## Supporting information.

| Components                                    | MeIm  | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> | [V <sup>II</sup> (MeIm) <sub>2</sub> | [V <sup>II</sup> (MeIm) <sub>2</sub> | [Cr <sup>II</sup> (MeIm) <sub>2</sub> | [Fe <sup>II</sup> (MeIm) <sub>2</sub> |
|-----------------------------------------------|-------|-----------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
|                                               |       |                                               | (Pc <sup>2-</sup> )]·MeIm            | $(Pc^{2-})] \cdot 2C_6H_4Cl_2$       | $(Pc^{2-})] \cdot 2C_6H_4Cl_2$        | $(Pc^{2-})]\cdot 2C_6H_4Cl_2$         |
|                                               |       |                                               | (1)                                  | (2)                                  | (3)                                   | (4)                                   |
| M <sup>II</sup> Pc                            |       |                                               | 441w                                 | 441w                                 | 439w                                  | -                                     |
|                                               |       |                                               | 505w                                 | 506w                                 | 507w                                  | 519w                                  |
|                                               |       |                                               | 570w                                 | 570w                                 | 568w                                  | 570w                                  |
|                                               |       |                                               | 728s                                 | 727s                                 | 725s                                  | 734s                                  |
|                                               |       |                                               | 751s*                                | 751s*                                | 752s*                                 | 754s*                                 |
|                                               |       |                                               | -                                    | -                                    | 761m                                  | -                                     |
|                                               |       |                                               | 772w                                 | 770w                                 | 776w                                  | 780w                                  |
|                                               |       |                                               | 799w                                 | 800w                                 | 801w                                  | -                                     |
|                                               |       |                                               | 946w                                 | 946w                                 | 952w                                  | 947w                                  |
|                                               |       |                                               | 1003w                                | 1007w                                | 1000w                                 | 1004w                                 |
|                                               |       |                                               | 1057m                                | 1057m                                | 1076m*                                | 1070m*                                |
|                                               |       |                                               | 1090s                                | 1090s                                | 1091m                                 | 1096s                                 |
|                                               |       |                                               | -                                    | 1100s                                | -                                     | -                                     |
|                                               |       |                                               | 1114s*                               | 1115s*                               | 1117s*                                | 1120s*                                |
|                                               |       |                                               | 1164m                                | 1166m                                | 1166m                                 | 1165s                                 |
|                                               |       |                                               | 1322s                                | 1322s                                | 1322m                                 | 1327m                                 |
|                                               |       |                                               | 1405w                                | 1405w                                | -                                     | -                                     |
|                                               |       |                                               | 1466s                                | 1465s                                | 1463s                                 | 1464w                                 |
|                                               |       |                                               | 1535w                                | 1534w                                | 1534w                                 | 1530w                                 |
|                                               |       |                                               | 15/2w                                | 15/2w                                | 1565w                                 | 1596w                                 |
|                                               |       |                                               | 3055w                                | 3055w                                | 3051w                                 | 3057w                                 |
| MeIm                                          | 620m  |                                               | 615w                                 | 616w                                 | 616w                                  | 614w                                  |
|                                               | 666w  |                                               | 660w                                 | 659w*                                | 660w*                                 | 662w*                                 |
|                                               | 741m  |                                               | 751s*                                | 751s*                                | 752s*                                 | 754s*                                 |
|                                               | 820m  |                                               | 817w                                 | 817w                                 | 819w                                  | -                                     |
|                                               | 905m  |                                               | 897w                                 | 897w                                 | 900w                                  | 899w                                  |
|                                               | 1026w |                                               | -                                    | -                                    | -                                     | -                                     |
|                                               | 1077m |                                               | -                                    | -                                    | 1076m*                                | 1070m*                                |
|                                               | 1109m |                                               | 1114s*                               | 1115s*                               | 1117s*                                | 1120s*                                |
|                                               | 1230s |                                               | 1234w                                | 1236w                                | 1237m                                 | 1240w                                 |
|                                               | 1285m |                                               | 1285m                                | 1287m                                | 1288m                                 | 1286m                                 |
|                                               | 1358w |                                               | -                                    | -                                    | -                                     | -                                     |
|                                               | 1420m |                                               | -                                    | 1418w                                | 1417m                                 | 1421s                                 |
|                                               | -     |                                               | -                                    | 1433w                                | 1435m                                 | -                                     |
|                                               | 1518s |                                               | 1516w                                | 1514w                                | -                                     | 1509s                                 |
|                                               | 2919w |                                               | 2920w                                | 2918w                                | 2921w                                 | 2920w                                 |
|                                               | 2954w |                                               | -                                    | -                                    | 2976w                                 | 2957w                                 |
|                                               | 3110w |                                               | 3116w                                | 3116w                                | 3117w                                 | 3118w                                 |
| C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> |       | 658w                                          |                                      | 659w*                                | 660w*                                 | 662w*                                 |
|                                               |       | 743m                                          |                                      | 751s*                                | 752s*                                 | 754s*                                 |
|                                               |       | 1033w                                         |                                      | 1033w                                | 1033w                                 | 1033w                                 |
|                                               |       | 1455s                                         |                                      | 1456m                                | 1456s                                 | 1456w                                 |

Table S1. IR spectra of the compounds 1–4.

w-weak, m-middle, s-strong intensity.

\* - the bands are coincided.



Fig. S1. IR spectrum of compound  $[V^{II}(MeIm)_2(Pc^{2-})]$ ·MeIm (1) in KBr pellets. KBr pellet for 1 is prepared in anaerobic conditions.



**Fig. S2.** IR spectrum of compound  $[V^{II}(MeIm)_2(Pc^{2-})]\cdot 2C_6H_4Cl_2$  (2) in KBr pellets. KBr pellet for 2 was prepared in anaerobic conditions.



