N(1)	81.7(3)	O(3)–Mo(3)–S(1)	102.7(2)
O(4)–Mo(1)–S(1)	91.0(2)	O(10)–Mo(3)–Mo(1)	148.5(2)
O(5)-Mo(1)-Mo(2)	133.0(2)	O(10)-Mo(3)-Mo(2)	105.6(2)
O(5)-Mo(1)-Mo(3)	133.3(2)	O(10)-Mo(3)-O(11)	78.0(2)
O(5)-Mo(1)-N(1)	81.8(3)	O(10)-Mo(3)-N(5)	81.7(3)
O(5)–Mo(1)–S(1)	167.3(2)	O(10)-Mo(3)-S(1)	92.0(2)
N(1)-Mo(1)-Mo(2)	94.3(2)	O(11)-Mo(3)-Mo(1)	133.0(2)
N(1)-Mo(1)-Mo(3)	144.6(2)	O(11)-Mo(3)-Mo(2)	132.4(2)
N(1)-Mo(1)-S(1)	89.4(2)	O(11)-Mo(3)-N(5)	84.6(3)
S(1)-Mo(1)-Mo(2)	56.44(5)	O(11)–Mo(3)–S(1)	168.0(2)
S(1)-Mo(1)-Mo(3)	56.71(6)	N(5)-Mo(3)-Mo(1)	94.4(2)
Mo(1)-Mo(2)-Mo(3)	59.87(3)	N(5)-Mo(3)-Mo(2)	142.9(2)
O(1)-Mo(2)-Mo(1)	47.6(2)	N(5)-Mo(3)-S(1)	87.4(2)

Table S5. Selected bond distances (Å) and angles ($^{\circ}$) for Na₂[(Mo₃SO₃)(*R*,*S*-lact)₃(im)₃]·10H₂O (**2**).

O(1)–Mo(2)–Mo(3)	92.6(2)	S(1)-Mo(3)-Mo(1)	56.50(5)
O(1)-Mo(2)-O(2)	93.0(3)	S(1)-Mo(3)-Mo(2)	56.44(5)
O(1)-Mo(2)-O(7)	95.8(3)	Mo(1)-O(1)-Mo(2)	84.6(2)
O(1)-Mo(2)-O(8)	86.7(3)	Mo(1)-S(1)-Mo(2)	67.10(6)
O(1)-Mo(2)-N(3)	168.5(3)	Mo(1)-O(3)-Mo(3)	84.9(3)
O(1)-Mo(2)-S(1)	102.9(2)	Mo(1)-S(1)-Mo(3)	66.78(6)
O(2)-Mo(2)-Mo(1)	93.3(2)	Mo(2)-O(2)-Mo(3)	85.0(2)
O(2)–Mo(2)–Mo(3)	47.9(2)	Mo(2)–O(8)–Na(2)	147.0(4)
O(2)–Mo(2)–O(7)	161.5(3)	Mo(2)-S(1)-Mo(3)	66.87(6)
O(2)-Mo(2)-O(8)	86.0(3)	C(1)–O(4)–Mo(1)	116.7(6)
O(2)-Mo(2)-N(3)	86.2(3)	C(2)–O(5)–Mo(1)	114.9(6)
O(2)–Mo(2)–S(1)	103.3(2)	C(4)–N(1)–Mo(1)	125.4(7)
O(7)-Mo(2)-Mo(1)	104.64(2)	C(6)–N(1)–Mo(1)	128.1(7)
O(7)–Mo(2)–Mo(3)	147.33(2)	C(7)–O(7)–Mo(2)	117.9(7)
O(7)–Mo(2)–O(8)	78.3(3)	C(8)–O(8)–Mo(2)	114.9(7)
O(7)-Mo(2)-N(3)	82.0(3)	C(10)–N(3)–Mo(2)	126.0(7)
O(7)–Mo(2)–S(1)	90.7(2)	C(12)–N(3)–Mo(2)	128.5(6)
O(8)-Mo(2)-Mo(1)	134.3(2)	C(13)-O(10)-Mo(3)	116.8(9)
O(8)–Mo(2)–Mo(3)	133.8(2)	C(13A)–O(10)–Mo(3)	115.0(7)
O(8)-Mo(2)-N(3)	81.8(3)	C(14)-O(11)-Mo(3)	116.9(6)
O(8)–Mo(2)–S(1)	166.1(2)	C(16)–N(5)–Mo(3)	124.9(6)
N(3)-Mo(2)-Mo(1)	143.8(2)	C(18)–N(5)–Mo(3)	129.2(7)

