Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Infrared spectroscopy

IR spectrum for hexa-aqua dodecahydro *closo*-dodecaborate of nickel shown in Figure SI1 is typical for isolated $B_{12}H_{12}^{2-}$ anions and water molecules [1, 2]. One can observe the absorption of B-H cage at 1063 cm⁻¹ and B-H stretching absorption around 2470 cm⁻¹. The absorptions characteristic of water are observed at 1605 cm⁻¹ for bending mode and around 3500 cm⁻¹ for stretching mode.

Figure SI1. IR spectra of tri-Ni(H₂O)₆B₁₂H₁₂ at room temperature.

- [1] Muetterties E.L., Balthis J.H., Chia Y.T., Knoth W.H., Miller H.C., Inorg. Chem., 1964, 3, 444-451.
- [2] Max J.J., Chapados C., Journal of chemical physics, 2009, 131, 184505.

Rietveld plots

Figure SI2. Rietveld plot for refinement of *tri*-Ni(H₂O)₆B₁₂H₁₂ at T = 30 °C. SNBL, $\lambda = 0.8187$ Å, $\chi^2 = 4489$, R_{wp} (bgr. corrected) = 0.05, R_{Bragg} = 0.01.

Figure SI3. Rietveld plot for refinement of m_2 -Ni(H₂O)₆B₁₂H₁₂ at T = 182 °C. SNBL, $\lambda = 0.8187$ Å, $\chi^2 = 5625$, R_{wp} (bgr. corrected) = 0.07, R_{Bragg} = 0.02.

Figure SI4. Rietveld plot for refinement of *m*-Ni(H₂O)₄B₁₂H₁₂ at T = 200 °C. SNBL, $\lambda = 0.8187$ Å, $\chi^2 = 24964$, R_{wp} (bgr. corrected) = 0.13, R_{Bragg} = 0.03.

Figure SI5. Rietveld plot for refinement of *m*-NiB₁₂H₁₂ at T = 20 °C. SLS, $\lambda = 0.7097$ Å, $\chi^2 = 21$, R_{wp} (bgr. corrected) = 0.12, R_{Bragg} = 0.01.

Figure SI6. Superposition of Ni(H₂O)₆²⁺ complex extracted from tri-Ni(H₂O)₆(B₁₂H₁₂) (pink, light blue) and m_2 -Ni(H₂O)₆(B₁₂H₁₂) (red, light pink). The gas phase molecule is shown for comparison in brown (oxygen) and grey (hydrogen). The nickel atom as large grey sphere.

Figure SI7. Electronic density of states for Ni-*closo*-borates. All systems are insulating, and the gap states related to *d*-shell of Ni are present. For the octahedrally coordinated cation in *tri*-Ni(H₂O)₆B₁₂H₁₂ the e_g states are located 3.05 eV above the Fermi level; quasi-square planar coordination in *m*-Ni(H₂O)₄B₁₂H₁₂ splitting of d_{x2-y2} and d_{z2} are 2.55 eV above Fermi level. For anhydrous compound more complex structure of the empty gap states located 1.32 eV above Fermi level are present. The position of these gap states depends on Hubbard on-site repulsion U.

Figure SI8. The density of states for nickel *d*-states calculated for anhydrous $NiB_{12}H_{12}$ using various Hubbard on-site repulsion U in eV. The position and splitting of the gap states depends strongly on the strength of U.