Electronic Supplementary Information

N- and S-donor leaving groups in triazole-based ruthena(II)cycles: Potent anticancer activity, selective activation, and mode of action studies

Christoph A. Riedl^{a,b}, Michaela Hejl^a, Matthias H.M. Klose^{a,b}, Alexander Roller^a, Michael A. Jakupec^{a,b}, Wolfgang Kandioller^{a,b*}, and Bernhard K. Keppler^{a,b}

(a) Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, and (b) Research Cluster "Translational Cancer Therapy Research", Waehringer Str. 42, 1090 Vienna, Austria

(*) wolfgang.kandioller@univie.ac.at, Tel: +43-1-4277-52609; Fax: +43-1-4277-9526

Table of Contents

1.	Experimental and calculated pKa values	2
2.	NMR investigations	3
3.	Single crystal x-ray diffraction analysis	5
4.	Stability in aqueous solution	. 14
5.	Oxidation of 3a	. 18
6.	Amino acid binding studies	. 19
7.	Chromatographic lipophilicity index ϕ_0	. 23
8.	ROS generation	.24
9.	Methyl green DNA intercalation assay	. 26
10.	Flow cytometric detection of apoptotic cells	. 27
11.	¹ H and ¹³ C NMR spectra	. 28

1. Experimental and calculated pKa values

Respective Complex	Ligand	pK_{a}	Reference	calculated pK_a^b
2a	1 <i>H-</i> Imidazole	6.99	CRC Handbook ³	7.18 ± 0.61
2b	1-Methylimidazole	6.95	CRC Handbook ³	7.01 ± 0.10
2c	4-Phenylimidazole	-	-	6.68 ± 0.10
2d	1 <i>H</i> -Pyrazole	2.49	CRC Handbook ³	2.83 ± 0.10
2e	1 <i>H</i> -Indazole	1.31ª	Catalán et al. ⁴	1.26 ± 0.10
2f	Pyridine	5.23	CRC Handbook ³	5.23 ± 0.10
2g	Isoquinoline	5.4	CRC Handbook ³	5.37 ± 0.23
2h	Imidazo[1,2-a]pyridine	6.79ª	Catalán et al. ⁴	6.80 ± 0.30
2i	Benzothiazole	1.2	Eicher at al. ⁵	0.85 ± 0.10

Table S1Experimentally measured and calculated (ACD/Labs) pKa values (conjugated acid) of the metal-coordinating nitrogen
donor atom at 25 °C.

a) Corrected to 25 °C

b) Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs)

2. NMR investigations

Figure S1 ¹H NMR spectra of 2d (top), 2i (middle), and 2h (bottom) with dashed lines highlighting roof effect.

Figure S2 ¹H NMR of **2e** at four different concentrations in CDCl₃, illustrating the concentration-dependence of aromatic arene and methylene protons.

Figure S3 Overlay of ¹H DOSY NMR spectra of **2e** recorded at three different concentrations in CDCl₃.

3. Single crystal x-ray diffraction analysis

Sample	Diffracto- meter	Source	Temp. [K]	Detector distance [mm]	Time per frame [s]	No. of frames	Frame width [°]	CCDC
2e	X8	Мо	100	35	50	2835	0.5	1575667
2i	X8	Мо	100	35	30	1773	0.5	1575668
3a	D8	Мо	100	34	24	1419	0.5	1575669

Table S2 Experimental parameters and CCDC codes.

 Table S3
 Selected bond lengths.

