Mild and Selective Pd-Ar Protonolysis and C-H Activation Promoted by a Ligand Aryloxide Group

Ava Behnia, Mahmood A. Fard, Johanna M. Blacquiere* and Richard J. Puddephatt*

Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7 E-mail: jmb, johanna.blacquiere@uwo.ca. ORCID ID: 0000-0001-6371-6119;

rjp, pudd@uwo.ca. ORCID ID: 0000-0002-9846-3075

4S
4S-12S

Figure S11-¹H-¹³C HMBC Spectrum of **2** in CDCl₃

Figure S12- ¹H NMR Spectrum of 2 in (CD₃)₂CO

Figure S13-¹³C NMR Spectrum of **2** in (CD₃)₂CO

Figure S14-¹H-¹H gCOSY Spectrum of **2** in (CD₃)₂CO

Figure S15-¹H-¹³C HSQC Spectrum of **2** in (CD₃)₂CO

Figure S16- ¹H-¹³C HMBC Spectrum of **2** in (CD₃)₂CO

Figure S17-²H NMR Spectrum of **2-***d*₂ in (CH₃)₂CO

Figure S18-¹H NMR Spectrum of **3** in CDCl₃

Figure S19-¹³C NMR Spectrum of **3** in CDCl₃

Figure S20-¹H-¹H gCOSY Spectrum of **3** in CDCl₃

Figure S21-¹H-¹³C HSQC Spectrum of **3** in CDCl₃

Figure S22-¹H-¹³C HMBC Spectrum of **3** in CDCl₃

Figure S23- ¹H NMR spectrum (CD₂Cl₂) of cold **H(L1)** (-35°C) + cold [**Pd(CH₂CMe₂C₆H₄)(COD)**] (-20°C), at a) -20°C b) -10°C c) -5°C d) 0°C e) 5°C f) 25°C.

Mass Spectrometry of Pd(II) Complexes

Figure S24- The MALDI MS isotope patterns for [1]⁺⁺ and [2]⁺⁺

Figure S25- The MALDI MS isotope patterns for [3a/3b]⁺⁺

UV-VIS Study

Experimental Procedure

Table S1. UV-Vis absorption spectroscopy data for 1 in different solvents

13S

13S-15S

Figure S26- UV-Visible absorption spectra of 1

Figure S27- Correlation of the wavenumber $(\bar{\upsilon})$ of **1** with the normalized Reichardt solvent polarity factor (E_T)

Figure S28- Calculated structure and frontier orbitals for complex 1; (a) structure, (b) LUMO, (c) HOMO, (d) HOMO–1

Efforts toward Mechanism Characterization

15S-20S

General Procedure

Table S2. Solvent effect study for the isomerization of 1 to 2

Table S3. Concentration effect study for the isomerization of 1 to 2

Table S4. Time effect study for the isomerization of 1 to 2

Table S5. Light effect study for the isomerization of 1 to 2

Table S6. Heating effect study for the isomerization of 1 to 2

Table S7. Deuterium effect study for the isomerization of 1 to 2

Figure S29- Deuterium effect study for the isomerization of 1 to 2

Table S8. Water effect study for the isomerization of 1 to 2

Figure S30- Isomerization of 1 to 2 in dry and wet solvents

X-ray Structure Determination 208-218

Table S9. Crystallographic data and parameters for compounds 1, 2 and 3

References

21S-22S

Representative procedure for deuterium labeling to give 1-d₂ and 2-d₂:

