Electronic Supplementary Information

Thorium(IV) Alkyl and Allyl Complexes of a Rigid NON-Donor Pincer

Ligand with Flanking 1-Adamantyl Substituents

Nicholas R. Andreychuk,^a Tara Dickie,^a David J. H. Emslie,^{*,a} and Hilary A. Jenkins,^a

^a Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S

4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x 23307.

E-mail: emslied@mcmaster.ca.

Website: http://www.chemistry.mcmaster.ca/emslie/emslie.html

Contents

- 1. ¹H and ¹³C{¹H} NMR spectra of $H_2[XAd]$ (1)
- 2. ¹H and ¹³C{¹H} NMR spectra of [{K(THF)₃}₂(XAd)] (2a)
- 3. ¹H and ¹³C{¹H} NMR spectra of $[(XAd)ThCl_4K_2] \cdot (dme)$ (3)
- 4. ${}^{1}H$, ${}^{13}C{}^{1}H$, and ${}^{13}C$ NMR spectra of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4)
- 5. Variable Temperature ¹H NMR spectra of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4)
- 6. Low Temperature ¹H and ¹³C{¹H} NMR spectra of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4)
- 7. High Temperature ¹H and ¹³C{¹H} NMR spectra of $[(XAd)Th(\eta^3-allyI^{TMS})_2]$ (5)
- 8. Variable Temperature ¹H NMR spectra of $[(XAd)Th(\eta^3-allyl^{TMS})_2]$ (5)
- 9. Low Temperature ¹H NMR spectrum of $[(XAd)Th(\eta^3-allyl^{TMS})_2]$ (5)

¹H NMR spectrum of H₂[XAd] (**1**) in benzene-*d*₆ (600.1 MHz, 298 K)

* denotes benzene-d₅

¹H NMR spectrum of [{K(THF)₃}₂(XAd)] (**2a**, *in-situ*) in THF-*d*₈ (600.1 MHz, 298 K)

* denotes THF-*d*₇; the CMe₃ signal is truncated.

* denotes THF-*d*₈ (THF-*d*₈ signals truncated)

¹H NMR spectrum of [(XAd)ThCl₄K₂]·(dme) (**3**) in THF-*d*₈ (600.1 MHz, 298 K)

* denotes THF-*d*₇; the CMe₃ signal is truncated.

* denotes THF- d_8 (THF- d_8 signals truncated)

¹H NMR spectrum of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4) in benzene- d_6 (600.1 MHz, 298 K)

* denotes benzene- d_5 ; the CMe₃ and SiMe₃ signals are truncated.

* denotes benzene- d_6 ; benzene- d_6 , CM e_3 , and Ad CH peaks are truncated.

¹³C NMR spectrum of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4) in benzene-d₆ (150 MHz, 298 K)

- Proton coupled, Th<u>C</u>H₂SiMe₃ resonance highlighted

Variable Temperature ¹H NMR spectra of [(XAd)Th(CH₂SiMe₃)₂(THF)] (**4**) in toluene-*d*₈ (500.1 MHz, 197–298 K)

* denotes toluene- d_7 , † denotes hexanes; the CMe₃ and SiMe₃ signals are truncated.

Low T¹H NMR spectrum of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4) in toluene-d₈ (500.1 MHz, 197 K)

* denotes toluene- d_7 , † denotes hexanes; the CMe₃ signal is truncated.

* denotes toluene- d_8 ; toluene- d_8 signals are truncated. Region between 22 and 44 ppm is expanded on the following page.

Expanded Region of the Low T ${}^{13}C{}^{1}H$ NMR spectrum of [(XAd)Th(CH₂SiMe₃)₂(THF)] (4) in toluene- d_8 (125 MHz, 197 K)

* denotes minor impurities (including *n*-hexane at ~ 23 and 32 ppm).

High T¹H NMR spectrum of $[(XAd)Th(\eta^3-allyl^{TMS})_2]$ (5) in toluene- d_8 (500.1 MHz, 360 K)

* denotes toluene- d_7 , † denotes O(SiMe₃)₂; the CMe₃, O(SiMe₃)₂, and SiMe₃ signals are truncated.

* denotes toluene- d_8 , + denotes O(SiMe₃)₂; toluene- d_8 and O(SiMe₃)₂ peaks are truncated.

<u>Variable Temperature ¹H NMR spectra of $[(XAd)Th(\eta^3-allyl^{TMS})_2]$ (5) in toluene- d_8 </u> (500.1 MHz, 210–360 K)

Two separate samples were used for the high- and low temperature experiments. * denotes toluene- d_7 , † denotes *n*-pentane, ‡ denotes O(SiMe₃)₂; the CMe₂, CMe₃, O(SiMe₃)₂, and SiMe₃ signals are truncated.

<u>Variable Temperature ¹H NMR spectra of $[(XAd)Th(\eta^3-allyl^{TMS})_2]$ (5) in toluene- d_8 </u> (500.1 MHz, 210–360 K)

Silyl region highlighted; two separate samples were used for the high- and low temperature experiments {the sample used for high-temperature experiments contains O(SiMe₃)₂}.

Low T ¹H NMR spectrum of $[(XAd)Th(\eta^3-allyI^{TMS})_2]$ (5) in toluene- d_8 (500.1 MHz, 210 K)

Selected resonances highlighted. * denotes toluene- d_7 , † denotes *n*-pentane; the CMe₃, and SiMe₃ signals are truncated.