Commound	Bond lengths (Å)								
Compound	Ru–LG	Ru–N3	Ru–PhC2	PhC1-PhC2	PhC2-PhC3	PhC3-PhC4	PhC4-PhC5	PhC5-PhC6	PhC6-PhC1
1 _A	2.4280(18)	2.069(6)	2.057(6)	1.429(9)	1.431(9)	1.387(9)	1.394(10)	1.401(10)	1.383(9)
1 _B	2.4165(17)	2.067(6)	2.063(6)	1.418(9)	1.416(9)	1.365(8)	1.410(10)	1.383(9)	1.398(9)
2e _A	2.087(4)	2.058(4)	2.077(5)	1.413(8)	1.385(8)	1.408(9)	1.372(11)	1.377(10)	1.394(8)
2e _B	2.088(4)	2.067(4)	2.082(5)	1.398(8)	1.397(7)	1.385(8)	1.376(9)	1.376(9)	1.392(8)
2i _A	2.130(3)	2.068(3)	2.072(4)	1.415(5)	1.401(6)	1.399(6)	1.380(6)	1.392(6)	1.393(5)
2i _B	2.110(3)	2.086(3)	2.083(4)	1.408(6)	1.397(5)	1.401(5)	1.384(6)	1.388(5)	1.390(5)
3a	2.3620(4)	2.0607(13)	2.0761(17)	1.419(2)	1.400(2)	1.396(3)	1.386(4)	1.391(3)	1.393(3)

Table S4Selected bond lengths.

Commonwed	Bond lengths [Å]							
Compound	N1–N2	N2-N3	N3-C4	C4–C5	C5-N1	C4–PhC1	N1–BnCH ₂	Ring slipage ^a
1 A	1.338(7)	1.329(8)	1.367(8)	1.372(10)	1.365(8)	1.451(10)	1.451(8)	0.095
1 _B	1.351(7)	1.324(7)	1.368(8)	1.382(9)	1.345(8)	1.472(9)	1.470(8)	0.095
2e _A	1.341(7)	1.309(6)	1.376(7)	1.386(8)	1.334(9)	1.441(8)	1.464(7)	0.082
2e _B	1.324(7)	1.318(6)	1.360(7)	1.368(8)	1.345(8)	1.458(7)	1.480(7)	0.077
2i _A	1.339(5)	1.327(4)	1.361(5)	1.379(5)	1.347(5)	1.455(5)	1.480(5)	0.082
2i _B	1.346(4)	1.320(4)	1.369(5)	1.369(5)	1.351(5)	1.456(5)	1.462(5)	0.077
3a	1.342(2)	1.3214(19)	1.366(2)	1.377(2)	1.348(2)	1.450(2)	1.468(2)	0.064

(a) Distance between the perpendicular projection of an heavy atom on the ring l.s.-plane and the arene ring

Table S5	Selected	bond	angles.
----------	----------	------	---------

Compound	Bond angles [°]								
Compound	PhC2–Ru–LG	LG-Ru-N3	N3–Ru–PhC2	Ru–PhC2–PhC1	Ru–PhC2–PhC3	PhC1–C4–C5	PhC1–C4–N3	Ru–N3–N2	Ru–N3–C4
1 _A	87.29(17)	84.99(15)	77.4(3)	117.4(5)	128.1(5)	138.5(6)	115.5(6)	130.4(4)	117.5(5)
1 _B	86.95(16)	86.58(14)	77.5(2)	117.0(5)	115.0(6)	138.9(6)	114.0(6)	131.4(4)	118.3(4)
2e _A	84.53(19)	86.19(17)	77.7(2)	116.1(4)	126.6(4)	139.6(6)	115.1(5)	131.1(4)	117.4(4)
2e _B	85.01(18)	87.77(17)	77.30(18)	116.1(4)	127.3(4)	138.9(5)	114.5(5)	130.8(4)	117.9(3)
2i A	85.67(13)	90.75(12)	77.24(15)	116.6(3)	127.1(3)	138.5(4)	114.6(3)	130.2(3)	118.1(3)
2i _B	87.26(13)	88.58(12)	77.22(13)	116.5(3)	127.0(3)	138.2(4)	114.8(3)	131.5(2)	117.5(2)
3a	86.90(5)	89.73(4)	77.52(6)	116.17(12)	127.52(14)	138.33(17)	115.01(14)	130.81(11)	117.90(11)

 Table S6
 Selected torsion angles.

