SUPPORTING INFORMATION

Synthesis, structure and magnetic properties of tris(pyrazolyl)methane lanthanide complexes: effect of the anion over the slow relaxation of the magnetization

Jérôme Long,*^a Dimitry. M. Lyubov,^{b,c} Tatyana. V. Mahrova,^b Anton V. Cherkasov, ^b Georgy K. Fukin,^b Yannick Guari,^a Joulia Larionova^{a,d} and Alexander A. Trifonov*^{b,c}

^aInstitut Charles Gerhardt, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS. Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

^b Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. E-mail: trif@iomc.ras.ru

^cInstitute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.

^dPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Street 6, 117198 Moscow, Russia

Experimental Section

Syntheses

The synthesis of complexes **1–6** was performed under aerobic conditions. Acetonitrile was distilled prior to use. Tris(3,5-dimethylpyrazolyl)methane (Tpm) was prepared according to the literature procedure.¹ IR spectra were recorded as Nujol mulls on a Bruker-Vertex 70 spectrophotometer. The N, C, H elemental analyses were carried out in the microanalytical laboratory of the IOMC by means of a Carlo Erba Model 1106 elemental analyser with an accepted tolerance of 0.4 unit on carbon (C), hydrogen (H), and nitrogen (N). Lanthanide metal analysis was carried out by complexonometric titration.²

Synthesis of [Ln(Tpm)(NO₃)₃]·MeCN

 $[Tb(Tpm)(NO_3)_3]$ ·MeCN (1): MeCN (30 mL) was added to a mixture of $Tb(NO_3)_3(H_2O)_6$ (0.380 g, 0.839 mmol) and Tpm (0.275 g, 0.923 mmol) and the resulting suspension was heated at 80 °C for 10 min to give a clear pale yellow solution. Cooling the solution to room temperature resulted in the formation of 1 as colourless cubic crystals. The mother liquid was decanted and the crystals were washed twice with MeCN (5 mL). Crystals of 1 were dried in vacuum for 10 min.

Complexes $[Dy(Tpm)(NO_3)_3]$ ·MeCN (2) and $[Et(Tpm)(NO_3)_3]$ ·MeCN (3) were prepared following the similar procedure and were isolated as colorless (2) or pale pink (3) crystals. Complexes 1–3 were isolated in 78, 82 and 74% yields respectively.

Characterization of $[Tb(Tpm)(NO_3)_3]$ ·MeCN (1): Complex 1 crystallizes as a solvate $[Tb(Tpm)(NO_3)_3]$ ·MeCN. Elemental analysis calcd. (%) for $C_{18}H_{25}N_{10}O_9Tb$: C, 31.59; H, 3.68; N, 20.47; Tb, 23.22; found (%): C, 31.28; H, 3.49; N, 20.13; Tb, 23.35. IR (Nujol, KBr) v/cm⁻¹: 485 (m), 635 (w), 705 (s), 745 (s), 800 (m), 810 (s), 820 (w), 835 (m), 860 (s), 865 (s), 905 (s), 985 (m), 1025 (s), 1040 (s), 1110 (m), 1155 (w), 1170 (w), 1275 (s), 1305 (s), 1415 (m), 1515 (s), 1530 (m), 1570 (s), 1730 (w), 1770 (w), 1975 (w), 2045 (w), 2250 (m), 2290 (w), 2530 (w).

Characterization of $[Dy(Tpm)(NO_3)_3]$ ·MeCN (2): Complex 2 crystallizes as a solvate $[Dy(Tpm)(NO_3)_3]$ ·MeCN. Elemental analysis calcd. (%) for $C_{18}H_{25}DyN_{10}O_9$: C, 31.43; H, 3.66; Dy, 23.62; N, 20.36; found (%): C, 31.30; H, 3.30; Dy, 23.52; N, 20.20. IR (Nujol, KBr) v/cm⁻¹: 485 (m), 635 (w), 705 (s), 750 (s), 800 (m), 810 (s), 820 (w), 835 (m), 860 (s), 865 (s), 905 (s), 985 (m), 1025 (s), 1040 (s), 1110 (m), 1155 (w), 1170 (w), 1275 (s), 1305 (s), 1415 (m), 1515 (s), 1530 (m), 1570 (s), 1730 (w), 1770 (w), 1975 (w), 2045 (w), 2250 (m), 2290 (w), 2530 (w).