**Fig. S3.** IR spectrum of compound  $[Cr^{II}(MeIm)_2(Pc^{2-})] \cdot 2C_6H_4Cl_2$  (**3**) in KBr pellets. KBr pellet for **3** was prepared in anaerobic conditions.



**Fig. S4.** IR spectrum of compound  $[Fe^{II}(MeIm)_2(Pc^{2-})]\cdot 2C_6H_4Cl_2$  (4) in KBr pellets. KBr pellet for 4 was prepared in anaerobic conditions.

## **Crystal structure of complex 1.**



**Fig. S5.** Crystal structure of  $[V^{II}(MeIm)_2(Pc^{2-})]$ ·MeIm (1). View on perpendicular to the Pc macrocycles of one of the chains in 1 (a) and view on two such chains along the *c* axis (b). In the latter case the  $[V^{II}(MeIm)_2(Pc^{2-})]$  molecules from the behind located chain are shown by green color.



 $\Theta$  = -2 K

Ò

50

100

150

Temperature, K

100

50 0

## Magnetic properties of compounds 1–3.

Fig. S6. Temperature dependencies of resiprocal molar magnetic sysceptibilities for the complexes: (a)  $[V^{II}(MeIm)_2(Pc^{2-})] \cdot MeIm$  (1); (b)  $[V^{II}(MeIm)_2(Pc^{2-})] \cdot 2C_6H_4Cl_2$  (2) and (c)  $[Cr^{II}(MeIm)_2(Pc^{2-})] \cdot 2C_6H_4Cl_2$ (3). Fitting of the data by the Curie-Weiss law shown by red line allows to determine Weiss temperature  $(\Theta = -2 \text{ K for } 1-3).$ 

200

250

300

| State              | E / hartree | $\Delta E$ / K | $\langle S^2 \rangle$ |
|--------------------|-------------|----------------|-----------------------|
| $[V(MeIm)_2Pc]^0$  |             |                |                       |
| ${}^{4}A_{g}$      | -3141.43500 | 0              | 3.790                 |
| ${}^{2}A_{g}$      | -3141.42704 | 2511           | 1.835                 |
| $[Cr(MeIm)_2Pc]^0$ |             |                |                       |
| ${}^{5}A_{g}$      | -3241.90947 | 3277           | 6.060                 |
| ${}^{3}A_{g}$      | -3241.91984 | 0              | 2.871                 |
| ${}^{1}A_{g}$      | -3241.88647 | 10540          | 1.767                 |

**Table S2.** Total and relative energies (*E* and  $\Delta E$ ), and  $\langle S^2 \rangle$  values of  $[V(MeIm)_2Pc]^0$  and  $[Cr(MeIm)_2Pc]^0$  complexes calculated at the CAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory

**Table S3.** Charge and spin densities of the <sup>4</sup>Ag state in  $[V(MeIm)_2Pc]^0$  and the <sup>3</sup>Ag state in  $[Cr(MeIm)_2Pc]^0$  calculated at the CAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory

|                                         | MI     | PA     |        | NPA    |                                |  |
|-----------------------------------------|--------|--------|--------|--------|--------------------------------|--|
|                                         | Charge | Spin   | Charge | Spin   | Natural electron configuration |  |
| $[V(MeIm)_2Pc]^0$                       |        |        |        |        | -                              |  |
| V                                       | 0.597  | 2.460  | 0.838  | 2.262  | 3d <sup>2.74</sup>             |  |
| Pc                                      | -1.211 | 0.534  | -1.358 | 0.675  |                                |  |
| MeIm                                    | 0.307  | 0.003  | 0.260  | 0.031  |                                |  |
| [Cr(MeIm) <sub>2</sub> Pc] <sup>0</sup> |        |        |        |        |                                |  |
| Cr                                      | 0.682  | 2.921  | 0.792  | 2.699  | 3d <sup>4.23</sup>             |  |
| Pc                                      | -1.336 | -0.897 | -1.429 | -0.739 |                                |  |
| MeIm                                    | 0.327  | -0.012 | 0.318  | 0.020  |                                |  |

**Table S4.** Occupation numbers of natural orbitals, n(HO-1), n(HO), n(SO-1), n(SO), n(SO+1), n(LU), and n(LU+1), non-spin-projected and spin-projected diradical characters,  $y_i$  and  $y_i^{\text{SP}}$  (i = 0 and  $1)^{a,b}$ , of the  ${}^{4}\text{A}_{g}$  state in [V(MeIm)<sub>2</sub>Pc]<sup>0</sup>, the  ${}^{3}\text{A}_{g}$  state in [Cr(MeIm)<sub>2</sub>Pc]<sup>0</sup>, and open-shell singlet states in access at the CAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory

|                      | $[V(MeIm)_2Pc]^0$ | $[Cr(MeIm)_2Pc]^0$ | Pentacene  | Hexacene | Heptacene          | Octacene         |
|----------------------|-------------------|--------------------|------------|----------|--------------------|------------------|
| $\overline{n(LU+1)}$ | 0.005             | 0.012              | 0.014      | 0.055    | 0.097              | 0.147            |
| n(LU)                | 0.007             | 0.579              | 0.118      | 0.407    | 0.589              | 0.708            |
| <i>n</i> (SO+1)      | 1.000             | 1.000              | —          | -        | _                  | —                |
| n(SO)                | 1.000             | —                  | —          | -        | _                  | —                |
| <i>n</i> (SO+1)      | 1.000             | 1.000              | —          | -        | —                  | -                |
| n(HO)                | 1.993             | 1.421              | 1.882      | 1.593    | 1.411              | 1.292            |
| <i>n</i> (HO-1)      | 1.995             | 1.988              | 1.986      | 1.945    | 1.903              | 1.853            |
| $\mathcal{Y}_0$      | 0.007             | 0.579              | 0.118      | 0.407    | 0.589              | 0.708            |
| $\mathcal{Y}_1$      | 0.005             | 0.012              | 0.014      | 0.055    | 0.097              | 0.147            |
| $y_0^{SP}$           | 0.000             | 0.285              | 0.008      | 0.123    | 0.296              | 0.462            |
| $y_1^{SP}$           | 0.000             | 0.000              | 0.000      | 0.002    | 0.005              | 0.012            |
|                      |                   | b SP SP/TTT        | ·) O SP(II |          | $12/(1 + C^2) = 0$ | F (IIO 3)12/(1 ) |