Compound	Torsion angles [°]					
Compound	BnCH ₂ -N1-C5-C4	BnCH ₂ –N1–C5–C4 N3–C4–PhC1–PhC2				
1 _A	177.2(5)	-4.4(8)	82.7(8)			
1 _B	-179.7(5)	-2.9(7)	90.4(7)			
2e _A	-169.6(5)	0.4(7)	83.4(8)			
2e _B	168.4(5)	-1.4(6)	-83.9(7)			
2i _A	-176.8(3)	-2.7(4)	94.4(5)			
2 i _B	-179.9(3)	-3.0(5)	-90.9(5)			
3a	174.10(16)	-0.5(2)	-71.6(2)			

3.1. [((2- κ N)-1H-Indazole)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η^{6} -p-cymene)ruthenium(II)] nitrate (**2e**)

Figure S4 Crystal structure of **2e**, drawn with 50% displacement ellipsoids. The second molecule of the asymmetric unit, solvent molecules and counter ions were omitted for clarity.

Chemical formula	$C_{64}H_{66}N_{12}O_7Ru_2$	Crystal system	monoclinic	
Formula weight (g/mol)	1317.42	Space group	P21/	/c
Temperature (K)	100	Z	4	
Measurement method	\f and \w scans	Volume (Å ³)	6151.8	8(11)
Radiation wavelength (Å)	ΜοΚα (λ = 0.71073)	Unit cell dimensions	10.6875(11)	90
Crystal size (mm ³)	0.23 × 0.06 × 0.025	(Å) and (°)	22.259(2)	90.648(4)
Crystal habit			25.861(3)	90
Density (calculated) (g/cm³)	1.422	Absorption coefficient (mm ⁻¹)	0.554	
Abs. correction T _{min}	0.6739	Abs. correction T_{max}	0.7460	
Abs. correction type	multi-scan	F(000) (e ⁻)	2712	

Table S7Sample and crystal data of 2e.

 Table S8
 Data collection and structure refinement parameters of 2e.

Index ranges	-12 ≤ h ≤ 12, -25 ≤ k ≤ 26 -31 ≤ l ≤ 31
Reflections number	166872
Refinement method	Least squares
Function minimized	$\Sigma w(Fo^2-Fc^2)^2$
Goodness-of-fit on F ²	1.042
Largest diff. peak and hole [e Å ⁻³]	2.06/-2.01

Theta range for data collection (°)	3.642 to 50.7			
Data / restraints / parameters	11203 / 165 / 764			
Final P indices	all data	$R_1 = 0.0791$ w $R_2 = 0.1627$		
	l>2σ(l)	$R_1 = 0.0563$ w $R_2 = 0.1492$		
Weighting scheme	w=1/[s ² (Fo ²)+(0.0717P) ² +33.9060P] where P=(Fo ² +2Fc ²)/3			

Figure S5 Asymmetric unit of **2e**, drawn with 50% displacement ellipsoids. Four NO_3^- must be part of the asymmetric unit as evidenced by other analyses presented herein. Four positions could be characterized, but we believe that there is a fifth position to part for NO_3^- as visualized by the displacement ellipsoids and confirmed by the need to cut solvent-available void. Details about the excluded volume are part of the cif (_refine_special_details & _shelx_fab_file).

Figure S6 It was not possible to locate approximately 53% of one of two disordered NO₃⁻ ions in the unit cell. The orange ellipsoid describes the location of the corresponding NO₃⁻ accessible void. The HKL masked volume is two times 191.2 Å³ per unit cell, and the electron content is two times 45.8 per unit cell. This indicates that in addition to the missing nitrate, also some water molecules are present in the available void. NO₃⁻ was fixed with the help of DFIX and EADP.