Characterization of $[Er(Tpm)(NO_3)_3]$ ·MeCN (3): Complex 3 crystallizes as a solvate $[Dy(Tpm)(NO_3)_3]$ ·MeCN. Elemental analysis calcd. (%) for $C_{18}H_{25}ErN_{10}O_9$: C, 31.21; H, 3.64; Er, 24.15; N, 20.22; found: C, 31.08; H, 3.40; Er, 23.96; N, 20.18. IR (Nujol, KBr) v/cm⁻¹: 485 (m), 635 (w), 705 (s), 755 (s), 800 (m), 810 (s), 820 (w), 835 (m), 860 (s), 865 (s), 905 (s), 985 (m), 1025 (s), 1040 (s), 1110 (m), 1155 (w), 1170 (w), 1280 (s), 1305 (s), 1415 (m), 1515 (s), 1530 (m), 1570 (s), 1730 (w), 1780 (w), 1980 (w), 2050 (w), 2250 (m), 2290 (w), 2535 (w).

Synthesis of [Ln(Tpm)Cl₃]·2MeCN

[Tb(Tpm)Cl₃]·2MeCN(4): MeCN (20 mL) was added to a mixture of TbCl₃ (0.150 g, 0.565 mmol) and Tpm (0.180 g, 0.621 mmol) and the resulting suspension was heated at 80 °C for 10 min to give a clear solution. Cooling the reaction mixture to room temperature afforded 4 as colourless prismatic crystals. The mother liquid was decanted and the crystals were washed twice with MeCN (5 mL). Crystals of 4 were dried in vacuum for 10 min.

Complexes [Dy(Tpm)Cl₃]·2MeCN (5) and [Dy(Tpm)Cl₃]·2MeCN(6) were prepared following the

similar procedure and were isolated as colorless (5) or pale pink (6) crystals. Complexes 4–6 were isolated in 69, 63 and 75% yields respectively.

Characterization of $[Tb(Tpm)Cl_3] \cdot 2MeCN$ (4): Complex 4 crystallizes as a solvate $[Tb(Tpm)Cl_3] \cdot 2MeCN$. Elemental analysis calcd. (%) for: $C_{20}H_{28}Cl_3TbN_8$: C, 37.20; H, 4.37; N, 17.35; Tb, 24.61; found: C, 36.85; H, 4.39; N, 16.98; Tb, 24.58. IR (Nujol, KBr) v/cm⁻¹: 475 (m), 485 (m), 590 (w), 635 (m), 705 (s), 765 (s), 780 (w), 795 (w), 805 (w), 825 (s), 860 (s), 880 (s), 905 (s), 920 (w), 985 (m), 1005 (m), 1040 (s), 1110 (m), 1260 (s), 1300 (s), 1320 (w), 1390 (m), 1410 (s), 1490 (m), 1560 (s), 1615 (w), 1640 (m), 2250 (m), 2290 (w).

Characterization of $[Dy(Tpm)Cl_3] \cdot 2MeCN$ (5): Complex 5 crystallizes as a solvate $[Dy(Tpm)Cl_3] \cdot 2MeCN$. Elemental analysis calcd. (%) for: $C_{20}H_{28}Cl_3DyN_8$: C, 36.99; H, 4.35; Dy, 25.03; N, 17.26; found: C, 36.68; H, 4.18; Dy, 25.23; N, 16.98. IR (Nujol, KBr) v/cm⁻¹: 475 (m), 485 (m), 590 (w), 635 (m), 705 (s), 765 (s), 780 (w), 795 (w), 805 (w), 825 (s), 860 (s), 880 (s), 905 (s), 920 (w), 985 (m), 1005 (m), 1040 (s), 1110 (m), 1260 (s), 1305 (s), 1320 (w), 1390 (m), 1410 (s), 1490 (m), 1565 (s), 1615 (w), 1640 (m), 2250 (m), 2290 (w).

Characterization of $[Er(Tpm)Cl_3] \cdot 2MeCN$ (6): Complex 6 crystallizes as a solvate (Tpm)ErCl_3 \cdot 2MeCN. Elemental analysis calcd. (%) for: $C_{20}H_{28}Cl_3ErN_8$: C, 36.72; H, 4.31; Er, 25.57; N, 17.13; found: C, 36.64; H, 4.42; Er, 25.45; N, 17.11. IR: 475 (m), 485 (m), 590 (w), 635 (m), 705 (s), 765 (s), 780 (w), 790 (w), 805 (w), 830 (s), 860 (s), 880 (s), 905 (s), 920 (w), 985 (m), 1005 (m), 1040 (s), 1110 (m), 1260 (s), 1305 (s), 1320 (w), 1390 (m), 1410 (s), 1490 (m), 1565 (s), 1615 (w), 1640 (m), 2250 (m), 2290 (w).