H(L1) (0.009 g, 0.046 mmol) was dissolved in CD₃OD (1.5 mL) and stirred for 3 minutes. Then the solution was dried under vacuum to give a yellow powder, **D(L1)**. Next, **D(L1)** was dissolved in CD₂Cl₂ (0.3 mL) and was added to a solution of [Pd(CH₂CMe₂C₆H₄)(COD)] (0.016 g, 0.046 mmol) in CD₂Cl₂ (0.3 mL) and D₂O (140 µL), while stirring. An immediate color change from yellow to dark purple was observed. After 10 minutes, a ¹H NMR experiment was performed of the purple solution identified as **1**-*d*₂. Then, the solution was fully dried under vacuum to give **1**-*d*₂ as a purple powder. Next, **1**-*d*₂ was dissolved in acetone to analyze by ²H NMR spectroscopy. ²H NMR for **1**-*d*₂ ((CH₃₎₂CO, 92.0 MHz): δ 7.66 (br, *D*5 and *D*9). **1**-*d*₂ was dried under vacuum and dissolved in dry CD₂Cl₂ while stirring. To perform ²H NMR for **2***d*₂ ((CH₃₎₂CO, 92.0 MHz): δ 7.17(br, *D*4), 1.69 (br, *D*1).

NMR Characterization of Pd(II) Complexes

Chart S1 – Atom labeling scheme for the reported compounds 1, 2, 3a and 3b used for NMR spectroscopy signal assignment.

Figure S5- $^{1}H^{-13}C$ HMBC spectrum (CDCl₃) of 1, at 25°C.

Figure S7-¹H NMR spectrum (CDCl₃) of **2**, at 25°C.

Figure S8- ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃) of **2**, at 25°C.

Figure S9- ${}^{1}H$ - ${}^{1}H$ gCOSY spectrum (CDCl₃) of **2**, at 25°C.

Figure S10- ^{1}H - ^{13}C HSQC spectrum (CDCl₃) of **2**, at 25°C.

Figure S11- ${}^{1}H$ - ${}^{13}C$ HMBC spectrum (CDCl₃) of **2**, at 25°C.

Figure S14- ${}^{1}H$ - ${}^{1}H$ gCOSY spectrum ((CD₃)₂CO) of **2**, at 25°C.

Figure S19-¹³C{¹H} NMR spectrum (CDCl₃) of 3a/3b, at 25°C.

Figure S22- ¹H-¹³C HMBC spectrum (CDCl₃) of **3a/3b**, at 25°C.

Figure S23- ¹H NMR spectra (CD₂Cl₂) of a) **H(L1)** at 25°C; b) [**Pd(CH₂CMe₂C₆H₄)(COD)**] at -20° C; and a 1:1 mixture of pre-cooled **H(L1)** (-35 °C) and [**Pd(CH₂CMe₂C₆H₄)(COD)**] (-20°C) at c) -20°C; d) -10°C; e) -5°C; f) 0°C; g) 5°C; and h) 25°C.

Mass Spectroscopy of Pd(II) Complexes

Figure S24- The MALDI MS isotope patterns for [1]^{•+} and [2]^{•+} obtained using anthracene matrix: (a) simulated, (b) observed [1]^{•+} and (c) observed [2]^{•+}.

Figure S25- The MALDI MS isotope patterns for [**3a/3b**]⁺ obtained using anthracene matrix: (a) simulated and (b) observed.

UV-VIS Study

Experimental Procedure

A solution of complex 1 (8.58×10^{-5} M, 3.0 mL) was prepared in different solvents (methanol, acetonitrile, dichloromethane, chloroform and benzene) and placed into a 4 mL cuvette (optical path length 1 cm) at room temperature.

Table S1. UV-Vis absorption spectroscopy data for 1 in different solvents.

Solvent	ε ^a	${E_T}^{N b}$	$\lambda_{max} (nm)$	$1/\lambda_{\rm max} (10^3 {\rm cm}^{-1})$	ε
МеОН	33.6	55.5	525	19.04	1375
CH ₃ CN	37.5	46	555	18.02	940
CH_2Cl_2	8.9	41.1	570	17.54	1904
CHCl ₃	4.8	39.1	580	17.24	1652
C_6H_6	2.2	34.5	585	17.09	1525

^a Dielectric constant. ^b Normalized Reichardt solvent polarity factor (kcal mol⁻¹ at 25°C). ^{1-3 c} Molar absorptivity (cm⁻¹ mol⁻¹ L).