3.2. $[(\kappa N-1,3-Benzothiazole)(1-benzyl-4-(2'-\kappa C)-phenyl-1,2,3-(3-\kappa N)-triazolato)(\eta^6-p-cymene)ruthenium(II)]$ nitrate (**2i**)

Figure S7 Crystal structure of **2i**, drawn with 50% displacement ellipsoids. The second molecule of the asymmetric unit, solvent molecules and counter ions were omitted for clarity.

Chemical formula	$C_{33}H_{34}Cl_2N_5O_{3.5}RuS$
Formula weight (g/mol)	760.68
Temperature (K)	100
Measurement method	\f and \w scans
Radiation wavelength (Å)	ΜοΚ _α (λ = 0.71073)
Crystal size (mm ³)	0.12 × 0.08 × 0.03
Crystal habit	Clear yellow needle
Density (calculated) (g/cm³)	1.538
Abs. correction T _{min}	0.6935
Abs. correction type	multi-scan

Table S9	Sample and	crystal	data	of	2i
----------	------------	---------	------	----	----

Crystal system	triclinic		
Space group	P-1	!	
Z	4		
Volume (Å ³)	3284.4(4)		
Unit cell dimensions	12.0373(8)	95.649(2)	
(Å) and (°)	13.4469(8)	95.099(3)	
	20.7463(15)	98.748(2)	
Absorption coefficient (mm ⁻¹)	0.748		
Abs. correction T_{max}	0.7460		
F(000) (e ⁻)	1556		

 Table S10
 Data collection and structure refinement parameters of 2i.

Index ranges	-14 ≤ h ≤ 14 -11 ≤ k ≤ 16 -24 ≤ l ≤ 24
Reflections number	57798
Refinement method	Least squares
Function minimized	$\Sigma w(Fo^2-Fc^2)^2$
Goodness-of-fit on F ²	0.981
Largest diff. peak and hole [e Å ⁻³]	1.21 / -1.38

Theta range for data collection (°)	3.968 to 50.698		
Data / restraints / parameters	11970 / 21 / 845		
Final P indicos	all data	$R_1 = 0.0666$ $wR_2 = 0.1197$	
	l>2σ(l)	$R_1 = 0.0469$ w $R_2 = 0.1100$	
Weighting scheme	w=1/[s ² (Fo ²)+(0.0596P) ²] where P=(Fo ² +2Fc ²)/3		

Figure S8 Asymmetric unit of 2i, drawn with 50% displacement ellipsoids. Disordered solution (DCM) was omitted for clarity.

3.3. [(κS-(Methylsulfanyl)methane)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (**3a**)

Figure S9 Crystal structure of 3a, drawn with 50% displacement ellipsoids, the counterion is omitted for clarity.

Chemical formula	$C_{27}H_{32}N_4O_3RuS$	Crystal system	tricli	nic
Formula weight (g/mol)	593.69	Space group	P- <u>-</u>	1
Temperature (K)	100	Z	2	
Measurement method	\f and \w scans	Volume (Å ³)	1427.3	1(14)
Radiation wavelength (Å)	MoK_{α} (λ = 0.71073)	Unit cell dimensions (Å) and (°)	9.8204(5)	98.178(2)
Crystal size (mm ³)	0.12 × 0.08 × 0.03		11.5773(6)	107.253(2)
Crystal habit	Clear yellow block		15.0588(9)	113.792(2)
Density (calculated) (g/cm³)	1.381	Absorption coefficient (mm ⁻¹)	0.65	56
Abs. correction T _{min}	0. 6449	Abs. correction T _{max}	0.74	60
Abs. correction type	multi-scan	F(000) (e ⁻)	61	2

Table S11	Sample a	and crystal	data of	2e.
-----------	----------	-------------	---------	-----

 Table S12
 Data collection and structure refinement parameters of 2e.

