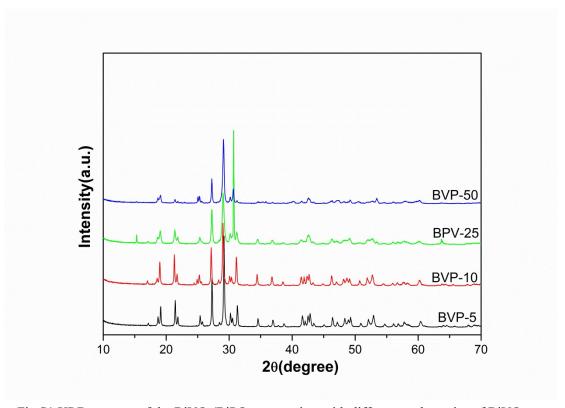
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

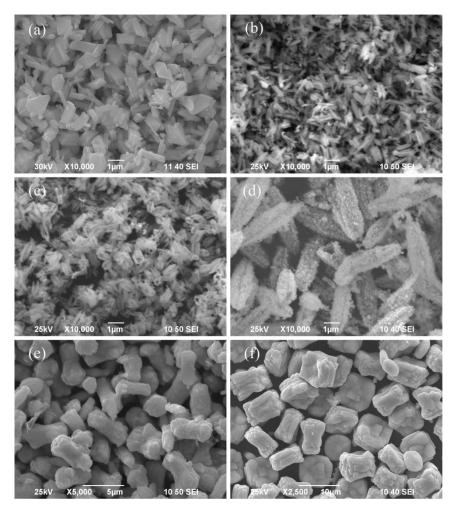
Green synthesis of balsam pear-shaped BiVO₄/BiPO₄ nanocomposite for degradation of organic dye and antibiotic metronidazole

Yunhui Yan^{a*}, Tianjun Ni ^{a,b}, Jinge Du^{b,c}, Li Li^b, Shuai Fu^b, Kun Li^a, Jianguo Zhou^{b,*}

^a Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang


Medical University, Xinxiang, Henan 453003 China

^b School of Environment, Henan Normal University, Henan Engineering Laboratory of


Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China

^c Sanquan College, Xinxiang Medical University, Xinxiang, Henan 453003, PR China

Synthesis of BiPO₄ and BiVO₄: The BiPO₄ and BiVO₄ samples were synthesized through a precipitation-hydrothermal method. Briefly, 2.5 mmol Bi(NO₃)₃·5H₂O was dispersed in 5 mL of ethylene glycol (EG), and sonicated until completely dissolved. After that, 2.5 mmol NaH₂PO₄·2H₂O (or NH₄VO₃) was completely dissolved in 45 mL deionized water, which was added dropwise to the above Bi-EG solution during stirring process at room temperature. Finally, the obtained suspension was poured into a 100 mL Teflon-lined stainless steelautoclave, and maintained at 180 °C for 12h. The autoclave was then cooled down to room temperature naturally. The product was collected, washed with deionized water and dried in vacuum at 60 °C for 10 h.

 $Fig.S1~XRD~patterns~of~the~BiVO_4/BiPO_4~composites~with~different~molar~ratios~of~BiVO_4~to~BiPO_4.$

 $Fig.S2\ SEM\ image\ of (a)\ BiPO_4, (b)\ BVP-5, (c)\ BVP-10, (d)\ BVP-25, (e)\ BVP-50\ and (f)\ BiVO_4.$