$[(Mo_6O_{10})(R, S-lact)_2]$	$(1m)_{10}$]·16H ₂ O (3).		
Mo(1)–Mo(2a)	2.5034(7)	Mo(2)–O(7a)	2.201(4)
Mo(1)–Mo(3)	2.5550(8)	Mo(2)–N(5)	2.207(5)
Mo(1)–O(1)	2.044(4)	Mo(3)–Mo(2a)	2.5282(8)
Mo(1)–O(2a)	1.948(4)	Mo(3)–O(1)	2.052(4)
Mo(1)–O(4)	2.000(4)	Mo(3)–O(3)	1.915(4)
Mo(1)–O(5)	1.911(4)	Mo(3)–O(4)	1.895(4)
Mo(1)–N(1)	2.237(5)	Mo(3)–O(8)	2.165(4)
Mo(1)–N(3)	2.198(5)	Mo(3)–N(7)	2.202(6)
Mo(2)–Mo(1a)	2.5035(7)	Mo(3)–N(9)	2.186(6)
Mo(2)–Mo(3a)	2.5282(8)	Mo(1a)–O(2)	1.948(4)
Mo(2)–O(1a)	2.045(4)	Mo(2a)–O(1)	2.045(4)
Mo(2)–O(2)	1.908(4)	Mo(2a)–O(3)	2.003(4)
Mo(2)–O(3a)	2.003(4)	Mo(2a)–O(7)	2.201(4)
Mo(2)–O(5)	1.900(4)		
Mo(2a)–Mo(1)–Mo(3)	59.96(2)	O(7a)-Mo(2)-Mo(3a)	85.3(1)
O(1)-Mo(1)-Mo(2a)	52.3(1)	O(7a)-Mo(2)-N(5)	86.6(2)
O(1)-Mo(1)-Mo(3)	51.6(1)	N(5)–Mo(2)–Mo(1a)	136.3(1)
O(1)-Mo(1)-O(4)	96.8(2)	N(5)–Mo(2)–Mo(3a)	133.0(1)
O(1)-Mo(1)-O(5)	90.0(2)	Mo(2a)-Mo(3)-Mo(1)	59.01(2)
O(1)-Mo(1)-O(2a)	101.0(2)	O(1)-Mo(3)-Mo(1)	51.3(1)
O(1)-Mo(1)-N(1)	86.6(2)	O(1)-Mo(3)-Mo(2a)	51.8(1)
O(1)-Mo(1)-N(3)	173.9(2)	O(1)–Mo(3)–O(3)	102.5(2)
O(4)-Mo(1)-Mo(2a)	97.0(1)	O(1)-Mo(3)-O(4)	99.9(2)
O(4)-Mo(1)-Mo(3)	47.3(1)	O(1)–Mo(3)–O(8)	84.5(2)
O(4)-Mo(1)-O(5)	165.0(2)	O(1)-Mo(3)-N(7)	86.3(2)
O(4)-Mo(1)-O(2a)	95.4(2)	O(1)-Mo(3)-N(9)	168.4(2)
O(4)-Mo(1)-N(1)	83.5(2)	O(3)–Mo(3)–Mo(1)	95.1(1)
O(4)-Mo(1)-N(3)	84.0(2)	O(3)–Mo(3)–Mo(2a)	51.4(1)
O(5)-Mo(1)-Mo(2a)	97.8(1)	O(4)–Mo(3)–O(3)	99.7(2)
O(5)-Mo(1)-Mo(3)	141.5(1)	O(3)–Mo(3)–O(8)	84.3(2)
O(5)-Mo(1)-O(2a)	96.6(2)	O(3)–Mo(3)–N(7)	160.4(2)
O(5)-Mo(1)-N(1)	83.5(2)	O(3)–Mo(3)–N(9)	84.9(2)
O(5)-Mo(1)-N(3)	87.9(2)	O(4)–Mo(3)–Mo(1)	50.8(1)
O(2a)-Mo(1)-Mo(2a)	48.8(1)	O(4)–Mo(3)–Mo(2a)	99.0(1)
O(2a)-Mo(1)-Mo(3)	90.7(1)	O(4)–Mo(3)–O(8)	173.2(2)
O(2a)–Mo(1)–N(1)	172.4(2)	O(4)–Mo(3)–N(7)	96.0(2)
O(2a)-Mo(1)-N(3)	85.0(2)	O(4)-Mo(3)-N(9)	87.5(2)
N(1)-Mo(1)-Mo(2a)	138.8(1)	O(8)–Mo(3)–Mo(1)	134.7(1)
N(1)-Mo(1)-Mo(3)	94.0(1)	O(8)–Mo(3)–Mo(2a)	87.8(1)
N(1)-Mo(1)-N(3)	87.4(2)	O(8)–Mo(3)–N(7)	79.0(2)
N(3)-Mo(1)-Mo(2a)	133.8(1)	O(8)-Mo(3)-N(9)	87.4(2)

Table S6. Selected bond distances (Å) and angles (°) for $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (**3**).

N(3)-Mo(1)-Mo(3)	130.5(1)	N(7)-Mo(3)-Mo(1)	104.0(2)
Mo(1a)-Mo(2)-	61.03(2)	N(7)-Mo(3)-Mo(2a)	137.2(2)
Mo(3a)			
O(2)-Mo(2)-Mo(1a)	50.2(1)	N(7)-Mo(3)-N(9)	84.0(2)
O(2)-Mo(2)-Mo(3a)	92.4(1)	N(9)-Mo(3)-Mo(1)	137.8(2)
O(2)-Mo(2)-O(5)	102.6(2)	N(9)-Mo(3)-Mo(2a)	136.2(2)
O(2)–Mo(2)–O(1a)	102.4(2)	Mo(1)-O(5)-Mo(2)	160.4(2)
O(2)-Mo(2)-O(3a)	89.3(2)	Mo(1)-O(1)-Mo(2a)	75.5(2)
O(2)–Mo(2)–O(7a)	167.7(2)	Mo(1)-O(1)-Mo(3)	77.2(2)
O(2)-Mo(2)-N(5)	86.1(2)	Mo(1)-O(4)-Mo(3)	81.9(2)
O(5)-Mo(2)-Mo(1a)	101.2(1)	Mo(1a)-O(2)-Mo(2)	81.0(2)
O(5)-Mo(2)-Mo(3a)	139.7(1)	Mo(2a)-O(1)-Mo(3)	76.2(1)
O(5)-Mo(2)-O(1a)	88.0(2)	Mo(2a)-O(3)-Mo(3)	80.3(2)
O(5)-Mo(2)-O(3a)	164.2(2)	C(2)–O(7)–Mo(2a)	123.7(4)
O(5)-Mo(2)-O(7a)	86.8(2)	C(2)–O(8)–Mo(3)	123.4(4)
O(5)-Mo(2)-N(5)	85.7(2)	C(4)–N(1)–Mo(1)	124.4(4)
O(1a)-Mo(2)-Mo(1a)	52.2(1)	C(6)–N(1)–Mo(1)	130.0(5)
O(1a)-Mo(2)-Mo(3a)	52.0(1)	C(7)–N(3)–Mo(1)	126.3(4)
O(1a)-Mo(2)-O(7a)	85.8(2)	C(9)–N(3)–Mo(1)	128.1(4)
O(1a)-Mo(2)-N(5)	170.4(2)	C(10)-N(5)-Mo(2)	128.5(4)
O(3a)-Mo(2)-Mo(1a)	94.5(1)	C(12)-N(5)-Mo(2)	125.3(5)
O(3a)-Mo(2)-Mo(3a)	48.3(1)	C(13)-N(7)-Mo(3)	126.0(5)
O(3a)-Mo(2)-O(1a)	99.7(2)	C(15)-N(7)-Mo(3)	127.9(5)
O(3a)-Mo(2)-O(7a)	80.2(2)	C(16)-N(9)-Mo(3)	128.0(5)
O(3a)–Mo(2)–N(5)	84.7(2)	C(18)–N(9)–Mo(3)	127.6(5)
O(7a)–Mo(2)–Mo(1a)	136.4(1)		

