Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Controllable assembly of rectangular macrocycles bearing different numbers

of unsaturated sites based on half-sandwich iridium fragments

Li-Long Dang, Yue-Jian Lin and Guo-Xin Jin*

State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China

Table of Contents

- 1. General
- 2. NMR Spectra
- 3. X-ray Crystallography Details.

1. General

The starting materials $[Cp*IrCl(\mu-Cl)]_2(1)$, $[Cp*_2Ir_2(\mu-\eta^4-C_2O_4)]Cl_2(2)$ and $[Cp*_2Ir_2(\mu-CA)]Cl_2(3)$ were prepared according to literature methods. All reagents and solvents including proligands diamine H_4L_1 and dihydroxy H_2L_2 were obtained commercially and used without further purification. Both H_4L_1 and H_2L_2 possess two identical "soft" N-monodentate sites. However, an obvious difference exists in their chelating sites: H_4L_1 bears the "soft" N,N' site while H_2L_2 bears the "hard" O,O' site, and these sites were found to play crucial roles in the formation of complexes. NMR spectra were recorded on Bruker AVANCE I 400 spectrometers at room temperature and referenced to the residual protonated solvent. Elemental analyses were performed on an Elementar III Vario EI analyzer. IR spectra of the solid samples (KBr tablets) in the range 400-4000 cm⁻¹ are measured on a Nicolet Avatar-360 spectrophotometer.

	4	5a	5b	
formula	formula C ₃₅ H ₅₁ Cl ₆ Ir ₃ N ₄		C ₈₄ H ₉₈ C ₁₄ F ₁₂ Ir ₆ N ₈ O ₂₀ S ₄ 6CH ₃ OH 1H ₂ O	
Mr	1317.09	3053.17	3198.26	
crystal system	Triclinic	Monoclinic	Monoclinic	
space group	<i>P</i> -1	$P2_1/n$	$P2_1/c$	
<i>a</i> [Å]	11.7964(10)	17.2426(10)	14.020(2)	
<i>b</i> [Å]	14.234(2)	12.2074(7)	24.957(4)	
<i>c</i> [Å]	14.7093(12)	24.9090(14)	16.397(2)	
α[°]	106.465(2)	90	90	
β[°]	111.0350(10)	100.386(2)	98.073(2)	
γ[°]	104.122(2)	90	90	
V [Å ³]	2039.1(4)	5157.1 (5)	5680.3(14)	
<i>T</i> [K]	203(2)	173(2)	203(2)	
Ζ	2	2	2	
$ ho_{ m calcd} [m g \ m cm^{-3}]$	2.145	1.966	1.989	
$\mu \ [\mathrm{mm}^{-1}]$	10.189	10.694	7.260	
<i>F</i> (000)	1244	2920	3276	
independent reflections	0.0256	0.0550	0.0697	
data/restraints/parameters	7849/108/421	10906/131/678	13024/272/728	
$R_1/wR_2 [I \ge 2\sigma(I)]^a$	0.0431/0.1559	0.0430/0.1100	0.0539/0.1430	
R_1/wR_2 (all data) ^a	0.0567/0.2022	0.0541/0.1177	0.1148/0.1918	
goodness-of-fit	1.100	1.039	0.932	
largest residuals [e Å-3]	2.808/-2.172	3.071/-1.414	4.258/-3.284	

Table S1 Crystallographic data and structure refinement parameters for complexes 4, 5a and 5b.

 $^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| (based on reflections with Fo²> 2\sigma F²); wR_{2} = \{\Sigma [\omega (Fo² - Fc²)²]/\Sigma [\omega (Fo²)²]\}^{1/2}; w = 1/[\sigma²FO² + (0.095P)²]; P = [max (Fo², 0) + 2Fc²]/3 (also with Fo²> 2\sigma F²) (also with Fo²> 2\sigma F²) (based on reflections wi$

