## **Supporting Information**

## Efficient Electrocatalytic Hydrogen Gas Evolution by a Cobalt-Porphyrin-based Crystalline Polymer

Yanyu Wu, a José M. Veleta, a Diya Tang, b Alex D. Price, c Cristian E. Botez, Dino Villagrán \*a

<sup>a</sup> Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
<sup>b</sup> Department of Chemistry, Beijing Normal University, Beijing 100875, China
<sup>c</sup> Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, United States.

## Table of contents

| Table of contents                                                                                                                                                     | 2   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure S1. UV-vis spectrum of H <sub>2</sub> TcPP in EtOH.                                                                                                            | 3   |
| Figure S2. UV-vis spectrum of 2 in EtOH.                                                                                                                              | 4   |
| Figure S4. Infrared spectra of 1 and 2                                                                                                                                | 8   |
| Figure S5. EDX spectrum of 1.                                                                                                                                         | 9   |
| <b>Figure S6.</b> Cyclic voltammograms of <b>1</b> and <b>2</b> modified silver/FTO working electrodes in the presence of pH=4.56 buffer solution. Scan rate: 50 mV/s | .10 |
| Figure S7. Tafel plots of 1 and 2.                                                                                                                                    | .11 |
| <b>Figure S8.</b> Polarization curves of <b>1</b> before (solid line) and after (dotted line) 10 hours' constant chronoamperometry analysis at –0.4 V vs. RHE         | .12 |



Figure S1. UV-vis spectrum of H<sub>2</sub>TcPP in EtOH.



Figure S2. UV-vis spectrum of 2 in EtOH.



Figure S3. UV-vis spectrum of 1 dissolved in pH=8 phosphate buffer solution.



**Figure S4.** UV-vis spectrum of **1** dissolved in pH=14 KOH aqueous solution. Precipitation of Co(OH)<sub>2</sub> was observed.



**Figure S4.** <sup>1</sup>HNMR spectrum of **1** dissolved in pH=8 phosphate buffer deuterium oxide solution. The spectrum shows broad signals besides the solvent peak, resulting from the d<sup>7</sup> Co<sup>2+</sup> center.



Figure S4. Infrared spectra of 1 and 2



Figure S5. EDX spectrum of 1.



**Figure S6.** Cyclic voltammograms of **1** and **2** modified silver/FTO working electrodes in the presence of pH=4.56 buffer solution. Scan rate: 50 mV/s.



Figure S7. Tafel plots of 1 and 2.



**Figure S8.** Polarization curves of **1** before (solid line) and after (dotted line) 10 hours' constant chronoamperometry analysis at -0.4 V vs. RHE.