Symmetry codes: (a) 1 - x, 1 - y, 1 - z;

$Na_{6}[(Mo_{2}O_{4})_{3}(R,S-m$	al) ₄] $5H_2O(4)$.		
Mo(1)–Mo(1a)	2.557(3)	Mo(2)–O(2)	2.11(1)
Mo(1)–O(1)	2.12(1)	Mo(2)–O(4)	2.07(1)
Mo(1)–O(1b)	2.12(1)	Mo(2)–O(6)	1.67(2)
Mo(1)–O(7)	2.31(2)	Mo(2)–O(7)	1.99(1)
Mo(1)–O(9)	1.71(2)	Mo(2)–O(8)	1.91(1)
Mo(1)-O(10)	1.93(1)	Mo(1a)–O(10)	1.93(1)
Mo(1)–O(10a)	1.93(1)	Mo(2b)–O(7)	1.99(1)
Mo(2)–Mo(2b)	2.597(2)	Mo(2b)–O(8)	1.91(1)
Mo(2)–O(1)	2.20(1)		
O(1)-Mo(1)-O(7)	71.4(4)	O(4)-Mo(2)-O(8)	84.9(5)
O(1)-Mo(1)-O(10a)	90.0(4)	O(6)-Mo(2)-O(7)	106.5(7)
O(1)–Mo(1)–O(1b)	81.1(6)	O(6)-Mo(2)-O(8)	109.5(7)
O(1)-Mo(1)-O(9)	92.7(5)	O(7)–Mo(2)–O(8)	93.2(5)
O(1)-Mo(1)-O(10)	160.2(7)	O(1)-Mo(1)-Mo(1a)	138.4(3)
O(7)–Mo(1)–O(9)	158.7(6)	O(7)–Mo(1)–Mo(1a)	104.7(4)
O(7)-Mo(1)-O(10)	89.0(6)	O(9)–Mo(1)–Mo(1a)	96.6(5)
O(7)–Mo(1)–O(10a)	89.0(6)	O(10)-Mo(1)-Mo(1a)	48.5(3)
O(7)–Mo(1)–O(1b)	71.4(4)	O(10a)–Mo(1)–Mo(1a)	48.5(3)
O(9)-Mo(1)-O(10)	105.4(7)	O(1b)-Mo(1)-Mo(1a)	138.4(3)
O(9)–Mo(1)–O(10a)	105.4(7)	O(1)-Mo(2)-Mo(2b)	92.1(2)
O(9)–Mo(1)–O(1b)	92.7(5)	O(2)–Mo(2)–Mo(2b)	139.1(3)
O(10)-Mo(1)-O(10a)	92.8(6)	O(4)-Mo(2)-Mo(2b)	132.1(3)
O(10)-Mo(1)-O(1b)	90.0(4)	O(6)-Mo(2)-Mo(2b)	102.3(5)
O(10a)–Mo(1)–O(1b)	160.2(7)	O(7)–Mo(2)–Mo(2b)	49.4(3)
O(1)–Mo(2)–O(2)	72.9(5)	O(8)-Mo(2)-Mo(2b)	47.2(4)
O(1)-Mo(2)-O(4)	80.4(5)	Mo(1)-O(10)-Mo(1a)	83.0(5)
O(1)-Mo(2)-O(6)	163.0(5)	Mo(1)-O(1)-Mo(2)	106.0(5)
O(1)-Mo(2)-O(7)	76.2(6)	Mo(1)-O(7)-Mo(2)	106.5(7)
O(1)-Mo(2)-O(8)	86.8(6)	Mo(1)-O(7)-Mo(2b)	106.5(7)
O(2)–Mo(2)–O(4)	83.8(5)	Mo(2)–O(7)–Mo(2b)	81.3(6)
O(2)–Mo(2)–O(6)	90.3(6)	Mo(2)–O(8)–Mo(2b)	85.6(7)
O(2)–Mo(2)–O(7)	89.8(4)	C(1)-O(1)-Mo(1)	118.0(9)
O(2)–Mo(2)–O(8)	158.2(7)	C(1)-O(1)-Mo(2)	111.4(10)
O(4)-Mo(2)-O(6)	96.0(6)	C(2)–O(2)–Mo(2)	118.4(11)
O(4)–Mo(2)–O(7)	156.6(7)	C(4)–O(4)–Mo(2)	137.0(11)

Table S7. Selected bond distances (\mathring{A}) and angles (\degree) for Na₆[(Mo₂O₄)₂(*R* S-mal)₄] 5H₂O (**4**)

Symmetry codes: (a) 1 - x, 1 - y, *z*; (b) *x*, 1 - y, *z*;