 ${}^{a} y_{i} = n(\text{LU}+i) = 2 - n(\text{HO}-i). {}^{b} y_{i}^{\text{SP}} = n^{\text{SP}}(\text{LU}+i) = 2 - n^{\text{SP}}(\text{HO}-i) = [n(\text{LU}+i)]^{2}/(1 + S_{i}^{2}) = 2 - [n(\text{HO}-i)]^{2}/(1 + S_{i}^{2}), S_{i} = [n(\text{HO}-i) - n(\text{LU}+i)]/2.$ 



**Fig. S7.** Energy diagram for the frontier Kohn-Sham orbitals of the  ${}^{4}A_{g}$  state in  $[V(MeIm)_{2}Pc]^{0}$  calculated at the UCAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory. HO and LU denote the highest occupied and the lowest unoccupied orbitals, respectively.



**Fig. S8.** Energy diagram for the frontier Kohn-Sham orbitals of the  ${}^{3}A_{g}$  state in  $[Cr(MeIm)_{2}Pc]^{0}$  calculated at the UCAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory. HO and LU denote the highest occupied and the lowest unoccupied orbitals, respectively.

| excit | $\Delta E / eV$ | $\Delta E / \text{nm}$ | f     | $\langle S^2 \rangle$ | Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-----------------|------------------------|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 0.655           | 1893                   | 0.000 | 3.818                 | $189a \rightarrow 190a: 60\% (a-HO \rightarrow a-LU)$ $187a \rightarrow 191a: 20\% (a-HO-2 \rightarrow a-LU+1)$ $189a \rightarrow 191a: 9\% (a-HO \rightarrow a-LU+1)$ $187a \rightarrow 190a: 4\% (a-HO-2 \rightarrow a-LU)$                                                                                                                                                                                                                           |
| 2     | 0.696           | 1782                   | 0.031 | 5.150                 | $186\beta \rightarrow 187\beta: 80\% (\beta-\text{HO} \rightarrow \beta-\text{LU})$ $188\alpha \rightarrow 190\alpha: 14\% (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU})$                                                                                                                                                                                                                                                                           |
| 3     | 0.768           | 1616                   | 0.000 | 3.818                 | $189a \rightarrow 191a: 60\% (a-HO \rightarrow a-LU+1)$ $187a \rightarrow 190a: 24\% (a-HO-2 \rightarrow a-LU)$ $189a \rightarrow 190a: 10\% (a-HO \rightarrow a-LU)$ $187a \rightarrow 191a: 5\% (a-HO-2 \rightarrow a-LU+1)$                                                                                                                                                                                                                          |
| 4     | 0.842           | 1473                   | 0.000 | 3.797                 | $187\alpha \rightarrow 191\alpha: 64\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU+1})$<br>$189\alpha \rightarrow 190\alpha: 27\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU})$<br>$178\alpha \rightarrow 191\alpha: 3\% (\alpha-\text{HO-11} \rightarrow \alpha-\text{LU+1})$                                                                                                                                                                   |
| 5     | 1.030           | 1204                   | 0.068 | 4.485                 | $186\beta \rightarrow 188\beta: 86\% \ (\beta-\text{HO} \rightarrow \beta-\text{LU+1})$ $188\alpha \rightarrow 191\alpha: 7\% \ (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU+1})$                                                                                                                                                                                                                                                                    |
| 6     | 1.204           | 1030                   | 0.000 | 3.788                 | $186a \rightarrow 191a: 88\% (a-HO-3 \rightarrow a-LU+1)$ $186a \rightarrow 196a: 3\% (a-HO-3 \rightarrow a-LU+6)$ $175a \rightarrow 191a: 3\% (a-HO-14 \rightarrow a-LU+1)$                                                                                                                                                                                                                                                                            |
| 7     | 2.106           | 589                    | 0.000 | 3.832                 | $186a \rightarrow 190a: 91\% (a-HO-3 \rightarrow a-LU)$ $187a \rightarrow 190a: 3\% (a-HO-2 \rightarrow a-LU)$                                                                                                                                                                                                                                                                                                                                          |
| 8     | 2.262           | 548                    | 0.000 | 3.898                 | $187\alpha \rightarrow 190\alpha: 66\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU})$ $189\alpha \rightarrow 191\alpha: 25\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU}+1)$ $186\alpha \rightarrow 190\alpha: 4\% (\alpha-\text{HO-3} \rightarrow \alpha-\text{LU})$                                                                                                                                                                            |
| 9     | 2.356           | 526                    | 0.419 | 4.151                 | 188 $\alpha \rightarrow$ 190 $\alpha$ : 75% ( $\alpha$ -HO-1 $\rightarrow \alpha$ -LU)<br>186 $\beta \rightarrow$ 187 $\beta$ : 15% ( $\beta$ -HO $\rightarrow \beta$ -LU)<br>185 $\alpha \rightarrow$ 191 $\alpha$ : 4% ( $\alpha$ -HO-4 $\rightarrow \alpha$ -LU+1)                                                                                                                                                                                   |
| 10    | 2.473           | 501                    | 0.199 | 4.521                 | $188\alpha \rightarrow 191\alpha: 81\% (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU+1})$ $186\beta \rightarrow 188\beta: 7\% (\beta-\text{HO} \rightarrow \beta-\text{LU+1})$ $185\alpha \rightarrow 190\alpha: 6\% (\alpha-\text{HO-4} \rightarrow \alpha-\text{LU})$                                                                                                                                                                               |
| 11    | 2.805           | 442                    | 0.004 | 4.871                 | $189a \rightarrow 192a: 31\% (a-HO \rightarrow a-LU+2)$ $185\beta \rightarrow 188\beta: 15\% (\beta-HO-1 \rightarrow \beta-LU+1)$ $185\beta \rightarrow 187\beta: 10\% (\beta-HO-1 \rightarrow \beta-LU)$ $185a \rightarrow 191a: 7\% (a-HO-4 \rightarrow a-LU+1)$ $185a \rightarrow 190a: 6\% (a-HO-4 \rightarrow a-LU)$ $184a \rightarrow 190a: 4\% (a-HO-5 \rightarrow a-LU)$ $184\beta \rightarrow 187\beta: 4\% (\beta-HO-2 \rightarrow \beta-LU)$ |