	-13 ≤ h ≤ 13
Index ranges	-16 ≤ k ≤ 16
	-21≤ ≤21
Reflections number	39743
Refinement method	Least squares
Function minimized	$\Sigma w(Fo^2-Fc^2)^2$
Goodness-of-fit on F ²	1.09
Largest diff. peak and hole [e Å ⁻³]	1.61 / -1.48

Theta range for data collection (°)	4.652 to 60.172		
Data / restraints / parameters	8364 / 0 / 339		
Final R indicos	all data	$R_1 = 0.0338$ w $R_2 = 0.0865$	
	l>2σ(l)	$R_1 = 0.0319$ w $R_2 = 0.0851$	
Weighting scheme	w=1/[s ² (Fo ²)+(0.0482P) ² +1.1984P] where P=(Fo ² +2Fc ²)/3		

Figure S10 Asymmetric unit of **3a**, drawn with 50% displacement ellipsoids. Disordered solution (nitrate) was omitted for clarity and solvent available void was cut. Details on the excluded volume can be found in the cif code (_refine_special_details & _shelx_fab_file)

4. Stability in aqueous solution

Figure S11 Stability of complexes (50 µM) in 1% DMF/phosphate buffer (40 mM, pH 7.4), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

Figure S12 Stability of complexes (50 μ M) in 1% DMF/phosphate buffer (40 mM, pH 6.5), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

Figure S13 Stability of complexes (50 µM) in 1% DMF/ammonium acetate buffer (40 mM, pH 5.0), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

Figure S14 Stability of complexes (50 μ M) in 1% DMF/phosphate buffer (40 mM, pH 3.0), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

Figure S15 Stability of complexes (50 μ M) in 1% DMF/phosphate buffer (40 mM, pH 8.5), expressed as relative decrease of the analyte peak area over time in HPLC runs.

Figure S16 Stability of complexes (50 µM) in 1% DMF/phosphate buffer (40 mM, pH 10.0), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

Figure S17 Stability of complexes (50 µM) in 1% DMF/phosphate buffer (40 mM, pH 12.0), expressed as relative decrease of the analyte peak area over time in HPLC runs.

Figure S18 Overlay of HPLC runs of 2e (50 μ M in 1% DMF / 40 mM phosphate buffer at pH 3.0) incubated with 10 eq THT collected over 16 h in uHPLC runs.

Figure S19 Overlay of uHPLC runs of 2i (50 μ M in 1% DMF / 40 mM phosphate buffer at pH 3.0) incubated with 10 eq THT collected over 16 h.

Figure S20 Oxidation of **3a** (50 μ M) by hydrogen peroxide in 4 different concentrations to in 1% DMF/phosphate buffer (40 mM, pH 7.4), expressed as relative decrease of the analyte peak area over time in uHPLC runs.

6. Amino acid binding studies

Figure S21 Overlaid uHPLC chromatograms of **2f** (50 μM) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μM each) at pH 3.0 collected over 15 h.

Figure S22 Overlaid uHPLC chromatograms of **2f** (50 μM) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μM each) at pH 7.4 collected over 15 h.

Figure S23 Overlaid uHPLC chromatograms of **2f** (50 μM) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μM each) at pH 12.0 collected over 15 h.

Figure S24 Overlaid uHPLC chromatograms of **2h** (50 μ M) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μ M each) at pH 7.4 collected over 15 h.

Figure S25 Overlaid uHPLC chromatograms of **2h** (50 μ M) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μ M each) at pH 12.0 collected over 15 h.

Figure S26 Overlaid uHPLC chromatograms of **3a** (50 μ M) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μ M each) at pH 3.0 collected over 15 h.

Figure S27 Overlaid uHPLC chromatograms of **3a** (50 μM) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μM each) at pH 7.4 collected over 15 h.

Figure S28 Overlaid uHPLC chromatograms of **3a** (50 μ M) incubated with *N*-Ac-His, *N*-Ac-Met, and *N*-Ac-Cys (500 μ M each) at pH 12.0 collected over 15 h.