Figure S26. Top: UV-Visible absorption spectra of $\mathbf{1}$ (8.58 × 10⁻⁵ M) in (a) C₆H₆, (c) CH₂Cl₂ and (e) CH₃OH. Bottom: photograph of solutions of $\mathbf{1}$ (8.58 × 10⁻⁵ M) in (a) C₆H₆; (b) CHCl₃; (c) CH₂Cl₂; (d) CH₃CN; (e) CH₃OH.

Figure S27. Correlation of wavenumber $(\bar{\upsilon})$ with the solvent Normalized Reichardt polarity factor (E_T) value.

Figure S28. Calculated structure and frontier orbitals for complex 1; (a) structure, (b) LUMO, (c) HOMO, (d) HOMO–1.

Efforts toward Mechanism Characterization

General Procedure for the Isomerization of 1 to 2

All reactions were carried out under air and on an NMR scale. Internal standard, (1,3,5-trimethoxybenzene) (0.002 g, 0.012 mmol) was added to a solution of **1** (0.016 g, 0.036 mmol) in an appropriate solvent (1.5 mL) and the reaction was stirred in a 4 mL vial. At specific time points, reactions were monitored by ¹H NMR spectroscopy. More details are included in the tables (Table S2-S8).

Entry	Solvent	E	1 (%)	2 (%)	By-product (%)
1	CD ₃ CN	37.5	67	33	0
2	DMF	36.7	48	35	17
3	CH ₃ OH	33.6	42	58	0
4	Isopropanol	17.9	95	5	0
5	CD_2Cl_2	8.9	70	30	0
6	2,2,2-	8.55	0	0	100

Table S2. Solvent effect study for the isomerization reaction.

	trifluoroethanol				
7	THF	7.58	92	8	0
8	CDCl ₃	4.8	68	32	0
9	CS_2	2.6	0	0	100
10	1,4-Dioxane	2.25	100	0	0
11	CCl_4	2.24	100	0	0
12	C_6D_6	2.2	98	2	0
	Conditions: [1] =	0.72 mM. Tim	$e = 22h.^{b}$ Dielec	etric constant.	

Table S3. Concentration study for the isomerization reaction.

Entry	Solvent	E ^b	[1] (mM)	1 (%)	2 (%)	BP (%)
1	CDCl ₃	4.8	0.72	68	32	0
2	CDCl ₃	4.8	3.33	70	30	0
3	CDCl ₃	4.8	5	74	26	0
4	CDCl ₃	4.8	10	70	30	0

Condition: Time = 22h.^b Dielectric constant

Table S4. Time study for the isomerization reaction.

Entry	Solvent	$\mathcal{E}^{\mathfrak{b}}$	Time	1 (%)	2 (%)	BP (%)
			(h)			
1	CDCl ₃	4.8	22	68	32	0
2	CDCl ₃	4.8	44	55	45	0
3	CDCl ₃	4.8	66	43	57	0
4	CDCl ₃	4.8	154	27	58	15
5	CH ₃ OH	33.6	22	42	58	0
6	CH ₃ OH	33.6	154	10	90	0
	~		• - • • •	h		

Condition: [1] = 0.72 mM.^b Dielectric constant.

Table S5. Light effect study for the isomerization reaction.

Entry	Solvent	$\mathcal{E}^{\mathfrak{b}}$	Condition	Time	1	2	BP (%)
				(h)	(%)	(%)	
1	CDCl ₃	4.8	Light	22	68	32	0
2	CDCl ₃	4.8	Light	44	55	45	0

3	CDCl ₃	4.8	Light	66	43	57	0
4	CDCl ₃	4.8	Dark ^c	22	65	35	0
5	CDCl ₃	4.8	Dark	44	60	50	0
6	CDCl ₃	4.8	Dark	66	40	60	0

Condition: [1] = 0.72 Mm, Time = 22 h.^b Dielectric constant.^c The vial was wrapped in an aluminum foil.

