SUPPORTING INFORMATION

Alleviating Luminescence Concentration Quenching in Lanthanide Doped CaF₂ Based Nanoparticles through Na⁺ Ions Doping

Bing Xu,^a Dongyu Li,^a* Zhen Huang, ^a Chunliang Tang, ^a Wenhao Mo, ^a and Ying Ma^b

a) School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China. E-mail: xubing@hust.edu.cn; nanorainbows@163.com

b) State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Figure S1. TEM images of CaF_2 :Nd/Na nanoparticles with different Nd³⁺ doping concentrations.

Figure S2. (a) EDX pattern of CaF_2 :Nd/Na nanoparticles; (b) XRD patterns of the assynthesized CaF_2 :Nd, CaF_2 :Nd/Na and CaF_2 :Nd/Na@CaF_2 nanoparticles.

Figure S3. Visiable - Near-infrared absorption spectra of the CaF₂:Nd samples codoped with and without Na⁺ ions dispersed in cyclohexane (0.1 mmol·ml⁻¹). The absorption peak at around 740 nm, 800 nm are the results of the transitions from ${}^{4}I_{9/2}$ to ${}^{4}F_{7/2}$, ${}^{4}I_{9/2}$ to ${}^{4}F_{5/2}$ of Nd³⁺ ions, respectively.

Figure S4. (a) Decays of PL emission at 1052 nm in CaF₂:Nd(10 mol%)/Na nanocrystals doped with different ratios of Na⁺/Nd³⁺ under 800 nm laser excitation; (b) NIR PL spectra of CaF₂:Nd(10 mol%)/Na nanocrystals doped with different ratios of Na⁺/Nd³⁺ under 800 nm laser excitation. Inset in (b): PL intensity at 1052 nm as a function of Na⁺/Nd³⁺ ratios.

Table S1. Energy transfer parameters versus concentration from fitting Eq.(1) to fluorescence decay data of CaF₂:Nd samples with different Na⁺ doping. A_{ss} is an abbreviation for $(4/3)\pi^{3/2}n_a(\alpha)^{1/2}$. W, n_a and α are defined in the experimental section, and $1/\tau_{tail}=1/\tau_0+W$, $\tau_0=262 \ \mu s$.

Na ⁺ /Nd ³⁺	$\tau_{tail}(\mu s)$	W (s ⁻¹)	$A_{ss}(s^{-1/2})$
0/1	21	44500	297
1/1	98	6387	336
2/1	209	972	350
3/1	212	900	352

Figure S5. Mechanism of generation of the NIR PL emissions upon 800 nm laser irradiation, the cross-relaxation (CR) process and energy migration process (EM) between Nd³⁺ ions.

Figure S6. Absorption spectra of CaF_2 :Nd samples with different Nd³⁺ doping contents.