X-Ray crystallography.

The X-ray data for 1-6 were collected on *Bruker D8 Quest* diffractometer (MoK_{α} -radiation, ω -scans technique, $\lambda = 0.71073$ Å, T = 100(2) K) using $APEX3^3$ software package. The structures were solved by direct and dual-space methods⁴ and were refined by full-matrix least squares on F^2 for all data using *SHELX*.⁵ *SADA*BS⁶ was used to perform area-detector scaling and absorption corrections. All non-hydrogen atoms were found from Fourier syntheses of electron density and were refined anisotropically. Hydrogen atoms were placed in calculated positions and were refined in the "riding" model with $U(H)_{iso} = 1.2U_{eq}$ of their parent atoms ($U(H)_{iso} = 1.5U_{eq}$ for methyl groups). CCDC–1817048 (1), 1817049 (2), 1817050 (3), 1817051 (4), 1817052 (5), and 1817053 (6) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre: ccdc.cam.ac.uk/structures. The crystal data and structure refinement details for 1-6 are given in Table S1.

Magnetic Measurements

Magnetic susceptibility data were collected with a Quantum Design MPMS-XL SQUID magnetometer working in the range 1.8 - 350 K with the magnetic field up to 7 Tesla. The sample were prepared in a glove box. The data were corrected for the sample holder and the diamagnetic contributions calculated from the Pascal's constants. The AC magnetic susceptibility measurements were carried out in the presence of a 3 Oe oscillating field in zero or applied external DC field.

Figure S1: Perspective views of the crystal packing for 1 (left) and 4 (right). Hydrogen atoms have been omitted for clarity.

Figure S2: Left: temperature dependence of χT under an applied magnetic field of 1000 Oe for 1 - 6.Right: field dependence of the magnetization at 1.8 K for 1 - 6.

Figure S3. Frequency dependence of χ' and χ'' at 2 K and for various dc fields for compounds 1-6.

Figure S4. Field dependence of the relaxation time for 2 and 6 at 2 K. The red solid line represent the fit with Equation 1.

Figure S5. Frequency dependence of χ' and χ'' under a 500 Oe (2) (left) and 2000 Oe (6) (right) dc fields.

Figure S6: Cole-Cole (Argand) plot obtained using the ac susceptibility data for 2 (500 Oe) and 6 (2000 Oe). The solid lines correspond to the best fit obtained with a generalized Debye model.

Figure S7. Orientation of the anisotropic axes (purple) obtained with the MAGELLAN⁷ software in **2** and **5**.