7. Chromatographic lipophilicity index φ_0

Figure S29 Scatter plot of chromatographic lipophilicity index ϕ_0 and cellular accumulation in SW480 cells.

Figure S30 Scatter plot of chromatographic lipophilicity index ϕ_0 and 50% inhibitory concentration in SW480 cells.

8. ROS generation

Figure S31 Level of reactive oxygen species (ROS) upon treatment with *tert*-butyl hydroperoxide at 400 µM over 2 h compared to an untreated control.

Figure S32 Level of reactive oxygen species (ROS) upon treatment with 1 at different concentrations over 2 h compared to an untreated control.

Figure S33 Level of reactive oxygen species (ROS) upon treatment with 2d at different concentrations over 2 h compared to an untreated control.

Figure S34 Level of reactive oxygen species (ROS) upon treatment with 2g at different concentrations over 2 h compared to an untreated control.

Figure S35 Level of reactive oxygen species (ROS) upon treatment with **3a** at different concentrations over 2 h compared to an untreated control.

9. Methyl green DNA intercalation assay

Table S13 Percentage of methyl green still bound to preincubated DNA after 24 of incubation with compounds 1, 2d, 2g, and 3a. Positive control doxorubicin hydrochloride: 65.5% (20 μM), 63.4% (50 μM).

Complex	M	ethyl greer	n retention	
	0.08 µM	0.4 µM	2 µM	10 µM
1	96.1%	98.5%	99.1%	95.1%
2d	100.0%	99.1%	100.4%	99.9%
2g	98.7%	98.1%	100.1%	99.4%
3a	98.5%	98.8%	100.7%	99.8%

10. Flow cytometric detection of apoptotic cells

Figure S36 Induction of apoptosis/necrosis (means ± standard deviations) in SW480 24 h after treatment with 1, 2d, 2g, and 3a at 3 different concentrations and an untreated control.

11. ¹H and ¹³C NMR spectra

11.1. [(($3-\kappa N$)-1*H*-Imidazole)(1-benzyl-4-($2'-\kappa C$)-phenyl-1,2,3-($3-\kappa N$)-triazolato)(η^6 -p-cymene)ruthenium(II)] nitrate (**2a**)

Figure S37 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2a.

11.2. [((3-κN)-1-Methylimidazole)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (2b)

Figure S38 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2b.

11.3. [((3-κN)-4-Phenylimidazole)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (2c)

Figure S39 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2c.

11.4. [((2- κ N)-1H-Pyrazole)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (**2d**)

Figure S40 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2d.

11.5. [((2- κ N)-1H-Indazole)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η^{6} -p-cymene)ruthenium(II)] nitrate (**2e**)

Figure S41 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2e.

11.6. [(κ N-Pyridine)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η^{6} -p-cymene)ruthenium(II)] nitrate (**2f**)

Figure S42 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2f.

11.7. [(κN-Isoquinoline)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (2g)

Figure S43 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2g.

11.8. [((1- κ N)-Imidazo[1,2-a]pyridine)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η^{6} -p-cymene)ruthenium(II)] nitrate (**2h**)

Figure S44 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of **2h**.

11.9. [(κ N-1,3-Benzothiazol)(1-benzyl-4-(2'- κ C)-phenyl-1,2,3-(3- κ N)-triazolato)(η^6 -p-cymene)ruthenium(II)] nitrate (**2i**)

Figure S45 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 2i.

11.10. [(κS-(Methylsulfanyl)methan)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-p-cymene)ruthenium(II)] nitrate (3a)

Figure S46 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of 3a.

11.11. [(κS-Dimethyl sulfoxide)(1-benzyl-4-(2'-κC)-phenyl-1,2,3-(3-κN)-triazolato)(η⁶-pcymene)ruthenium(II)] nitrate (**3b**)

Figure S47 Numbering scheme (top), ¹H NMR (middle), and ¹³C NMR (bottom) of **3b**.