Electronic Supporting Information

Tunable $CsPbBr_3/Cs_4PbBr_6$ Phase Transformation and Their Optical Spectroscopy

Xiao Chen¹, Daqin Chen^{1,2}*, Junni Li¹, Gaoliang Fang¹, Hongchao Sheng³, Jiasong Zhong¹

¹College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, P. R. China

²College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China

³Department of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China

*Corresponding author, E-Mail: dqchen@hdu.edu.cn Fax: (+ 86)-0571-87713538

sample	lifetime (ns)			
	Br:Cl=2:1	Br	Br:I=1:2	Br:I=2:1
CsPbX ₃	4.6	6.9	14.6	29.3
Cs ₄ PbX ₆	10.4	13.0	20.2	32.6

Table S1 The evaluated lifetime values of $CsPbX_3$ and C_4PbX_6 products with different halogen ratios.

Figure S1 Quantitative excitation and emission spectra (λ_{ex} =375 nm) of (a) CsPbBr₃ sample and (b) Cs₄PbBr₆ one recorded by a spectrofluorometer equipped with an integrating sphere for quantum yield (QY) measurement.

Figure S2 (a) PL/Absorption spectra and (b) time-resolved fluorescence decay curves of the synthesized products obtained by using different amounts of OA and OM surfactants, transforming from 3D perovskite CsPbBr₃ to 0D perovskite-related Cs₄PbBr₆.

Figure S3 Temperature-dependent emission spectra of Cs₄PbBr₆ product.

Figure S4 (a) XRD patterns, (b) PL/Absorption spectra and (c) time-resolved fluorescence decay curves of the synthesized products obtained by using different amounts of OA and OM surfactants, transforming from 3D perovskite $CsPb(Br/Cl)_3$ to 0D perovskite-related $Cs_4Pb(Br/Cl)_6$ with Br/Cl ratio of 2:1.

Figure S5 FTIR spectra of the as-prepared $CsPbBr_3$ and Cs_4PbBr_6 samples, showing the presence of COOH and NH_2 groups on the surfaces of $CsPbBr_3$ and Cs_4PbBr_6 particles.

Figure S6 A typical fluorescence image of CsPbBr₃ particles.