	1	2	3	4	5	6
Empirical	C ₁₆ H ₂₂ N ₉ O ₉ Tb,	C ₁₆ H ₂₂ N ₉ O ₉ Dy	C ₁₆ H ₂₂ N ₉ O ₉ Er,	C ₁₆ H ₂₂ Cl ₃ N ₆ Tb	C ₁₆ H ₂₂ Cl ₃ N ₆ Dy	C ₁₆ H ₂₂ Cl ₃ N ₆ Er,
formula	C ₂ H ₃ N	, C ₂ H ₃ N	C ₂ H ₃ N	$, 2(C_2H_3N)$	$, 2(C_2H_3N)$	$2(C_2H_3N)$
Formula	684.40	687.98	692.74	645.77	649.35	654.11
Weight						
Crystal	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
System						
Space Group	$P2_l/n$	$P2_l/n$	$P2_l/n$	$P2_l/n$	$P2_l/n$	$P2_1/n$
<i>a</i> , Å	10.8271(5)	10.8339(3)	10.8169(3)	9.5146(6)	9.4983(3)	9.4683(3)
<i>b</i> , Å	14.8273(7)	14.8275(4)	14.8226(5)	16.2693(10)	16.2661(4)	16.2801(5)
<i>c</i> , Å	16.3000(8)	16.3088(5)	16.2864(5)	17.1333(11)	17.1262(5)	17.1285(5)
<i>α</i> , °	90	90	90	90	90	90
β, °	95.757(2)	95.8810(10)	96.0506(11)	94.245(3)	94.3140(10)	94.4690(10)
γ, °	90	90	90	90	90	90
V, Å ³	2603.6(2)	2606.05(13)	2596.73(14)	2644.9(3)	2638.51(13)	2632.24(14)
Z	4	4	4	4	4	4
d_{calc} , Mg/m ³	1.746	1.753	1.772	1.622	1.635	1.651
μ , mm ⁻¹	2.783	2.933	3.298	3.000	3.159	3.516
F(000)	1360	1364	1372	1280	1284	1292
Crystal Size,	0.43×0.19×0.1	0.20×0.11×0.1	0.35×0.16×0.1	0.37×0.18×0.0	0.47×0.36×0.30	0.18×0.08×0.0
mm	4	1	5	9		6
θ Range for	2.34-30.00	2.34-29.96	2.34-28.00	2.38-30.00	2.38-35.77	2.49-28.00
Data						
Collection, °						
Index Ranges	$-15 \le h \le 15$	$-15 \le h \le 15$	$-14 \le h \le 14$	$-13 \le h \le 13$	$-15 \le h \le 15$	$-12 \le h \le 12$
	$-20 \le k \le 20$	$-20 \le k \le 20$	$-19 \le k \le 19$	$-22 \le k \le 22$	$-26 \le k \le 26$	$-21 \le k \le 21$
	$-22 \le l \le 22$	$-22 \le l \le 22$	$-21 \le l \le 21$	$-24 \le l \le 24$	$-28 \le l \le 28$	$-22 \le l \le 22$
Reflns	34395	37341	56351	35546	52459	57788
Collected						
Independent	7590 (0.0444)	7574 (0.0233)	6275 (0.0238)	7698 (0.0338)	12269 (0.0299)	6292 (0.0550)
Refins (R_{int})		100.0		22.4		
Completenes	99.9	100.0	99.9	99.4	99.9	98.9
<u>s to θ, %</u>	7500 / 0 / 250	7574 / 0 / 250	(275 / 0 / 250	7(00/0/005	100(0/0/007	(202 / 0 / 207
Data /	/590/0/350	/5/4/0/350	62/5/0/350	/698/0/295	12269/0/29/	6292/0/297
Restraints /						
rarameters	1.057	1.021	1.059	1.044	1.042	1.097
$S(F^2)$	1.05/	1.021	1.058	1.044	1.042	1.08/
Final R Indiaga (I)	$R_1 = 0.0223$ $R_2 = 0.0527$	$R_1 = 0.0101$ $R_2 = 0.0274$	$R_1 = 0.0137$ $R_2 = 0.0246$	$R_1 = 0.0374$ $R_2 = 0.0022$	$R_1 = 0.0251$ $R_2 = 0.0597$	$R_1 = 0.0313$ $R_2 = 0.0822$
$2\pi(I)$	$K_2 = 0.0337$	$K_2 = 0.05/4$	$K_2 = 0.0540$	$K_2 = 0.0922$	$R_2 = 0.0387$	$K_2 = 0.0822$
$\frac{20(1)}{P \text{ Indices (all }}$	$P_{1} = 0.0202$	$P_{1} = 0.0105$	$P_{1} = 0.0149$	$P_{1} = 0.0405$	$P_{1} = 0.0200$	$P_{1} = 0.0350$
A mules (an	$R_1 = 0.0292$ $R_2 = 0.0555$	$R_1 = 0.0195$ $R_2 = 0.0385$	$R_1 = 0.0148$ $R_2 = 0.0350$	$R_1 = 0.0403$ $R_2 = 0.0932$	$R_1 = 0.0290$ $R_2 = 0.0602$	$R_1 = 0.0330$ $R_2 = 0.0832$
Largest Diff	1.16/-1.10	$n_2 = 0.0383$	$n_2 = 0.0350$	$\frac{1}{2} \frac{1}{61} \frac{1}{4} \frac{1}{22}$	$1 \frac{1}{10002}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}$
Peak	1.10/ -1.19	0.72 / -0.04	0.377 -0.07	2.01/-4.22	0.757-2.17	2.11/-3.30
and Hole						
e/Å ³						
Peak and Hole, e/Å ³						

 Table S1.
 The Crystal Data and Structures Refinement Details for Complexes 1-6.