**Table S5.** Excitation energies ( $\Delta E$ ), oscillator strengths (*f*),  $\langle S^2 \rangle$  values and assignments on the low-lying excited states of [V(MeIm)<sub>2</sub>Pc]<sup>0</sup> calculated at the TD-UCAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory.

| Tabl | e S5. (Con      | tinued)         |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----------------|-----------------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\Delta E / eV$ | $\Delta E$ / nm | f     | $\langle S^2 \rangle$ | Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12   | 2.835           | 437             | 0.000 | 3.788                 | $\begin{array}{c} 187a \rightarrow 209a: 55\% (a-HO-2 \rightarrow a-LU+19) \\ 187a \rightarrow 219a: 9\% (a-HO-2 \rightarrow a-LU+29) \\ 187a \rightarrow 207a: 7\% (a-HO-2 \rightarrow a-LU+17) \\ 178a \rightarrow 209a: 6\% (a-HO-11 \rightarrow a-LU+19) \\ 187a \rightarrow 221a: 4\% (a-HO-2 \rightarrow a-LU+31) \\ 187a \rightarrow 199a: 3\% (a-HO-2 \rightarrow a-LU+9) \\ 187a \rightarrow 212a: 3\% (a-HO-2 \rightarrow a-LU+22) \end{array}$                                                                                                                                                                                                                                                                                                                                              |
| 13   | 2.880           | 431             | 0.001 | 5.239                 | $185\beta \rightarrow 187\beta: 51\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU})$ $185\alpha \rightarrow 190\alpha: 21\% (\alpha-\text{HO-4} \rightarrow \alpha-\text{LU})$ $185\beta \rightarrow 188\beta: 5\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+1})$ $189\alpha \rightarrow 192\alpha: 4\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+2})$ $185\alpha \rightarrow 191\alpha: 4\% (\alpha-\text{HO-4} \rightarrow \alpha-\text{LU+1})$                                                                                                                                                                                                                                                                                                                                             |
| 14   | 3.057           | 406             | 0.054 | 4.906                 | $189a \rightarrow 193a: 28\% (a-HO \rightarrow a-LU+3)$ $184\beta \rightarrow 188\beta: 6\% (\beta-HO-2 \rightarrow \beta-LU+1)$ $186\beta \rightarrow 191\beta: 6\% (\beta-HO \rightarrow \beta-LU+4)$ $182\beta \rightarrow 187\beta: 6\% (\beta-HO-4 \rightarrow \beta-LU)$ $187a \rightarrow 192a: 6\% (a-HO-2 \rightarrow a-LU+2)$ $188a \rightarrow 196a: 5\% (a-HO-1 \rightarrow a-LU+6)$ $184a \rightarrow 191a: 3\% (a-HO-5 \rightarrow a-LU+1)$ $183a \rightarrow 190a: 3\% (a-HO-6 \rightarrow a-LU)$                                                                                                                                                                                                                                                                                       |
| 15   | 3.088           | 401             | 0.004 | 5.018                 | $185\beta \rightarrow 188\beta: 36\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+1})$ $185\alpha \rightarrow 191\alpha: 18\% (\alpha-\text{HO-4} \rightarrow \alpha-\text{LU+1})$ $182\beta \rightarrow 188\beta: 6\% (\beta-\text{HO-4} \rightarrow \beta-\text{LU+1})$ $189\alpha \rightarrow 192\alpha: 5\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+2})$ $186\beta \rightarrow 192\beta: 4\% (\beta-\text{HO} \rightarrow \beta-\text{LU+5})$ $184\beta \rightarrow 187\beta: 3\% (\beta-\text{HO-2} \rightarrow \beta-\text{LU})$                                                                                                                                                                                                                                                          |
| 16   | 3.113           | 398             | 0.000 | 5.353                 | $\begin{split} 186\beta &\rightarrow 190\beta: 17\% \ (\beta\text{-HO} \rightarrow \beta\text{-LU+3}) \\ 188a &\rightarrow 193a: 10\% \ (a\text{-HO-1} \rightarrow a\text{-LU+3}) \\ 189a &\rightarrow 195a: 6\% \ (a\text{-HO} \rightarrow a\text{-LU+5}) \\ 181\beta &\rightarrow 187\beta: 5\% \ (\beta\text{-HO-5} \rightarrow \beta\text{-LU}) \\ 186\beta &\rightarrow 189\beta: 5\% \ (\beta\text{-HO} \rightarrow \beta\text{-LU+2}) \\ 180a &\rightarrow 195a: 4\% \ (a\text{-HO-9} \rightarrow a\text{-LU+5}) \\ 183\beta &\rightarrow 188\beta: 3\% \ (\beta\text{-HO-3} \rightarrow \beta\text{-LU+1}) \\ 186a &\rightarrow 209a: 3\% \ (a\text{-HO-3} \rightarrow a\text{-LU+19}) \\ 179\beta &\rightarrow 192\beta: 3\% \ (\beta\text{-HO-7} \rightarrow \beta\text{-LU+5}) \end{split}$ |

