Multi-factors (Tail/Loop/Link/Ions) Regulation for G-quadruplexes

Enantioselectivity of Δ - and Λ - [Ru(bpy)₂(dppz-idzo)]²⁺

Xiaochun Hu, Tianming Yao*, Ruru Gao, Maierhaba Wumaier, Shuo Shi*

Department of Chemistry, Tongji University, Shanghai, 200092, China Shanghai Key Laboratory of Chemical Assessment and Sustainability *To whom correspondence should be addressed. Email: shishuo@tongji.edu.cn Correspondence may also be addressed to Tian-Ming Yao. Email: tmyao@tongji.edu.cn

Supplementary

Figure S1. Absorption spectra of two isomers (8 µM) titrated by GQs.

		TE-tail-0	TE-tail-9	TBA	Z-G4
	Δ-1	3.25	3.03	1.45	4.88
$K_{b}(10^{6})$	Λ-1	3.61	2.92	1.91	5.62
2	Δ-1	400	400	400	400
Amax /free	Λ-1	400	400	400	400
	Δ-1	406	409	403	402
$\lambda_{\text{max /bound}}$	Λ-1	411	409	409	408
	Δ-1	6	9	3	2
$\Delta\lambda$	Λ-1	11	9	9	8
	Δ-1	28.8	38.9	29.0	38.4
H(%)	Λ-1	33.6	38.7	36.1	46.2

Table S1. Binding constants and absorption spectra of Δ/Λ -1 for different GQs.

 $\Delta\lambda$: Red shift.

H(%): Hypochromism for the absorbance at 400 nm.

Figure S2. Comparison of emission observed for 1 μM enantiomers in the system of A) **TE-tail-0**, B) **TE-tail-9**, C) **TBA** and D) **Z-G4** with different pH in 10 mM Tris-HCl, 100 mM KCl buffer.

Figure S3. (Above) Comparison of emission in 615 nm observed for 1 μ M enantiomers of **A-1** in the presence of 0.5 μ M GQs with different pH; (Below) the enantioselectivity of Δ/Λ -1 for GQs with different pH.

Table	S2.	Optimized	structure	of	[Ru(bpy) ₂ (dppz-idzo)] ²⁺	in	gas	at	the	B3LYP//SDD/6-311G**	level.	E=-
2219.2	25203	33 Hartree.										

Ν	-3.71499800	1.14484500	-0.93687500	Н	-6.47061600	-3.43586800	2.40266700
С	-4.02282500	2.32449000	-0.32964300	Ν	-2.34370700	-1.68139400	-1.25748300
С	-4.38685700	0.79563600	-2.04977300	С	-3.24246800	-2.63374100	-0.88357400
С	-5.01342200	3.16148100	-0.84635900	С	-1.59481500	-1.89362700	-2.35558300
С	-5.37945700	1.58609600	-2.60969400	С	-3.39090600	-3.81016800	-1.62014300
Н	-4.10732400	-0.14859700	-2.49651600	С	-1.69926300	-3.04120500	-3.12765900
С	-5.69994100	2.79306200	-1.99570200	Н	-0.89562700	-1.10973300	-2.61260400
Н	-5.25244300	4.09448900	-0.35549600	С	-2.61462200	-4.01972700	-2.75231400
Н	-5.88690800	1.25560700	-3.50671700	Н	-4.10480600	-4.56152600	-1.31314100
Н	-6.47060700	3.43588000	-2.40266600	Н	-1.07164300	-3.15913500	-4.00146500
Ν	-2.34370400	1.68139600	1.25748500	Н	-2.72263100	-4.93002700	-3.32888700
С	-1.59481200	1.89362700	2.35558500	С	0.53956900	2.40878100	-2.47921300
С	-3.24246500	2.63374400	0.88357800	С	1.77734200	1.98352500	-2.03447800
С	-1.69926000	3.04120300	3.12766400	С	1.84315000	1.00509900	-1.02930800
Н	-0.89562400	1.10973200	2.61260500	С	0.63324300	0.50287100	-0.51799000
С	-3.39090300	3.81016900	1.62015000	С	-0.61862800	1.85877300	-1.92427900
С	-2.61461900	4.01972600	2.75232100	С	0.63324300	-0.50287800	0.51798300
Н	-1.07163900	3.15913200	4.00147000	С	1.84315000	-1.00511100	1.02929600
Н	-4.10480300	4.56152700	1.31315000	С	1.77734200	-1.98353500	2.03446800
Н	-2.72262800	4.93002500	3.32889600	Н	2.70008700	-2.38068400	2.43702100
Ν	-3.71499900	-1.14484100	0.93687800	С	0.53956900	-2.40878600	2.47920800
С	-4.02282900	-2.32448500	0.32964700	С	-0.61862800	-1.85877300	1.92427900
С	-4.38685700	-0.79563000	2.04977600	Н	0.45058400	3.16157900	-3.25201200
С	-5.01342800	-3.16147300	0.84636100	Н	2.70008700	2.38067100	-2.43703400
С	-5.37946000	-1.58608700	2.60969700	Н	-1.59873300	2.17238100	-2.25818200
Н	-4.10732200	0.14860200	2.49652000	Н	0.45058400	-3.16158300	3.25200900
С	-5.69994700	-2.79305200	1.99570400	Н	-1.59873300	-2.17237700	2.25818600
Н	-5.25245200	-4.09448000	0.35549800	Ν	-0.58414300	-0.92451600	0.96683300
Н	-5.88691000	-1.25559700	3.50672000	Ν	-0.58414300	0.92451400	-0.96683500