D–H····A	D-H(Å)	H…A(Å)	D…A(Å)	D–H···A(%
N_2 – $H_2 \cdot O_{7d}$	0.88	1.82	2.68(1)	164
N_4 – $H_4 \cdot O_{10e}$	0.88	1.83	2.69(1)	166
N_6 – $H_6 \cdot O_{4b}$	0.88	1.87	2.73(1)	166
O_{9W} – H_{9WA} ·· O_{2i}	0.82	2.07	2.80(1)	149
O_{9W} – H_{9WB} $\cdots O_{5Wi}$	0.84	1.92	2.71(2)	155
O_{8W} – H_{8WA} \cdots O_{9W}	0.85	2.03	2.70(2)	136
$O_{4W}\!\!-\!\!H_{4W\!A}\cdots\!O_1$	0.86	1.92	2.76(1)	162
$O_{10W} - H_{10A} \cdot O_{12}$	0.85	2.03	2.77(1)	146
$O_{10W} - H_{10B} \cdot O_{11i}$	0.84	2.17	2.89(1)	143
$O_{4W} – H_{4WB} \cdots O_{2W}$	0.85	2.23	2.97(2)	146
O_{7W} – H_{7WA} $\cdot \cdot O_{6a}$	0.86	2.25	3.10(2)	172
O_{5W} – H_{5WA} ·· O_{7W}	0.85	2.04	2.87(1)	165
O_{5W} – H_{5WB} ·· O_{6W}	0.86	2.05	2.90(2)	166
$O_{7W}\!\!-\!\!H_{7WB} \cdots \!O_{9Wg}$	0.87	1.95	2.80(2)	165
$O_{8W}\!\!-\!\!H_{8WB}\cdot\!\!\cdot\!O_{10W}$	1.02	2.15	2.81(2)	120
O_{6W} – H_{6WA} ·· O_{7Wh}	0.98	2.50	3.12(2)	120
O_{6W} – H_{6WB} $\cdot \cdot O_{8Wg}$	0.94	2.16	3.01(2)	148
$O_{3W}\!\!-\!\!H_{3W\!A}\cdots\!O_{5a}$	0.98	1.88	2.83(1)	163
O_{3W} – H_{3WA} $\cdot \cdot O_{6a}$	0.98	2.43	3.20(1)	135
O_{3W} – H_{3WB} $\cdot O_{1Wa}$	1.00	2.05	3.03(1)	165
O_{1W} – H_{1WA} ·· O_{8Wc}	0.85	2.43	2.97(2)	122
O_{1W} – H_{1WB} ·· O_{3c}	0.85	2.10	2.86(1)	149
O_{2W} – H_{2WA} ·· O_{10Wf}	0.86(10)	1.88(10)	2.71(2)	162(10)

Table S8. Selected bond distances (Å) and angles (°) within the water layer in $Na_2[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (2).

Symmetry codes: (a) 2 - x, 1 - y, 1 - z; (b) 1 - x, 1 - y, -z; (c) 2 - x, 2 - y, 1 - z; (d) 2 - x, 1 - y, -z; (e) 1 - x, -y, -z; (f) 1 + x, y, z; (g) x, -1 + y, z; (h) 1 - x, -y, 1 - z; (i) 1 - x, 1 - y, 1 - z.

Complexes	Atoms	Ν	ΣS_{ij}	Δ
	Mo(1)	4+	4.062	0.062
	Mo(2)	4+	3.984	0.016
[(Mo ₃ SO ₃) (glyc) ₂ (im) ₅] [•] im [•] H ₂ O (1)	Mo(3)	4+	3.995	0.005
	Mo(1)	4+	3.966	0.034
	Mo(2)	4+	3.979	0.021
Na ₂ [(Mo ₃ SO ₃)(<i>R</i> , <i>S</i> -lact) ₃ (im) ₃]·10H ₂ O (2)	Mo(3)	4+	3.927	0.073
	Mo(1)	4+	4.110	0.110
	Mo(2)	4+	4.014	0.014
$[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H ₂ O (3)	Mo(3)	4+	4.039	0.039
	Mo(1)	5+	5.018	0.018
$Na_{6}[(Mo_{2}O_{4})_{3}(R,S-mal)_{4}]$ 5H ₂ O (4)	Mo(2)	5+	5.239	0.239

Table S9. Bond valence calculations for complexes $[(Mo_3SO_3) (glyc)_2(im)_5]$ ·im·H₂O (1), Na₂ $[(Mo_3SO_3)(R,S-lact)_3(im)_3]$ ·10H₂O (2), $[(Mo_6O_{10})(R,S-lact)_2(im)_{10}]$ ·16H₂O (3), and Na₆ $[(Mo_2O_4)_3(R,S-mal)_4]$ 5H₂O (4).

Entry	PDB ID	Resolutions	$Mo-O_{\alpha-alkoxy/hydroxy}$	Distances	$Mo-O_{\alpha-carboxy}$	Distances	$C-O_{\alpha-alkoxy/hydroxy}$	Distances
1	5VPW ¹³	1.85 Å	[ICS]602:A.MO1-	2.119	[ICS]602:A.MO1-	2.287	[HCA]601:A.C3-	1.438
			[HCA]601:A.O7		[HCA]601:A.O6		[HCA]601:A.O7	
			[ICS]602:C.MO1-	2.147	[ICS]602:C.MO1-	2.253	[HCA]601:C.C3-	1.450
			[HCA]601:C.O7		[HCA]601:C.O5		[HCA]601:C.O7	
2	5VQ3 ¹³	1.72 Å	[ICS]602:C.MO1-	2.164	[ICS]602:C.MO1-	2.224	[HCA]601:C.C3-	1.426
			[HCA]601:C.O7		[HCA]601:C.O5		[HCA]601:C.O7	
			[ICS]602:A.MO1-	2.133	[ICS]602:A.MO1-	2.213	[HCA]601:A.C3-	1.443
			[HCA]601:A.O7		[HCA]601:A.O6		[HCA]601:A.O7	
3	5VQ4 ¹³	2.3 Å	[ICS]502:C.MO1-	2.171	[ICS]502:C.MO1-	2.162	[HCA]501:C.C3-	1.475
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.066	[ICS]502:A.MO1-	2.240	[HCA]501:A.C3-	1.445
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
4	$4WZA^{14}$	1.9 Å	[ICS]1496:A.MO1-	2.222	[ICS]1496:A.MO1-	1.986	[HCA]1494:A.C3-	1.436
			[HCA]1494:A.O7		[HCA]1494:A.O5		[HCA]1494:A.O7	
			[ICS]1496:C.MO1-	2.212	[ICS]1496:C.MO1-	1.979	[HCA]1494:C.C3-	1.440
			[HCA]1494:C.O7		[HCA]1494:C.O5		[HCA]1494:C.O7	
5	5KOH ¹⁵	1.83 Å	[ICS]502:C.MO1-	2.143	[ICS]502:C.MO1-	2.184	[HCA]501:C.C3-	1.415
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.117	[ICS]502:A.MO1-	2.150	[HCA]501:A.C3-	1.441
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
6	5KOJ ¹⁵	2.59 Å	[ICS]502:C.MO1-	1.981	[ICS]502:C.MO1-	2.362	[HCA]501:C.C3-	1.424
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.182	[ICS]502:A.MO1-	2.247	[HCA]501:A.C3-	1.431