Table S6. Heating effect study for isomerierization reaction.

entry	Solvent	E	Time	Temperature ^c	1 (%)	2 (%)	BP (%)
			(h)				
1	CH ₃ OH	33.6	22	43°C	25	75	0
2	CH ₃ OH	33.6	44	43°C	8	80	12
3	CH ₃ OH	33.6	66	43°C	4	30	66

Condition: [1] = 0.72 mM.^b Dielectric constant.^c The vial was heated in an oil bath.

Table S7. Deuterium effect study for the isomerization reaction.

Entry	Solvent	E	Time	1 (%)	2 (%)	BP (%)
			(min)			
1	CH ₃ OH	33.6	60	93	7	0
2	CH ₃ OH	33.6	120	89	11	0
3	CH ₃ OH	33.6	180	85	15	0
4	CH ₃ OH	33.6	240	80	20	0
5	CH ₃ OH	33.6	300	78	22	0
6	CH ₃ OH	33.6	1320	42	58	0
7	CH ₃ OH	33.6	2640	34	66	0
8	CH ₃ OH	33.6	6600	10	90	0
9	CD ₃ OD	33.6	60	100	0	0
10	CD ₃ OD	33.6	120	100	0	0
11	CD ₃ OD	33.6	180	100	0	0
12	CD ₃ OD	33.6	240	100	0	0

13	CD ₃ OD	33.6	300	100	0	0
14	CD ₃ OD	33.6	1320	97	3	0
15	CD ₃ OD	33.6	2640	95	5	0
16	CD ₃ OD	33.6	6600	0	0	100
17	CHCl ₃	4.8	1320	70	30	0
18	CDCl ₃	4.8	1320	68	32	0
19	CH_2Cl_2	8.9	1320	72	28	0
20	CD_2Cl_2	8.9	1320	70	30	0

Condition: [1] = 0.72 mM.^b Dielectric constant.

Figure S29. Isomerization reaction of **1** to **2** in protonated- and deuterated-methanol. *Plot of* $Ln \frac{([2]-[2]\infty)}{([2]0-[2]\infty)}$ versus time (min). solid line: CH₃OH. Dash line: CD₃OD, both fit to $y=(m1)+(m2)^*(M0)$ where $y=Ln \frac{([2]-[2]\infty)}{([2]0-[2]\infty)}$ and M0=time.

Table S8. Water effect study for the isomerization study.

Entry	Solvent	E ^b	Condition	Time	1	2	BP
				(h)	(%)	(%)	(%)
1	CH ₃ OH	33.6		22	42	58	0
2	CH ₃ OH	33.6	H ₂ O (10 µL)	22	46	54	0
3	CH ₃ OH	33.6	H ₂ O (50 µL)	22	44	56	0
4	CH ₃ OH	33.6	H ₂ O (100 µL)	22	46	54	0
5	CDCl ₃	4.8	Dry ^c	22	66	34	0
6	CDCl ₃	4.8	Dry ^c	44	48	52	0
7	CDCl ₃	4.8	H ₂ O (100 µL)	22	67	33	0

8	CDCl ₃	4.8	H ₂ O (100 μL)	44	46	54	0
9	CDCl ₃	4.8	D ₂ O (100 µL)	22	93	7	0
10	CDCl ₃	4.8	D ₂ O (100 µL)	44	86	14	0
11	CDCl ₃	4.8	CH ₃ OH (0.5 mL)	22	37	63	0
12	CDCl ₃	4.8	CH ₃ OH (0.5 mL)	44	32	68	0
13	CDCl ₃	4.8	CD ₃ OD (0.5 mL)	22	91	9	0
14	CDCl ₃	4.8	CD ₃ OD (0.5 mL)	44	83	17	0
15	CD_2Cl_2	8.9	Dry ^c	22	74	26	0
16	CD_2Cl_2	8.9	H ₂ O (100 µL)	22	82	18	0
17	CD_2Cl_2	8.9	D ₂ O (100 µL)	22	100	0	0
18	CH ₃ CN	37.5	Dry ^c	22	66	34	0
19	CH ₃ CN	37.5	H ₂ O (100 µL)	22	70	30	0
20	CH ₃ CN	37.5	D ₂ O (100 µL)	22	100	0	0