| Tabl | e 85. (Cor      | ntinued)        |       |                       |                                                                                       |
|------|-----------------|-----------------|-------|-----------------------|---------------------------------------------------------------------------------------|
|      | $\Delta E / eV$ | $\Delta E / nm$ | f     | $\langle S^2 \rangle$ | Assignment                                                                            |
| 17   | 3.130           | 396             | 0.000 | 5.352                 | $183\beta \rightarrow 187\beta$ : 10% ( $\beta$ -HO-3 $\rightarrow \beta$ -LU)        |
|      |                 |                 |       |                       | $189a \rightarrow 195a$ : 6% ( $a$ -HO $\rightarrow a$ -LU+5)                         |
|      |                 |                 |       |                       | $186\beta \rightarrow 189\beta$ : 5% ( $\beta$ -HO $\rightarrow \beta$ -LU+2)         |
|      |                 |                 |       |                       | $186\beta \rightarrow 193\beta$ : 5% ( $\beta$ -HO $\rightarrow \alpha$ -LU+3)        |
|      |                 |                 |       |                       | $182a \rightarrow 190a$ : 5% ( $\alpha$ -HO-7 $\rightarrow \alpha$ -LU)               |
|      |                 |                 |       |                       | $186\beta \rightarrow 190\beta$ : 5% ( $\beta$ -HO $\rightarrow \beta$ -LU+3)         |
|      |                 |                 |       |                       | $188a \rightarrow 194a$ : 5% ( $\alpha$ -HO-1 $\rightarrow \alpha$ -LU+4)             |
|      |                 |                 |       |                       | $183\beta \rightarrow 188\beta$ : 4% ( $\beta$ -HO-3 $\rightarrow \beta$ -LU+1)       |
|      |                 |                 |       |                       | $181a \rightarrow 196a$ : 3% (a-HO-8 $\rightarrow$ a-LU+6)                            |
|      |                 |                 |       |                       | $184\beta \rightarrow 189\beta$ : 3% ( $\beta$ -HO-2 $\rightarrow \beta$ -LU+2)       |
|      |                 |                 |       |                       | $186a \rightarrow 209a$ : 3% (a-HO-3 $\rightarrow$ a-LU+19)                           |
|      |                 |                 |       |                       | $184a \rightarrow 192a$ : 3% (a-HO-5 $\rightarrow$ a-LU+2)                            |
| 18   | 3.214           | 386             | 0.000 | 4.010                 | $189a \rightarrow 209a$ : $30\% (a-HO \rightarrow a-LU+19)$                           |
|      |                 |                 |       |                       | $186\alpha \rightarrow 209\alpha$ : 20% ( $\alpha$ -HO-3 $\rightarrow \alpha$ -LU+19) |
|      |                 |                 |       |                       | $189a \rightarrow 219a$ : 5% ( $a$ -HO $\rightarrow a$ -LU+29)                        |
|      |                 |                 |       |                       | $189a \rightarrow 207a$ : 4% ( $a$ -HO $\rightarrow a$ -LU+17)                        |
|      |                 |                 |       |                       | $186a \rightarrow 219a$ : 4% ( $a$ -HO-3 $\rightarrow a$ -LU+29)                      |
|      |                 |                 |       |                       | $189a \rightarrow 199a$ : 3% ( $\alpha$ -HO $\rightarrow \alpha$ -LU+9)               |
| 19   | 3.221           | 385             | 0.000 | 4.278                 | $186a \rightarrow 209a$ : 28% (a-HO-3 $\rightarrow$ a-LU+19)                          |
|      |                 |                 |       |                       | $189a \rightarrow 209a$ : $13\%$ (a-HO $\rightarrow$ a-LU+19)                         |
|      |                 |                 |       |                       | $186\beta \rightarrow 189\beta$ : 12% ( $\beta$ -HO $\rightarrow \beta$ -LU+2)        |
|      |                 |                 |       |                       | $186a \rightarrow 219a$ : 5% ( $a$ -HO-3 $\rightarrow a$ -LU+29)                      |
|      |                 |                 |       |                       | $186a \rightarrow 207a$ : 3% ( $a$ -HO-3 $\rightarrow a$ -LU+17)                      |
|      |                 |                 |       |                       | $188a \rightarrow 192a$ : 3% ( $a$ -HO-1 $\rightarrow a$ -LU+2)                       |
|      |                 |                 |       |                       | $186\beta \rightarrow 190\beta$ : 3% ( $\beta$ -HO $\rightarrow \beta$ -LU+3)         |
| 20   | 3.233           | 384             | 0.000 | 5.001                 | $186\beta \rightarrow 189\beta$ : 39% ( $\beta$ -HO $\rightarrow \beta$ -LU+2)        |
|      |                 |                 |       |                       | $189\alpha \rightarrow 209\alpha$ : 14% ( $\alpha$ -HO $\rightarrow \alpha$ -LU+19)   |
|      |                 |                 |       |                       | $188\alpha \rightarrow 192\alpha$ : 10% ( $\alpha$ -HO-1 $\rightarrow \alpha$ -LU+2)  |
|      |                 |                 |       |                       | $180\beta \rightarrow 187\beta$ : 4% ( $\alpha$ -HO-9 $\rightarrow \beta$ -LU)        |
|      |                 |                 |       |                       | $186a \rightarrow 209a: 3\% (a-HO-3 \rightarrow a-LU+19)$                             |