Table S10. The bond distances of Mo– $O_{\alpha-alkoxy/hydroxy}$, Mo– $O_{\alpha-carboxy}$ and C– $O_{\alpha-alkoxy/hydroxy}$ from FeMo-cofactors of MoFe-proteins in nitrogenases.

			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
7	5BVG ¹⁶	1.6 Å	[ICG]502:C.MO1-	2.244	[ICG]502:C.MO1-	2.201	[ICG]501:C.C7-	1.445
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICG]502:A.MO1-	2.178	[ICG]502:A.MO1-	2.242	[ICG]501:A.C3-	1.435
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
8	5BVH ¹⁶	1.53 Å	[ICH]503:C.MO1-	2.241	[ICH]503:C.MO1-	2.249	[HCA]501:C.C3-	1.432
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICH]503:A.MO1-	2.258	[ICH]503:A.MO1-	2.202	[HCA]501:A.C3-	1.444
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
9	4XPI^{17}	1.97 Å	[ICS]502:C.MO1-	2.303	[ICS]502:C.MO1-	2.029	[HCA]501:C.C3-	1.441
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.151	[ICS]502:A.MO1-	2.144	[HCA]501:A.C3-	1.440
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
10	5CX1 ¹⁸	1.75 Å	[ICS]502:E.MO1-	2.355	[ICS]502:E.MO1-	2.648	[HCA]501:E.C3-	1.417
			[HCA]501:E.O7		[HCA]501:E.O6		[HCA]501:E.O7	
			[ICS]502:G.MO1-	2.650	[ICS]502:G.MO1-	2.291	[HCA]501:G.C3-	1.428
			[HCA]501:G.O7		[HCA]501:G.O5		[HCA]501:G.O7	
			[ICS]502:M.MO1-	2.648	[ICS]502:M.MO1-	2.277	[HCA]501:M.C3-	1.428
			[HCA]501:M.O7		[HCA]501:M.O5		[HCA]501:M.O7	
			[ICS]502:O.MO1-	2.662	[ICS]502:O.MO1-	2.310	[HCA]501:O.C3-	1.424
			[HCA]501:O.O7		[HCA]501:O.O6		[HCA]501:O.O7	
			[ICS]502:C.MO1-	2.676	[ICS]502:C.MO1-	2.354	[HCA]501:C.C3-	1.445
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.668	[ICS]502:A.MO1-	2.357	[HCA]501:A.C3-	1.405
			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
			[ICS]502:I.MO1-	2.376	[ICS]502:I.MO1-	2.652	[HCA]501:I.C3-	1.449

			[ICS]502:K.MO1-	2.364	[ICS]502:K.MO1-	2.666	[HCA]501:K.C3-	1.433
			[HCA]501:K.O7		[HCA]501:K.O6		[HCA]501:K.O7	
11	4WN9 ¹⁹	1.9 Å	[ICS]602:C.MO1-	2.047	[ICS]602:C.MO1-	2.231	[HCA]601:C.C3-	1.446
			[HCA]601:C.O7		[HCA]601:C.O5		[HCA]601:C.O7	
			[ICS]602:A.MO1-	2.158	[ICS]602:A.MO1-	2.143	[HCA]601:A.C3-	1.426
			[HCA]601:A.O7		[HCA]601:A.O5		[HCA]601:A.O7	
12	4WNA ¹⁹	2.0 Å	[ICS]502:C.MO1-	2.054	[ICS]502:C.MO1-	2.275	[HCA]501:C.C3-	1.427
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.110	[ICS]502:A.MO1-	2.159	[HCA]501:A.C3-	1.430
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
13	$4WZB^{20}$	2.3 Å	[ICS]1496:A.MO1-	2.504	[ICS]1496:A.MO1-	1.914	[HCA]1494:A.C3-	1.438
			[HCA]1494:A.O7		[HCA]1494:A.O5		[HCA]1494:A.O7	
			[ICS]1496:C.MO1-	2.540	[ICS]1496:C.MO1-	1.912	[HCA]1494:C.C3-	1.434
			[HCA]1494:C.O7		[HCA]1494:C.O5		[HCA]1494:C.O7	
14	4WES^{21}	1.08 Å	[ICS]602:C.MO1-	2.174	[ICS]602:C.MO1-	2.223	[HCA]601:C.C3-	1.440
			[HCA]601:C.O7		[HCA]601:C.O6		[HCA]601:C.O7	
			[ICS]602:A.MO1-	2.201	[ICS]602:A.MO1-	2.220	[HCA]601:A.C3-	1.421
			[HCA]601:A.O7		[HCA]601:A.O5		[HCA]601:A.O7	
15	4TKU^{22}	1.43 Å	[ICS]502:C.MO1-	2.227	[ICS]502:C.MO1-	2.189	[HCA]501:C.C3-	1.444
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.215	[ICS]502:A.MO1-	2.204	[HCA]501:A.C3-	1.439
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
16	$4 \mathrm{T} \mathrm{K} \mathrm{V}^{22}$	1.5 Å	[ICE]502:C.MO1-	2.195	[ICE]502:C.MO1-	2.195	[HCA]501:C.C3-	1.442
			[HCA]501:C.O7		[HCA501:C.O5		[HCA]501:C.O7	
			[ICE]502:A.MO1-	2.217	[ICE]502:A.MO1-	2.166	[HCA]501:A.C3-	1.436