Figure S4. A) CD spectra of 4 μ M Δ -1 and Λ -1 in the buffer of Tris-KCl; B) Calculated CD spectra of the Λ -1.

Figure S5. Schematic representation of TE-tail-9 with a single-strand DNA in the 3'-end.

Figure S6. Comparison of emission observed for 1 μM enantiomers in the 0.5 μM **TE-tail-n** with different tailsequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S7. Comparison of emission observed for 1µM enantiomers in the 0.5 µM **T-tail-n** with different tailsequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S8. A) Comparison of emission in 615 nm observed for 1 μM enantiomers of Λ-1 in the presence of 0.5 μM TT-tail-n; B) the enantioselectivity of chiral Ru-complex for TT-tail-n.

Figure S9. Comparison of emission in 615 nm observed for 1 μM enantiomers in the presence of 0.5 μM **TTtail-n** with different tail-sequences in 10 mM Tris-HCI, 100 mM KCI buffer, pH 7.4.

Figure S10. Schematic representation of T-tail-pair with a B-form duplex DNA tail.

Figure S11. The calculated model of the: Δ -1(purple one) and Λ -1(yellow one) bind to A) anti-tail sequence; B) tail sequence: C) tail-pair sequence.

Figure S12. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **L111** and **L112** with different loop-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S13. CD spectral of different GQs with parallel topology.

Figure S14. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **L333-n** with different loop-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S15. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **L3n3** with different loop-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S16. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **T-di-n** with different link-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S17. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **TBA-di-n** with different link-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S18. Comparison of emission observed for 1 μM enantiomers in the presence of 0.5 μM **TE-di-n** with different link-sequences in 10 mM Tris-HCl, 100 mM KCl buffer, pH=7.4.

Figure S19. Cube size was calculated by Multiwfn (1). And molecular visualisation was developed using VMD on a Linux 64-bit operating system (2).

Figure S20. Comparison of emission observed for 1μM **Λ-1** in the presence of 0.5 μM **222** in 10 mM Tris-HCl, different concentration of KCl buffer, pH=7.4.

Reference

- 1. Tian Lu, Feiwu Chen, J. Comput. Chem. 33, 580-592 (2012)
- 2. Humphrey, W., Dalke, A. and Schulten, K., 'VMD Visual Molecular Dynamics', *J. Molec. Graphics* 1996, 14.1, 33-38.