	6a	6b	7
formula	C ₈₆ H ₁₀₆ F ₁₂ Ir ₆ N ₄ O ₂₆ S ₄ 2CH ₃ OH 4H ₂ O 4CH ₃ OH	$\begin{array}{c} C_{90}H_{98}Cl_{6}F_{6}Ir_{6}N_{4}O_{18}S_{2}\\ \\ 4CH_{3}OH \end{array}$	$C_{87}H_{125}F_{12}Ir_6N_7O_{29}S_4$
Mr	3321.41	21.41 1597.95	
crystal system	Monoclinic	Monoclinic	Triclinic
space group	C2/c	$P2_1/c$	<i>P</i> -1
<i>a</i> [Å]	16.9993(7)	14.2389(11)	17.8224(19)
<i>b</i> [Å]	22.0621(10)	20.1647(16)	21.279(2)
<i>c</i> [Å]	28.645(3)	19.0241(15)	29.878(3)
α[°]	90	90	71.018(2)
β[°]	91.725(2)	103.2420(10)	84.763(2)
γ[°]	90	90	88.326(2)
V [Å ³]	10744.1(8)	5317.0(7)	10670(2)
<i>T</i> [K]	173(2)	173(2)	203(2)
Ζ	4	4	4
$ ho_{ m calcd} [m g \ m cm^{-3}]$	2.053	1.996	2.018
μ [mm ⁻¹]	10.348	7.748	7.629
<i>F</i> (000)	6416	3064	6248
independent reflections	0.0668	0.0364	0.0488
data/restraints/parameters	10576/259/710	12098/18/638	41428/722/2519
$R_1/wR_2 [I>2\sigma(I)]^a$	0.0625/0.1760	0.0323/0.0926	0.0721/0.2016
R_1/wR_2 (all data) ^a	0.0757/0.1879	0.0466/0.1074	0.1207/0.2637
goodness-of-fit	1.084	0.942	1.029
largest residuals [e Å-3]	2.217/-1.964	1.860/-1.068	9.187/-4.723

 Table S2 Crystallographic data and structure refinement parameters for complexes 6a, 6b and 7.

 ${}^{a}R_{1} = \Sigma \mid |F_{o}| - |F_{c}| \mid (based on reflections with Fo^{2} > 2\sigma F^{2}); wR_{2} = \{\Sigma[\omega(Fo^{2} - Fc^{2})^{2}]/\Sigma[\omega(Fo^{2})^{2}]\}^{1/2}; w = 1/[\sigma^{2}FO^{2} + (0.095P)^{2}]; P = [max (Fo^{2}, 0) + 2Fc^{2}]/3 (also with Fo^{2} > 2\sigma F^{2}) (also with Fo^{2} - 2\sigma F^{2$

$\mathrm{H}_4 L_1$			4		5a		5b	
N(3)-C(1)	1.266	N(3)-C(1)	1.293(18)	N(3)-C(3)	1.325(8)	N(3)-C(7)	1.346(14)	
N(4)-C(2)	1.266	N(4)-C(2)	1.336(16)	N(4)-C(4)	1.319(8)	N(4)-C(8)	1.298(15)	
C(1)-C(2)	1.385	C(1)-C(2)	1.463(17)	C(3)-C(4)	1.442(9)	C(7)-C(8)	1.454(15)	
N(1)-C(4)	1.353	N(1)-C(4)	1.321(19)	N(1)-C(3)	1.340(8)	N(1)-C(7)	1.34(4)	
N(1)-C(1)	1.353	N(1)-C(1)	1.38(2)	N(1)-C(6)	1.374(8)	N(1)-C(10)	1.32(3)	
N(2)-C(2)	1.353	N(2)-C(2)	1.311(17)	N(2)-C(4)	1.348(8)	N(2)-C(8)	1.365(15)	
N(2)-C(3)	1.353	N(2)-C(3)	1.366(19)	N(2)-C(5)	1.381(8)	N(2)-C(9)	1.349(16)	
C(3)-C(4)	1.385	C(3)-C(4)	1.36(2)	C(5)-C(6)	1.360(9)	C(9)-C(10)	1.363(16)	
		Ir(3)-N(4)	2.004(11)	Ir(3)-N(3)	2.008(5)	Ir(3)-N(4)	1.983(9)	
		Ir(3)-N(3)	2.005(10)	Ir(3)-N(4)	2.004(5)	Ir(3)-N(3)	1.984(10)	

Table S3 Selected bond lengths (Å) for 4, 5a, 5b the free ligand H_4L_1 .

Table S4 Selected bond lengths (Å) for 6a, 6b, 7 and the free ligand H₂ L_2 .

	$H_2 L_2$		6a	61)		7
O(7)-C(6)	1.355	O(5)-C(3)	1.295(11)	O(5)-C(7)	1.280(7)	N(11)-C(91)	1.34 (2)
O(8)-C(5)	1.355	O(6)-C(4)	1.289(10)	O(6)-C(8)	1.274(7)	N(12)-C(92)	1.339(18)
C(5)-C(6)	1.380	C(3)-C(4)	1.437(14)	C(7)-C(8)	1.480(8)	C(91)-C(92)	1.46(2)
N(1)-C(6)	1.350	N(1)-C(3)	1.353(12)	N(1)-C(7)	1.315(8)	N(9)-C(91)	1.31(2)
N(2)-C(5)	1.350	N(1)-C(10)	1.410(11)	N(1)-C(14)	1.404(8)	N(9)-C(94)	1.36(2)
N(1)-C(2)	1.348	N(2)-C(4)	1.330(12)	N(2)-C(8)	1.327(8)	N(10)-C(92)	1.301(19)
C(2)-C(3)	1.418	N(2)-C(5)	1.404(11)	N(2)-C(9)	1.399(8)	N(10)-C(93)	1.415(17)
		C(5)-C(10)	1.435(12)	C(9)-C(14)	1.435(9)	C(93)-C(94)	1.35(2)
		Ir(3)-O(5)	2.097(7)	Ir(3)-O(5)	2.113(4)	Ir(12)-N(11)	1.996(13)
		Ir(3)-O(6)	2.116(8)	Ir(3)-O(6)	2.110(4)	Ir(12)-N(12)	1.994(14)
						O(19)-C(83)	1.310(18)
						O(20)-C(84)	1.290(19)
						C(83)-C(84)	1.492(19)
						N(7)-C(83)	1.298(19)
						N(7)-C(90)	1.41(2)
						N(8)-C(84)	1.31(2)
						N(8)-C(85)	1.42(2)
						C(85)-C(90)	1.39(2)