[HCA]501:I.O5

[HCA]501:I.O7

[HCA]501:I.O7

2	7

			[HCA]501:A.O7		[HCA]501:A.O6		[HCA]501:A.O7	
17	4ND8 ²³	2.0 Å	[ICS]502:C.MO1-	2.283	[ICS]502:C.MO1-	2.424	HCA]501:C.C3-	1.447
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
			[ICS]502:A.MO1-	2.205	[ICS]502:A.MO1-	2.427	[HCA]501:A.C3-	1.434
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
18	3U7Q ²⁴	1.0 Å	[ICS]7496:C.MO1-	2.178	[ICS]7496:C.MO1-	2.212	[HCA]7494:C.C3-	1.447
			[HCA]7494:C.O7		[HCA]7494:C.O5		[HCA]7494:C.O7	
			[ICS]6496:A.MO1-	2.164	[ICS]6496:A.MO1-	2.192	[HCA]6494:A.C3-	1.442
			[HCA]6494:A.O7		[HCA]6494:A.O5		[HCA]6494:A.O7	
19	3K1A ²⁵	2.23 Å	[CFN]7496:C.MO1-	2.250	[CFN]7496:C.MO1-	2.171	[HCA]494:C.C3-	1.454
			[HCA]494:C.O7		[HCA]494:C.O5		[HCA]494:C.O7	
			[CFN]6496:A.MO1-	2.160	[CFN]6496:A.MO1-	2.169	[HCA]494:A.C3-	1.447
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
20	2AFH ²⁰	2.1 Å	[CFN]2496:A.MO1-	2.242	[CFN]2496:A.MO1-	2.334	[HCA]2494:A.C3-	1.494
			[HCA]2494:A.O7		[HCA]2494:A.O5		[HCA]2494:A.O7	
			[CFN]3496:C.MO1-	2.123	[CFN]3496:C.MO1-	2.331	[HCA]3494:C.C3-	1.488
			[HCA]3494:C.O7		[HCA]3494:C.O5		[HCA]3494:C.O7	
21	2AFI ²⁰	3.1 Å	[CFN]496:C.MO1-	2.165	[CFN]496:C.MO1-	2.163	[HCA]494:C.C3-	1.479
			[HCA]494:C.O7		[HCA]494:C.O5		[HCA]494:C.O7	
			[CFN]496:A.MO1-	2.213	[CFN]496:A.MO1-	2.124	[HCA]494:A.C3-	1.508
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
			[CFN]496:K.MO1-	2.199	[CFN]496:K.MO1-	2.152	[HCA]494:K.C3-	1.510
			[HCA]494:K.O7		[HCA]494:K.O5		[HCA]494:K.O7	
			[CFN]496:I.MO1-	2.221	[CFN]496:I.MO1-	2.124	[HCA]494:I.C3-	1.473
			[HCA]494:I.O7		[HCA]494:I.O5		[HCA]494:I.O7	
22	$1M1Y^{26}$	3.2 Å	[CFM]9496:K.MO1	2.057	[CFM]9496:K.MO1	2.285	[HCA]9494:K.C3-	1.518

		[HCA]8494:E.C
-	2.194	[CFN]9496:G.M
		[HCA]9494:G.C
	2.250	[CFM]1480:A.N
		-[CIT]1479:A.C
-	2.254	[CFM]1480:C.M

			-[HCA]9494:K.O7		-[HCA]9494:K.O5		[HCA]9494:K.O7	
			[CFM]7496:C.MO1-	1.947	[CFM]7496:C.MO1-	2.193	[HCA]7494:C.C3-	1.525
			[HCA]7494:C.O7		[HCA]7494:C.O5		[HCA]7494:C.O7	
23	1M34 ²⁶	2.3 Å	[CFM]4296:K.MO1	2.993	[CFM]4296:K.MO1	3.156	[HCA]4294:K.C3-	1.490
			-[HCA]4294:K.O7		-[HCA]4294:K.O5		[HCA]4294:K.O7	
			[CFM]4096:I.MO1-	3.535	[CFM]4096:I.MO1-	3.091	[HCA]4094:I.C3-	1.418
			[HCA]4094:I.O7		[HCA]4094:I.O5		[HCA]4094:I.O7	
			[CFM]2096:A.MO1	2.954	[CFM]2096:A.MO1	3.044	[HCA]2094:A.C3-	1.421
			-[HCA]2094:A.O7		-[HCA]2094:A.O5		[HCA]2094:A.O7	
			[CFM]2296:C.MO1-	2.939	[CFM]2296:C.MO1-	2.869	[HCA]2094:C.C3-	1.438
			[HCA]2294:C.O7		[HCA]2294:C.O5		[HCA]2294:C.O7	
24	1FP4 ²⁷	2.5 Å	[CFM]496:A.MO1-	2.179	[CFM]496:A.MO1-	2.205	[HCA]494:A.C3-	1.427
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
			[CFM]497:C.MO1-	2.193	[CFM]497:C.MO1-	2.203	[HCA]495:C.C3-	1.429
			[HCA]495:C.O7		[HCA]495:C.O5		[HCA]495:C.O7	
25	1M1N ²⁸	1.16 Å	[CFN]7496:C.MO1-	2.199	[CFN]7496:C.MO1-	2.181	[HCA]7494:C.C3-	1.461
			[HCA]7494:C.O7		[HCA]7494:C.O5		[HCA]7494:C.O7	
			[CFN]6496:A.MO1-	2.184	[CFN]6496:A.MO1-	2.180	[HCA]6494:A.C3-	1.414
			[HCA]6494:A.O7		[HCA]6494:A.O5		[HCA]6494:A.O7	
			[CFN]8496:E.MO1-	2.213	[CFN]8496:E.MO1-	2.162	[HCA]8494:E.C3-	1.446
			[HCA]8494:E.O7		[HCA]8494:E.O5		[HCA]8494:E.O7	
			[CFN]9496:G.MO1-	2.194	[CFN]9496:G.MO1-	2.194	[HCA]9494:G.C3-	1.464
			[HCA]9494:G.O7		[HCA]9494:G.O5		[HCA]9494:G.O7	
26	1H1L ²⁹	1.9 Å	[CFM]1480:A.MO1	2.250	[CFM]1480:A.MO1	2.313	[CIT]1479:A.C3-	1.447
			-[CIT]1479:A.O7		-[CIT]1479:A.O5		[HCA]1479:A.O7	
			[CFM]1480:C.MO1-	2.254	[CFM]1480:C.MO1-	2.270	[CIT]1479:C.C3-	1.429

