Ingenious One-Dimensional Zirconium Phosphonate with Efficient

Strontium Exchange Capability and Moderate Proton Conductivity

Jiarong Zhang^{a,b}, Lanhua Chen^b, Daxiang Gui^b, Haowen Zhang^b, Duo Zhang^b, Wei Liu^b, Guolin Huang^{*a}, Juan Diwu^{*b}, Zhifang Chai^b, and Shuao Wang^{*b}

^aState Key Laboratory Breeding Base of Nuclear Resources and Environmental, East China Institute of Technology, Nanchang, 330013, China.
E-mail: guolinhuang@sina.com
^bState Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
E-mail: diwujuan@suda.edu.cn, shuaowang@suda.edu.cn **Table of Contents**

- **S1. Experimental section**
- **S2.** X-ray crystallography
- **S3. Bond Valence Sum (BVS)**
- **S4.** Powder X-ray diffraction (PXRD)
- **S5. FT-IR spectrum**
- S6. SEM-EDS analysis of SZ -5 before and after ion-exchange
- S7. XAFS fit results for Sr-sorbed SZ-5 samples
- **S8.** Crystal structure of Sr₃(PO₄)₂
- **S9.** Proton conductivity measurements of SZ-5

S1. Experimental section

Materials: All chemical reagents and solvents purchased from commercial suppliers and directly used as received. *Caution! Sr-90 used in this study is a high-energy* β *emitter with the daughter of radioactive Y-90. All Sr-90 experiments were performed in an authorized laboratory designed for radiological studies. Standard protections for radioactive materials should be followed.*

Synthesis of SZ-5: the mixture of $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$ (64.4 mg, 0.2 mmol), methylenediphosphonic acid (35.2 mg, 0.2 mmol), HNO₃ (100 μ L), HF (50 μ L) and 2.5 ml mixed solvent (V_{DMA} : V_{H2O} (ml) = 4 : 1) was added into a 10mL stainless steel PTFE vial. Then, the vial was heated to 200 °C for 3 days and cooled to room temperature at a rate of 5 °C/h. Colourless crystals were finally obtained as a pure phase.

X-ray Crystallography Studies: Single crystal X-ray diffraction data collections of **SZ-5** were performed on a Bruker D8-Venture diffractometer with a Turbo X-ray Source (Mo–K α radiation, $\lambda = 0.71073$ Å) adopting the direct-drive rotating anode technique and a CMOS detector under 298 K. The data of **SZ-5** was collected using the program APEX3 and then processed using SAINT routine in APEX3. The structure of **SZ-5** was solved by direct methods and refined by the full-matrix least squares on F² using the SHELXTL.

Characterizations and Methods

Instrumentations: Powder X-ray diffraction (PXRD) patterns were collected from 5° to 50° with a step of 0.02° on a Bruker D8 Advance diffractometer with Cu K α radiation (λ =1.54056 Å) and a Lvnxeve onedimensional detector. Elemental analysis (C, N, and H) were performed with a Vario EL CHNOS elemental analyzer and the results were calculated to be N, 5.701%; C, 13.5%; H, 4.266%. The FT-IR spectra of SZ-5 without KBr were recorded in the range of 4000-400 cm⁻¹ on a Thermo Nicolet iS50 spectrometer. Thermogravimetric analyses were carried out on a NETZSCH STA449F3 instrument in the range of 30-900 °C under a nitrogen flow at a heating rate of 10 K/min for the dried samples of SZ-5. Scanning electron microscopy images and energydispersive spectroscopy data (SEM/EDS) were recorded on a FEI Quanta 200FEG Scanning Electron Microscope with the energy of the electron beam being 30 keV. SZ-5 samples were directly mounted on the carbon conductive tape, and then coated with Au. The concentration of nonradioactive Sr²⁺ was determined by inductively coupled plasmaatomic emission spectrometry (ICP-AES, Thermo Fisher Scientific iCAP 7000) or inductively coupled plasma-mass spectrometry (ICP-MS, Thermo Finnigan high resolution magnetic sector Element 2) depending on the specific concentration, meanwhile the radioactive Sr^{2+} in solution were measured using a liquid scintillation counting system (LCS).

Hydrolytic Stability Measurements: Hydrolytic stability measurements for **SZ-5** was studied by stiring the samples in HNO_3 or NaOH solutions with different pH of 4 to 11 for 1 d. The solids were recollected and dried for PXRD patterns analysis.

 β and γ Radiation Resistance Measurements: β irradiation experiment was implemented using electron beams (1.2 MeV) provided by an electron accelerator. SZ-5 was irradiated for two different doses (100 and 200 kGy), respectively, at a dose rate of 20 kGy/h. γ irradiation experiment was carried out using a ⁶⁰Co irradiation source (2.22 × 10¹⁵ Bq). SZ-5 was irradiated at a dose rate of 1.2 kGy/h for 100 kGy and 200 kGy, respectively. SZ-5 exhibits excellent radiation resistance as the PXRD patterns for the irradiated SZ-5 match well with the originated samples.

 Sr^{2+} Sorption Experiments: All the experiments were carried out at room temperature using the batch method. The solid/liquid ratio in all batch experiments was 1 g/L. In a typical ion-exchange experiment of SZ-5, 10 mg SZ-5 was added into 10 mL aqueous solution containing certain Sr²⁺. The mixture was kept stirring for 12 h. The concentration of Sr²⁺ in solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) and/or inductively coupled plasma-atomic emission spectrometry (ICP-AES). The solids were separated by centrifugation or filtration. The distribution coefficient K_d is given by the equation:

$$K_{d} = (V[(C_{0} - C_{e})/C_{e}])/m$$

where V is the volume (ml) of the testing solution, C_0 and C_e are the initial and equilibrium concentration of Sr^{2+} (ppm), and m is the amount of the **SZ-5** samples (g) used in the experiment.