Condition: [1] = 0.72 mM.^b Dielectric constant.^c Dry solvents (1 mL ampules) were purchased from Sigma-Aldrich and stored on 4 A sieves in the dry-box for three days before usage.

Figure S30. Isomerization of **1** to **2** in dry CHCl₃ (green), dry CHCl₃ with 10 equiv. H₂O (blue) and dry CHCl₃ with 10 equiv. D₂O (orange) Reactions were carried out in the presence of an internal standard (1,3,5-trimethoxybenzene).

X-ray Structure Determinations.⁴⁻⁷

Data Collection and Processing. A crystal was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made using a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The frame integration was performed using SAINT, and the resulting raw data were scaled and absorption corrected using a multiscan averaging of symmetry equivalent data using SADABS.

Structure Solution and Refinement. The structures were solved by using the SHELXT program. All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The structural model was fit to the data using full-matrix least squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the SHELXL-2014 program from the SHELX suite of crystallographic software.⁴⁻⁷ Details are given in Table S9 and in CCDC 1811772-1811773.

	1	2	3b
CCDC	1811772	1811771	1811773
Formula	$C_{22}H_{22}N_2OPd.C_6H_6$	$C_{22}H_{22}N_2OPd.C_6H_6$	$C_{22}H_{22}N_2Pd$
Formula weight	514.92	514.92	420.81
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P 2 ₁ /c	P 2 ₁	P 21/c
a [Å]	6.515(2)	8.509(4)	11.322(4)
<i>b</i> [Å]	18.388(7)	9.397(4)	17.535(5)
c [Å]	18.995(7)	14.443(7)	9.999(2)
α [°]	90	90	90
β[°]	91.858(10)	91.146(17)	112.549(9)
γ [°]	90	90	90
V[Å ³]	2274.4(14)	1154.6(9)	1833.3(9)
Ζ	4	2	4
$\rho_{\rm cal} [{\rm g} {\rm cm}^{-3}]$	1.504	1.481	1.525
l, Å, (MoKa)	0.71073	0.71073	0.71073
F(000)	1056	528	856
Temperature [K]	110	110	110
$\theta_{\min}, \theta_{\max}$ [°]	6.16, 57.24	5.18, 65.18	3.03, 38.30
Total reflns	60652	24450	10890
Unique reflns	5850	3724	9155
R_1	0.0493	0.0372	0.0236
$wR_2 [I \ge 2\sigma(I)]$	0.1046	0.0910	0.0628
R_1 (all data)	0.0952	0.0431	0.0337
wR_2 (all data)	0.1252	0.0948	0.0726
GOF	1.003	1.011	1.095

Table S9. Crystallographic data and parameters for compounds 1, 2 and 3b

References

- 1) A. Marini, A. Muñoz-Losa, A. Biancardi and B. Mennucci, J. Phys. Chem. B, 2010, 114, 17128-17135.
- 2) N. Chaudhury and R. J. Puddephatt, J. Organomet. Chem., 1975, 84, 105-115.
- 3) T. Yamamoto, A. Yamamoto and S. Ikeda, J. Am. Chem. Soc., 1971, 93, 3350-3359.
- 4) SAINT version 2013.8; Bruker-AXS, Madison, WI 53711, USA, 2013.

- 5) SADABS version 2012.1; Bruker-AXS, Madison, WI53711, USA, 2012.
- 6) G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3.
 7) G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3.