2	2
,	ч
~	-

			[CIT]1479:C.O7		[CIT]1479:C.O5		[CIT]1479:C.O7	
27	$1G20^{30}$	2.2 Å	[CFM]3496:C.MO1-	2.153	[CFM]3496:C.MO1-	2.194	[HCA]3494:C.C3-	1.451
			[HCA]3494:C.O7		[HCA]3494:C.O5		[HCA]3494:C.O7	
			[CFM]1496:A.MO1	2.218	[CFM]1496:A.MO1	2.163	[HCA]1494:A.C3-	1.459
			-[HCA]1494:A.O7		-[HCA]1494:A.O5		[HCA]1494:A.O7	
28	$1G21^{30}$	3.0 Å	[CFM]3496:C.MO1-	2.177	[CFM]3496:C.MO1-	2.222	[HCA]3494:C.C3-	1.417
			[HCA]3494:C.O7		[HCA]3494:C.O5		[HCA]3494:C.O7	
			[CFM]1496:A.MO1	2.208	[CFM]1496:A.MO1	2.270	[HCA]1494:A.C3-	1.433
			-[HCA]1494:A.O7		-[HCA]1494:A.O5		[HCA]1494:A.O7	
29	1QGU ³¹	1.6 Å	[CFM]503:A.MO1-	2.351	[CFM]503:A.MO1-	2.293	[HCA]501:A.C3-	1.526
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
			[CFM]503:C.MO1-	2.351	[CFM]503:C.MO1-	2.277	[HCA]501:C.C3-	1.514
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
30	1QH1 ³¹	1.6 Å	[CFM]503:A.MO1-	2.371	[CFM]503:A.MO1-	2.310	[HCA]501:A.C3-	1.500
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
			[CFM]503:C.MO1-	2.327	[CFM]503:C.MO1-	2.271	[HCA]501:C.C3-	1.512
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
31	1QH8 ³¹	1.6 Å	[CFM]503:A.MO1-	2.364	[CFM]503:A.MO1-	2.321	[HCA]501:A.C3-	1.506
			[HCA]501:A.O7		[HCA]501:A.O5		[HCA]501:A.O7	
			[CFM]503:C.MO1-	2.337	[CFM]503:C.MO1-	2.286	[HCA]501:C.C3-	1.526
			[HCA]501:C.O7		[HCA]501:C.O5		[HCA]501:C.O7	
32	$1N2C^{32}$	3.0 Å	[CFM]496:C.MO1-	2.168	[CFM]496:C.MO1-	2.208	[HCA]494:C.C3-	1.446
			[HCA]494:C.O7		[HCA]494:C.O5		[HCA]494:C.O7	
			[CFM]496:A.MO1-	2.185	[CFM]496:A.MO1-	2.173	[HCA]494:A.C3-	1.425
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
33	2MIN ³³	2.03 Å	[CFM]496:C.MO1-	2.077	[CFM]496:C.MO1-	2.105	[HCA]494:C.C3-	1.471

			[HCA]494:C.O7		[HCA]494:C.O5		[HCA]494:C.O7	
			[CFM]496:A.MO1-	2.093	[CFM]496:A.MO1-	2.081	[HCA]494:A.C3-	1.451
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
34	3MIN ³³	2.03 Å	[CFM]496:C.MO1-	2.050	[CFM]496:C.MO1-	2.066	[HCA]494:C.C3-	1.443
			[HCA]494:C.O7		[HCA]494:C.O5		[HCA]494:C.O7	
			[CFM]496:A.MO1-	1.995	[CFM]496:A.MO1-	2.037	[HCA]494:A.C3-	1.423
			[HCA]494:A.O7		[HCA]494:A.O5		[HCA]494:A.O7	
35	1 MIO ³⁴	3.0 Å	[CFM]496:D.MO1-	2.188	[CFM]496:D.MO1-	2.182	[HCA]494:D.C3-	1.428
			[HCA]494:D.O7		[HCA]494:D.O5		[HCA]494:D.O7	
			[CFM]496:B.MO1-	2.193	[CFM]496:B.MO1-	2.196	[HCA]494:B.C3-	1.432
			[HCA]494:B.O7		[HCA]494:B.O5		[HCA]494:B.O7	
36	6BBL ³⁵	1.68 Å	[ICS]503:C.MO1-	2.238	[ICS]503:C.MO1-	2.241	[HCA]502:C.C3-	1.430
			[HCA]502:C.O7		[HCA]502:C.O5		[HCA]502:C.O7	
			[ICS]504:A.MO1-	2.237	[ICS]504:A.MO1-	2.274	HCA]503:A.C3-	1.433
			[HCA]503:A.O7		[HCA]503:A.O5		[HCA]503:A.O7	
	Average			2.272		2.263		1.449