30 mg of SZ-5 material was added into a 30 mL solution containing 10 ppm Sr^{2+} . The mixture was stirred by a magnetic bar for a desired contact time. The concentration of Sr^{2+} as a function of time was obtained to determine the exchange kinetics line. The Sr^{2+} removal from solutions of various concentrations was investigated by the batch experiment at the solid/liquid of 1 g/L at 12 h contact and room temperature. The data were used for the determination of Sr^{2+} adsorption isotherm. Competitive ionexchange experiments of SZ-5 were also performed with the batch method at the solid/liquid of 1 g/L at the contact time of 12 h and room temperature

The Real Seawater Decontamination Experiment: The **SZ-5** samples was added to 3 mL seawater containing radioactive 90 Sr²⁺ with a total β activity of 2516 cpm and the solid/liquid ratios of 10:1 and 20:1, respectively. The mixture was then shaking for the contact time of 1 d and 7 d at room temperature. The 90 Sr activity was determined by liquid

scintillation counting (LSC), which was used to calculate the ⁹⁰Sr removal percentage.

XAFS Data Collection: Sr-sorbed **SZ-5** samples for XAFS analysis were prepared by batch experiments. The Sr K_{III} -edge XAFS spectra at 6777 eV were recorded at BL14W1 of the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China)

Proton Conductivity Measurements: Proton conductivity measurement was carried out by alternating-current (ac) impedance spectroscopy used schistose sample in the controlled thickness range of 1 to 2 mm. Alternating current impedance of the **SZ-5** was conducted on a Solartron SI1260 Impedance/Gain-Phase Analyzer with applied ac voltage amplitude over a frequency range from 4 MHz to 1 Hz with an input voltage amplitude of 500 mV. The conductivity of **SZ-5** was calculated by the equation of:

$$\sigma = L/RS$$

Where S and L are the cross-sectional area and thickness of the pellet, respectively, and R, which was obtained from the impedance plots, is the value of resistance.

S2. X-ray crystallography

Table S1. Crystallographic data for SZ-5.

Formula $[(CH_3)_2NH_2]_2[Zr(CH_2(HPO_3)(PO_3))_2]$

Mr[g mol-1]	507.18		
Crystal system	triclinic		
Space group	$P \overline{1}$		
a(Å)	5.4161(5)		
b(Å)	8.4820(9)		
c(Å)	10.2407(10)		
α(°)	98.482(5)		
β(°)	91.994(5)		
γ(°)	102.790(5)		
V(Å ³)	452.65(8)		
Z	1		
ρ_{calcd} (g cm ⁻ 3)	1.861		
M (mm ⁻¹)	1.018		
F(000)	246		
T(K)	298		
R1, ^a wR2 ^b (I> $2\sigma(I)$)	0.0395, 0.1321		
R1, ^a wR2 ^b (all data)	0.0519, 0.1464		
$aR1 = \Sigma Fo - Fc / \Sigma Fo . bwR2 = [\Sigma w(Fo2 - Fc2) 2 / \Sigma w(Fo2) 2] 1 / 2$			

Table S2. Selected bond distances (Å) of SZ-5

Zr1-O3	2.067(3)	P1-O1	1.555(3)	

_

Zr1-05	2.060(3)	P1-O2	1.501(3)	
Zr1-06	2.073(3)	P1-O3	1.539(3)	
		P2-O4	1.498(3)	
		P2-O5	1.548(3)	
		P2-O6	1.538(3)	

Table S3. Hydrogen bond distances (Å) in SZ-5

N1…O4	2.835
O1…O2	2.467/2.544
01…04	3.35

S3. Bond Valence Sum (BVS) calculations

The bond valence of a bond length d_{ij} is calculated by the most commonly adopted empirical expression:

$$v_{ij} = exp[(R_{ij}-d_{ij})/b].$$

Here b is equal to 0.37 Å, d_{ij} is the bond lengths in crystals.^[1]

Atom	BVS value
01	1.1416
02	1.3210

Table S4.	BVS	data	of O	atoms.
-----------	-----	------	------	--------

O3	0.7037
O4	1.3317
05	0.7172
O6	0.6924

S4. Powder X-ray diffraction (PXRD)

Figure S1. The powder X-ray diffraction (PXRD) for SZ-5

S5. FT-IR spectrum

Figure S2. FT-IR spectrum of SZ-5.

S6. SEM-EDS analysis

Figure S3. SEM images and EDS data of SZ-5 before ion-exchange.

Figure S4. SEM images and EDS data of SZ-5 after ion-exchange.

S7. XAFS Fit results for Sr-sorbed SZ-5 samples.

Table S5. The structural parameters from the XAFS analysis

Sample	Shell	interaction	CN	R (Å)
Sr-sorbed SZ-5	1	Sr-O	7.24	2.36
CN = coordination numbers				

S8. Crystal structure of Sr₃(PO₄)₂

ure S5. Crystallographic data of $Sr_3(PO_3)_2$ showing 10-coordinate Sr^{2+} . Atom color codes: Sr = cyan, P = orange, O = red.

S9. Proton conductivity of SZ-5

Figure S6. Impedance plots of **SZ-5** at different temperatures of 40-80 °C under 90% RH.

Reference:

[1] N. E. Brese, M. O'Keeffe, Acta Cryst. 1991, B47, 192-197.