Supplementary data

Bis(selenobenzoato)dibutyltin(IV) as a single source precursor for the synthesis of SnSe nanosheets and their photo-electrochemical study for water splitting

Malik Dilshad Khan,^{a,f} Mohammad Aamir,^b Manzar Sohail,^c Mohammad Sher,^b Nadeem Baig,^d Javeed Akhtar,^e Mohammad Azad Malik ^{f*} and Neerish Revaprasadu^{a*}

^aDepartment of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa.

^bSchool of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. ^cDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan.

^dCenter of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

^eDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

^fDepartment of Physics, Nanoscience and Materials Synthesis Lab (NMSL), COMSATS, Institute of Information Technology (CIIT), Chak Shehzad, Islamabad, Pakistan.

*E-mail: RevaprasaduN@unizulu.ac.za

NaBH₄ + Se
$$\xrightarrow{\text{Ethanol}}$$
 NaHSe + $\xrightarrow{\text{Ph}}$ Cl $\xrightarrow{\text{Ethanol}}$ N₂, RT $\xrightarrow{\text{Ph}}$ SeNa
 $\xrightarrow{\text{Ph}}$ SeNa + Bu₂SnCl₂ $\xrightarrow{\text{Ethanol}}$ $\left(\xrightarrow{\text{Ph}}$ Se $\right)_2$ SnBu₂

Scheme S1. The reaction scheme for the synthesis of selenobenzoate salt and bis(selenobenzoato)Bu₂Sn(IV) complex.

Figure S1. p-XRD of residue obtained by decomposition of complex (1) under nitrogen atmosphere showing formation of SnSe (ICDD # 00-014-0159).

Figure S2. EDX spectra of thin films deposited at (a) 375 °C, (b) 425 °C and (c) 475 °C by AACVD.

Figure S3. Thickness of the SnSe film deposited at 425 °C.

Figure S4. The absorption spectra of SnSe thin films, deposited at (a) 375 °C, (b) 425 °C and (c) 475 °C.

Figure S5. Energy band gap of the SnSe thin films, deposited at (a) 375 °C, (b) 425 °C and (c) 475 °C.

Equation S1-S3

 $2H_2 + O_2 \longrightarrow 2H_2O$ (1) $\Delta H = 572 \text{ KJ / Mole}$

This reaction of water splitting involves two half-cell reactions as shown in the following equations 2 and 3.

Oxidation half cell reaction

 $2H_2O \longrightarrow O_2 + 4H^+ + 4e^- E_{ox} = 1.23 V vs NHE$ (2)

Reduction half cell reaction

 $4H^+ + 4e^- \longrightarrow 2H_2 \quad E_{red} = 0 \text{ V vs NHE}$ (3)