References

- 1. B. Modec, D. Dolenc and M. Kasunic, *Inorg. Chem.*, 2008, **47**, 3625-3633.
- 2. Z. H. Zhou, S. Y. Hou, Z. X. Cao, H. L. Wan and S. W. Ng, J. Inorg. Biochem, 2004, 98, 1037-1044.
- 3. M. N. Sokolov, S. A. Adonin, A. V. Virovets, P. A. Abramov, C. Vicent, R. Llusar and V. P. Fedin, *Inorg. Chim. Acta*, 2013, **395**, 11-18.
- 4. Q. L. Chen, H. B. Chen, Z. X. Cao and Z. H. Zhou, *Dalton Trans*, 2013, 42, 1627-1636.
- 5. Y. W. Lin, Y. P. Tong, C. Yang and Y. R. Lin, *Inorg. Chem. Commun*, 2009, **12**, 252-254.
- 6. B. Modec and P. Bukovec, Inorg. Chim. Acta, 2015, 424, 226-234.
- S. F. Gheller, T. W. Hambley, R. T. C. Brownlee, M. J. O'Connor, M. R. Snow and A. G. Wedd, J. Am. Chem. Soc., 1983, 105, 1527-1532.
- 8. Z. H. Zhou, Q. Xu, J. Lin and S. W. Ng, Inorg. Chem. Commun, 2007, 10, 1461-1464.
- 9. A. Bino, F. A. Cotton and Z. Dori, J. Am. Chem. Soc., 1979, 101, 3842-3847.
- 10. H. Kawasaki, G. Sakane and T. Shibahara, Inorg. Chem. Commun, 2005, 8, 777-781.
- 11. J. Zhao and L. Xu, Eur. J. Inorg. Chem, 2011, 2011, 4096-4102.
- 12. R. H. Zhang, X. W. Zhou, Y. C. Guo, M. L. Chen, Z. X. Cao, Y. L. Chow and Z. H. Zhou, *Inorg. Chim. Acta*, 2013, **406**, 27-36.
- 13. C. N. Morrison, T. Spatzal and D. C. Rees, J. Am. Chem. Soc., 2017.
- 14. F. A. Tezcan, J. T. Kaiser, J. B. Howard and D. C. Rees, J. Am. Chem. Soc., 2015, 137, 146-149.
- 15. C. P. Owens, F. E. H. Katz, C. H. Carter, V. F. Oswald and F. A. Tezcan, J. Am. Chem. Soc., 2016, **138**, 10124-10127.
- 16. T. Spatzal, K. A. Perez, J. B. Howard and D. C. Rees, *eLife*, 2015, **4**, e11620.
- 17. K. Danyal, A. J. Rasmussen, S. M. Keable, B. S. Inglet, S. Shaw, O. A. Zadvornyy, S. Duval, D. R. Dean, S. Raugei, J. W. Peters and L. C. Seefeldt, *Biochemistry*, 2015, **54**, 2456-2462.
- 18. C. P. Owens, F. E. H. Katz, C. H. Carter, M. A. Luca and F. A. Tezcan, *J. Am. Chem. Soc.*, 2015, **137**, 12704-12712.
- 19. C. N. Morrison, J. A. Hoy, L. Zhang, O. Einsle and D. C. Rees, *Biochemistry*, 2015, 54, 2052-2060.
- 20. F. A. Tezcan, J. T. Kaiser, D. Mustafi, M. Y. Walton, J. B. Howard and D. C. Rees, *Science*, 2005, **309**, 1377.
- L. M. Zhang, C. N. Morrison, J. T. Kaiser and D. C. Rees, Acta Crystallogr. D: Biol. Crystallogr., 2015, 71, 274-282.
- 22. T. Spatzal, K. A. Perez, O. Einsle, J. B. Howard and D. C. Rees, Science, 2014, 345, 1620.
- 23. K.-Y. Yang, C. A. Haynes, T. Spatzal, D. C. Rees and J. B. Howard, *Biochemistry*, 2014, **53**, 333-343.
- 24. T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. A. Andrade, E. Schleicher, S. Weber, D. C. Rees and O. Einsle, *Science*, 2011, **334**, 940.
- 25. R. Sarma, B. M. Barney, S. Keable, D. R. Dean, L. C. Seefeldt and J. W. Peters, *J. Inorg. Biochem.*, 2010, **104**, 385-389.
- 26. B. Schmid, O. Einsle, H. J. Chiu, A. Willing, M. Yoshida, J. B. Howard and D. C. Rees, *Biochemistry*, 2002, **41**, 15557-15565.
- 27. M. Sorlie, J. Christiansen, B. J. Lemon, J. W. Peters, D. R. Dean and B. J. Hales, *Biochemistry*, 2001, 40, 1540-1549.
- 28. O. Einsle, F. A. Tezcan, S. L. Andrade, B. Schmid, M. Yoshida, J. B. Howard and D. C. Rees, *Science*, 2002, **297**, 1696-1700.
- 29. S. M. Mayer, C. A. Gormal, B. E. Smith and D. M. Lawson, J. Biol. Chem., 2002, 277, 35263-35266.

- 30. H. Chiu, J. W. Peters, W. N. Lanzilotta, M. J. Ryle, L. C. Seefeldt, J. B. Howard and D. C. Rees, *Biochemistry*, 2001, **40**, 641-650.
- 31. S. M. Mayer, D. M. Lawson, C. A. Gormal, S. M. Roe and B. E. Smith, *J. Mol. Biol.*, 1999, **292**, 871-891.
- 32. H. Schindelin, C. Kisker, J. L. Schlessman, J. B. Howard and D. C. Rees, *Nature*, 1997, **387**, 370-376.
- 33. J. W. Peters, M. H. Stowell, S. M. Soltis, M. G. Finnegan, M. K. Johnson and D. C. Rees, *Biochemistry*, 1997, **36**, 1181-1187.
- 34. J. Kim, D. Woo and D. C. Rees, *Biochemistry*, 1993, **32**, 7104-7115.
- 35. S. M. Keable, J. Vertemara, O. A. Zadvornyy, B. J. Eilers, K. Danyal, A. J. Rasmussen, L. De Gioia, G. Zampella, L. C. Seefeldt and J. W. Peters, *J. Inorg. Biochem.*, 2017, **180**, 129-134.