|    | $\frac{\Delta E}{\Delta E}$ / eV | $\Delta E / \text{nm}$ | 1000000000000000000000000000000000000 | $\frac{culated}{\langle S^2 \rangle}$ | Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------|------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 0.407                            | 3048                   | 0.000                                 | 2.924                                 | $187\beta \rightarrow 188\beta$ : 96% ( $\beta$ -HO $\rightarrow \beta$ -LU)                                                                                                                                                                                                                                                                                                                                                                           |
| 2  | 1.012                            | 1225                   | 0.008                                 | 4.537                                 | $189\alpha \rightarrow 191\alpha: 34\% (\alpha \text{-HO} \rightarrow \alpha \text{-LU+1})$ $189\alpha \rightarrow 190\alpha: 33\% (\alpha \text{-HO} \rightarrow \alpha \text{-LU})$ $186\beta \rightarrow 188\beta: 24\% (\beta \text{-HO-1} \rightarrow \beta \text{-LU})$ $187\beta \rightarrow 191\beta: 4\% (\beta \text{-HO} \rightarrow \beta \text{-LU+3})$                                                                                   |
| 3  | 1.460                            | 849                    | 0.129                                 | 3.087                                 | $189\alpha \rightarrow 190\alpha: 48\% (\alpha \text{-HO} \rightarrow \alpha \text{-LU})$ $189\alpha \rightarrow 191\alpha: 45\% (\alpha \text{-HO} \rightarrow \alpha \text{-LU+1})$ $187\beta \rightarrow 190\beta: 4\% (\beta \text{-HO} \rightarrow \beta \text{-LU+2})$                                                                                                                                                                           |
| 4  | 2.253                            | 550                    | 0.000                                 | 2.533                                 | $187\beta \rightarrow 189\beta: 84\% (\beta-\text{HO} \rightarrow \beta-\text{LU+1})$ $187\beta \rightarrow 197\beta: 4\% (\beta-\text{HO} \rightarrow \beta-\text{LU+9})$ $187\beta \rightarrow 195\beta: 3\% (\beta-\text{HO} \rightarrow \beta-\text{LU+7})$                                                                                                                                                                                        |
| 5  | 2.301                            | 539                    | 0.394                                 | 2.960                                 | $186\beta \rightarrow 188\beta: 62\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU})$ $189\alpha \rightarrow 191\alpha: 14\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+1})$ $189\alpha \rightarrow 190\alpha: 12\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU})$ $187\alpha \rightarrow 190\alpha: 3\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU})$                                                                                       |
| 6  | 2.376                            | 522                    | 0.000                                 | 2.099                                 | $187\beta \rightarrow 193\beta$ : 94% ( $\beta$ -HO $\rightarrow \beta$ -LU+5)                                                                                                                                                                                                                                                                                                                                                                         |
| 7  | 2.431                            | 510                    | 0.000                                 | 2.716                                 | $187\beta \rightarrow 192\beta: 83\% (\beta-\text{HO} \rightarrow \beta-\text{LU+4})$ $187\beta \rightarrow 198\beta: 3\% (\beta-\text{HO} \rightarrow \beta-\text{LU+10})$                                                                                                                                                                                                                                                                            |
| 8  | 2.444                            | 507                    | 0.214                                 | 3.688                                 | $187\beta \rightarrow 190\beta: 59\% (\beta-\text{HO} \rightarrow \beta-\text{LU+2})$ $187\alpha \rightarrow 191\alpha: 10\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU+1})$ $183\beta \rightarrow 188\beta: 7\% (\beta-\text{HO-4} \rightarrow \beta-\text{LU})$ $187\alpha \rightarrow 190\alpha: 7\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU})$ $186\beta \rightarrow 189\beta: 3\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+1})$ |
| 9  | 2.832                            | 438                    | 0.000                                 | 2.988                                 | $174a \rightarrow 197a: 31\% (\alpha-\text{HO-15} \rightarrow \alpha-\text{LU+7})$ $186a \rightarrow 197a: 17\% (\alpha-\text{HO-3} \rightarrow \alpha-\text{LU+7})$ $188a \rightarrow 197a: 15\% (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU+7})$ $179a \rightarrow 197a: 9\% (\alpha-\text{HO-10} \rightarrow \alpha-\text{LU+7})$ $163a \rightarrow 197a: 8\% (\alpha-\text{HO-26} \rightarrow \alpha-\text{LU+7})$                             |
| 10 | 2.841                            | 436                    | 0.003                                 | 3.569                                 | $187\beta \rightarrow 191\beta: 44\% (\beta-\text{HO} \rightarrow \beta-\text{LU+3})$<br>$187\beta \rightarrow 194\beta: 18\% (\beta-\text{HO} \rightarrow \beta-\text{LU+6})$<br>$186\beta \rightarrow 188\beta: 10\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU})$<br>$186\beta \rightarrow 192\beta: 6\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+4})$                                                                                      |
| 11 | 2.894                            | 428                    | 0.000                                 | 2.993                                 | $173a \rightarrow 197a: 30\% (\alpha-\text{HO-16} \rightarrow \alpha-\text{LU+7})$ $186a \rightarrow 197a: 19\% (\alpha-\text{HO-3} \rightarrow \alpha-\text{LU+7})$ $188a \rightarrow 197a: 15\% (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU+7})$ $168a \rightarrow 197a: 13\% (\alpha-\text{HO-21} \rightarrow \alpha-\text{LU+7})$                                                                                                              |