	JJCU	CCU	JCSAPR	CSAPR	JTCTPR	TCTPR
1	10.956	9.293	4.046	2.764	4.514	1.926
2	10.912	9.239	4.000	2.704	4.417	1.860
3	10.869	9.204	3.921	2.627	4.266	1.773
	JJCU:Capped cube CCU: Spherical-relaxed capped cube JCSAPR: Capped square antiprism CSAPR: Spherical capped square antiprism JTCTPR: Tricapped trigonal prism TCTPR: Spherical tricapped trigonal prism					

Table S2. SHAPE analysis for compounds 1-3.

Table S3. SHAPE analysis for compounds 4-6.

	HP	РРҮ	OC	TPR	JPPY
4	33.175	27.515	1.709	16.934	32.328
5	33.176	27.555	1.650	16.918	32.360
6	33.320	27.553	1.540	18.856	32.333
		PPY: I O TPR	HP: Hexagon Pentagonal Pyramic C: Octahedron L: Trigonal Prism	1	

Table S4. Some parameters from static magnetic properties for compounds 1-6.

Compound	Ln(III) Ground state	Theoretical χT (cm ³ .K.mol ⁻¹)	Experimental χT (cm ³ .K.mol ⁻¹)	M at 70 kOe 1.8 K ₇ ($\mu_{\rm B}$)
1	⁷ F ₆	11.82	11.46	5.35
2	⁶ H _{15/2}	14.17	13.81	6.34
3	⁴ I _{15/2}	11.48	10.13	5.28
4	⁷ F ₆	11.82	11.59	5.09
5	⁶ H _{15/2}	14.17	14.11	5.72
6	⁴ I _{15/2}	11.48	10.25	5.18

Table S5. Fit parameters of the field dependence of the relaxation time obtained using the Eq. 1

Compound	$D(s^{-1}K^{-1}Oe^{-4})$	$B_{I}(s^{-1})$	$B_2(Oe^{-2})$	K
2	9.9×10^{-11}	306630	0.00693	538.52
6	2.16×10^{-12}	1531	4.12×10^{-6}	157.56

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
1.8	1.52615	5.15967	0.14271
1.9	1.48368	4.84521	0.17997
2	1.39896	4.6293	0.16853
2.1	1.30425	4.45066	0.12612
2.2	1.25982	4.25183	0.18241
2.3	1.18561	4.17217	0.08092
2.4	1.14907	4.03601	0.02615
2.5	1.15596	3.92503	0.00965
2.6	1.13711	3.79406	0.01571
2.7	1.07543	3.65401	0.03915
2.8	0.72698	3.44775	0.10978
2.9	0.51618	3.28039	0.11681

Table S6. Fitting of the Cole-Cole plots with a generalized Debye model for temperature ranging from2 to 24 K under a zero dc field for 2.

Table S7. Fitting of the Cole-Cole plots with a generalized Debye model under a 2000 Oe dc field for

6.

<i>T</i> (K)	χ_S (cm ³ . mol ⁻¹)	χ_T (cm ³ . mol ⁻¹)	α
1.8	0.95992	2.45236	0.40362
1.9	0.91813	2.38648	0.37845
2	0.86796	2.26653	0.36507
2.1	0.82034	2.14219	0.35747

2.2	0.78257	2.06356	0.34388
2.3	0.75227	2.0047	0.34917
2.4	0.73113	1.94802	0.37316
2.5	0.6997	1.9175	0.34531
2.6	0.67341	1.89244	0.31489
2.7	0.64246	1.83831	0.34584
2.8	0.61555	1.80589	0.34773
2.9	0.5974	1.79303	0.31414
3	0.34682	1.55401	0.49363

References

- 1 P. Neves, S. Gago, S. S. Balula, A. D. Lopes, A. A. Valente, L. Cunha-Silva, F. A. A. Paz, M. Pillinger, J. Rocha, C. M. Silva and I. S. Gonçalves, *Inorg. Chem.*, 2011, **50**, 3490-3500.
- 2 S. J. Lyle and M. M. Rahman, *Talanta*, 1963, **10**, 1177-1182.
- 3 Bruker, *APEX 3 and SAINT*, 2016, B. A. Inc., Madison, Winsconsin, USA.
- 4 G. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 5 G. M. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 3-8.
- 6 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3-10.
- 7 N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, *Nat. Commun.*, 2013, **4**, 2551.