Figure. S1 The ¹H NMR spectra of complex 4 in DMSO-D6 solution.

Figure. S2 The ¹H NMR spectra of complex 5a in CD₃OD solution.

Figure. S3 Variable-temperature ¹H NMR studies of complex 5a in CD₃OD solution.

Figure. S4 ¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) for complex 5a.

Figure. S5 The ¹H NMR spectra of complex 5b in CD₃OD solution.

Figure. S6 $^{13}C\{^{1}H\}$ NMR (101 MHz, CD₃OD, ppm) for complex 5b.

Figure. S7 The ¹H NMR spectra of complex 6a in CD₃OD solution.

Figure. S8 ¹³C{¹H} NMR (101 MHz, CD₃OD, ppm) for complex 6a.

Figure. S10 ${}^{13}C{}^{1H}$ NMR (101 MHz, CD₃OD, ppm) for complex 6b.

Figure. S11 The ¹H NMR spectra of complex 7 in CD₃OD solution.

Figure. S12 $^{13}C\{^{1}H\}$ NMR (101 MHz, CD₃OD, ppm) for complex 7.

Figure. S13 ¹H DOSY NMR (400 MHz, CD₃OD, ppm) for complex 7.

4. X-ray Crystallography Details.

Single-crystal XRD data of these compounds were collected on a Bruker APEX DUO diffractometer. Complexes **4**, **5b**, **6b** and **7** were collected with Mo-K α radiation ($\lambda = 0.71073$ Å) at 203, 203, 173, 203K, respectively. Complexes **5a** and **6a** were collected with Ga-K α radiation ($\lambda = 0.71073$ Å) at 173K. These structures were solved by direct methods, using Fourier techniques, and refined on F^2 by a full-matrix least-squares method. All calculations were carried out with the SHELXTL program. In these data, the disordered solvent molecules that could not be restrained properly were removed using the SQUEEZE method.

In asymmetric unit of 4, there was one disordered dichloromethane molecule which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit it. 18 ISOR instructions were used to restrain ligand and Cp* fragments so that there were 108 restraints in the data.

In asymmetric unit of **5a**, one triflate anion was disordered and it was divided into two parts (68:32). C39 was refined isotropically and other non-hydrogen atoms were refined anisotropically. 17 ISOR, 1 SIMU and 17 DFIX instructions were used to restrain anions and solvents so that there were 131 restraints in the data. Hydrogen of methanol and water molecules could not be found and others were put in calculated positions.

In asymmetric unit of **5b**, there were disordered solvents (one methanol and half of a diethyl ether molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One triflate anion was disordered and it was divided into two parts (63:37). 19 ISOR, 2 SIMU and 26 DFIX instructions were used to restrain anions and Cp* fragments so that there were 272 restraints in the data. Hydrogen of water molecules could not be found and others were put in calculated positions.

In asymmetric unit of 6a, there were disordered solvents (two methanol and two water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One triflate anion was disordered and it was divided into two parts (57:43). 38 ISOR, 2 SIMU, 1 DELU and 12 DFIX instructions were used to restrain anions and Cp* fragments so that there were 259 restraints in the data. Hydrogen of methanol molecule could not be found and others were put in calculated positions.

In asymmetric unit of **6b**, there was one disordered methanol molecule which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit it. One triflate anion and one methanol molecule were disordered and they were divided into two parts (59:41). 3 ISOR instructions were used to restrain anion so that there were 18 restraints in the data. Hydrogen of methanol molecule could not be found and others were put in calculated positions.

In asymmetric unit of 7, there were disordered solvents (nine methanol and three water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One pentamethylcyclopentadienyl ligand (Cp* for short) was disordered and it was divided into two parts (60:40). 110 ISOR, 1 SIMU and 26 DFIX instructions were used to restrain anions, ligands and Cp* fragments so that there were 722 restraints in the data. Hydrogen of methanol and water molecules could not be found and others were put in calculated positions.