**Table S6.** Excitation energies ( $\Delta E$ ), oscillator strengths (*f*),  $\langle S^2 \rangle$  values and assignments on the low-lying excited states of [Cr(MeIm)<sub>2</sub>Pc]<sup>0</sup> calculated at the TD-UCAM-B3LYP/cc-pVTZ/cc-pVDZ level of theory.

| Tabl | e S6. (Cor      | tinued)         |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|-----------------|-----------------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\Delta E / eV$ | $\Delta E / nm$ | f     | $\langle S^2 \rangle$ | Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12   | 2.938           | 422             | 0.000 | 3.976                 | $188a \rightarrow 190a: 12\% (a-HO-1 \rightarrow a-LU)$ $187\beta \rightarrow 198\beta: 10\% (\beta-HO \rightarrow \beta-LU+10)$ $189a \rightarrow 193a: 9\% (a-HO \rightarrow a-LU+3)$ $188a \rightarrow 191a: 9\% (a-HO-1 \rightarrow a-LU+1)$ $186\beta \rightarrow 191\beta: 8\% (\beta-HO-1 \rightarrow \beta-LU+3)$ $186\beta \rightarrow 194\beta: 5\% (\beta-HO-1 \rightarrow \beta-LU+6)$ $189a \rightarrow 195a: 5\% (a-HO \rightarrow a-LU+5)$                                                                                                                                                                            |
|      |                 |                 |       |                       | $187\beta \rightarrow 195\beta: 4\% (\beta \text{-HO} \rightarrow \beta \text{-LU+7})$ $187\beta \rightarrow 197\beta: 4\% (\beta \text{-HO} \rightarrow \beta \text{-LU+7})$ $186\alpha \rightarrow 191\alpha: 3\% (\alpha \text{-HO-3} \rightarrow \alpha \text{-LU+1})$ $184\alpha \rightarrow 196\alpha: 3\% (\alpha \text{-HO-5} \rightarrow \alpha \text{-LU+6})$ $186\alpha \rightarrow 190\alpha: 3\% (\alpha \text{-HO-3} \rightarrow \alpha \text{-LU})$                                                                                                                                                                   |
| 13   | 3.182           | 390             | 0.000 | 4.249                 | $\begin{split} &186a \to 191a: 15\% \ (a\text{-HO-3} \to a\text{-LU+1}) \\ &186a \to 190a: 12\% \ (a\text{-HO-3} \to a\text{-LU}) \\ &189a \to 193a: 7\% \ (a\text{-HO} \to a\text{-LU+3}) \\ &178\beta \to 188\beta: 5\% \ (\beta\text{-HO-9} \to \beta\text{-LU}) \\ &180a \to 194a: 4\% \ (a\text{-HO-9} \to a\text{-LU+4}) \\ &184a \to 191a: 3\% \ (a\text{-HO-5} \to a\text{-LU+1}) \\ &188a \to 190a: 3\% \ (a\text{-HO-1} \to a\text{-LU}) \\ &184a \to 190a: 3\% \ (a\text{-HO-5} \to a\text{-LU}) \\ &181\beta \to 190\beta: 3\% \ (\beta\text{-HO-6} \to \beta\text{-LU+2}) \end{split}$                                  |
| 14   | 3.198           | 388             | 0.025 | 3.621                 | $187\beta \rightarrow 191\beta: 29\% (\beta-\text{HO} \rightarrow \beta-\text{LU+3})$ $187\alpha \rightarrow 190\alpha: 16\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU})$ $187\beta \rightarrow 194\beta: 15\% (\beta-\text{HO} \rightarrow \beta-\text{LU+6})$ $186\beta \rightarrow 192\beta: 4\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+4})$ $189\alpha \rightarrow 196\alpha: 3\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+6})$ $187\alpha \rightarrow 191\alpha: 3\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU+1})$                                                                                     |
| 15   | 3.221           | 385             | 0.093 | 4.460                 | $187\alpha \rightarrow 191\alpha: 21\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU+1})$ $183\beta \rightarrow 188\beta: 21\% (\beta-\text{HO-4} \rightarrow \beta-\text{LU})$ $187\beta \rightarrow 190\beta: 7\% (\beta-\text{HO} \rightarrow \beta-\text{LU+2})$ $187\alpha \rightarrow 190\alpha: 7\% (\alpha-\text{HO-2} \rightarrow \alpha-\text{LU})$ $181\beta \rightarrow 188\beta: 6\% (\beta-\text{HO-6} \rightarrow \beta-\text{LU})$ $186\beta \rightarrow 189\beta: 4\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+1})$ $189\alpha \rightarrow 194\alpha: 3\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+4})$ |
| 16   | 3.284           | 378             | 0.000 | 4.087                 | $189\alpha \rightarrow 192\alpha: 34\% (\alpha-\text{HO} \rightarrow \alpha-\text{LU+2})$ $188\alpha \rightarrow 190\alpha: 19\% (\alpha-\text{HO-1} \rightarrow \alpha-\text{LU})$ $186\beta \rightarrow 190\beta: 13\% (\beta-\text{HO-1} \rightarrow \beta-\text{LU+2})$ $187\beta \rightarrow 195\beta: 9\% (\beta-\text{HO} \rightarrow \beta-\text{LU+7})$                                                                                                                                                                                                                                                                     |

| Tabl | Sable S6. (Continued) |                 |       |                       |                                                                                       |  |  |  |  |
|------|-----------------------|-----------------|-------|-----------------------|---------------------------------------------------------------------------------------|--|--|--|--|
|      | $\Delta E / eV$       | $\Delta E / nm$ | f     | $\langle S^2 \rangle$ | Assignment                                                                            |  |  |  |  |
| 17   | 3.313                 | 374             | 0.000 | 3.224                 | $188\alpha \rightarrow 191\alpha$ : 33% ( $\alpha$ -HO-1 $\rightarrow \alpha$ -LU+1)  |  |  |  |  |
|      |                       |                 |       |                       | 188α $\rightarrow$ 190α: 21% (α-HO-1 $\rightarrow$ α-LU)                              |  |  |  |  |
|      |                       |                 |       |                       | $187\beta \rightarrow 198\beta$ : 10% ( $\beta$ -HO $\rightarrow \beta$ -LU+10)       |  |  |  |  |
|      |                       |                 |       |                       | $187\beta \rightarrow 197\beta$ : 6% ( $\beta$ -HO $\rightarrow \beta$ -LU+9)         |  |  |  |  |
|      |                       |                 |       |                       | $186\beta \rightarrow 194\beta$ : 5% ( $\beta$ -HO-1 $\rightarrow \beta$ -LU+6)       |  |  |  |  |
|      |                       |                 |       |                       | $189\alpha \rightarrow 192\alpha$ : 4% ( $\alpha$ -HO $\rightarrow \alpha$ -LU+2)     |  |  |  |  |
|      |                       |                 |       |                       | $185\alpha \rightarrow 192\alpha$ : 3% ( $\alpha$ -HO-4 $\rightarrow \alpha$ -LU+2)   |  |  |  |  |
| 18   | 3.381                 | 367             | 0.152 | 4.296                 | $187\beta \rightarrow 190\beta$ : 20% ( $\beta$ -HO $\rightarrow \beta$ -LU+2)        |  |  |  |  |
|      |                       |                 |       |                       | $183\beta \rightarrow 188\beta$ : 8% ( $\beta$ -HO-4 $\rightarrow \beta$ -LU)         |  |  |  |  |
|      |                       |                 |       |                       | 189 $\alpha \rightarrow$ 194 $\alpha$ : 6% ( $\alpha$ -HO $\rightarrow \alpha$ -LU+4) |  |  |  |  |
|      |                       |                 |       |                       | $181\beta \rightarrow 188\beta$ : 5% ( $\beta$ -HO-6 $\rightarrow \beta$ -LU)         |  |  |  |  |
|      |                       |                 |       |                       | $180a \rightarrow 193a$ : 5% ( $a$ -HO-9 $\rightarrow a$ -LU+3)                       |  |  |  |  |
|      |                       |                 |       |                       | $179\beta \rightarrow 191\beta$ : 4% ( $\beta$ -HO-8 $\rightarrow \beta$ -LU+3)       |  |  |  |  |
|      |                       |                 |       |                       | $182\alpha \rightarrow 190\alpha$ : 4% ( $\alpha$ -HO-7 $\rightarrow \alpha$ -LU)     |  |  |  |  |
|      |                       |                 |       |                       | $178\beta \rightarrow 190\beta$ : 3% ( $\beta$ -HO-9 $\rightarrow \beta$ -LU+2)       |  |  |  |  |
|      |                       |                 |       |                       | $181\alpha \rightarrow 191\alpha$ : 3% ( $\alpha$ -HO-8 $\rightarrow \alpha$ -LU+1)   |  |  |  |  |
| 19   | 3.437                 | 361             | 0.335 | 3.275                 | $187 \alpha \rightarrow 190 \alpha$ : 35% ( $\alpha$ -HO-2 $\rightarrow \alpha$ -LU)  |  |  |  |  |
|      |                       |                 |       |                       | $187\alpha \rightarrow 191\alpha$ : 25% ( $\alpha$ -HO-2 $\rightarrow \alpha$ -LU+1)  |  |  |  |  |
|      |                       |                 |       |                       | $187\beta \rightarrow 191\beta$ : 12% ( $\beta$ -HO $\rightarrow \beta$ -LU+3)        |  |  |  |  |
|      |                       |                 |       |                       | $185 \alpha \rightarrow 190 \alpha$ : 6% ( $\alpha$ -HO-4 $\rightarrow \alpha$ -LU)   |  |  |  |  |
|      |                       |                 |       |                       | $185\alpha \rightarrow 191\alpha$ : 4% ( $\alpha$ -HO-4 $\rightarrow \alpha$ -LU+1)   |  |  |  |  |
|      |                       |                 |       |                       | $189\alpha \rightarrow 191\alpha$ : 3% ( $\alpha$ -HO $\rightarrow \alpha$ -LU+1)     |  |  |  |  |
|      |                       |                 |       |                       | $187\beta \rightarrow 194\beta$ : 3% ( $\beta$ -HO $\rightarrow \beta$ -LU+6)         |  |  |  |  |
| 20   | 3.522                 | 352             | 0.000 | 3.884                 | $184\beta \rightarrow 188\beta$ : 18% ( $\beta$ -HO-3 $\rightarrow \beta$ -LU)        |  |  |  |  |
|      |                       |                 |       |                       | $188\alpha \rightarrow 191\alpha$ : 16% ( $\alpha$ -HO-1 $\rightarrow \alpha$ -LU+1)  |  |  |  |  |
|      |                       |                 |       |                       | $186a \rightarrow 190a: 14\% (a-HO-3 \rightarrow a-LU)$                               |  |  |  |  |
|      |                       |                 |       |                       | $189a \rightarrow 192a$ : $12\% (a-HO \rightarrow a-LU+2)$                            |  |  |  |  |
|      |                       |                 |       |                       | $188a \rightarrow 190a: 12\% (a-HO-1 \rightarrow a-LU)$                               |  |  |  |  |
|      |                       |                 |       |                       | $186a \rightarrow 191a$ : 10% (a-HO-3 $\rightarrow$ a-LU+1)                           |  |  |  |  |