General. All manipulations were carried out under an atmosphere of ultra-high purity nitrogen using standard Schlenk techniques under Ar or in a glovebox under N₂. Solvents were purchased from commercial sources, purified using Innovative Technology SPS-400 PureSolv solvent system or by distilling from conventional drying agents and stored over activated 4 Å molecular sieves. Glassware was ovendried at 170 °C overnight or flame dried prior to use. NMR spectra were recorded in various deuterated solvents at 25 °C on a Varian Inova-400 or 500 spectrometers (1H: 400.11 MHz, 500.11 MHz, respectively). Proton chemical shifts are reported in ppm versus solvent protic impurity, but referenced finally to SiMe₄. Mass spectrometry analyses were performed in an Agilent 6130 MSD (Agilent Technologies, Santa Clara, CA) quadrupole mass spectrometer equipped with a Multimode (ESI and APCI) source. All starting materials have been obtained from commercial sources and used as received without further purification. Tetrazines were synthesized from corresponding nitriles¹ and NaOCP was synthesized using Grutzmacher method².

DFT¹ calculations were carried out using Gaussian 09³. Geometry optimizations were performed at the B3LYP/6-31G(d,p) level of theory⁴. Reoptimization of the dimethyl tetrazine species, with the 6-311G(d) basis set did not show significant differences in bond length data or thermodynamic data, and therefore analysis was focused on the 6-31G(d,p) calculations. All optimized structures were confirmed to be minima by analyzing the harmonic frequencies.⁵⁻⁷ Cartesian coordinates, frequencies, and thermodynamic data are summarized in Tables S2-S4.

X-ray crystallography

The sample was investigated with synchrotron radiation at the ChemMatCARS beamline, Advanced Photon Source, Argonne National Laboratory, Chicago, utilizing the SCrAPS program (http://www.iumsc.indiana.edu/projects/SCrAPS/index.html). A yellow crystal (approximate dimensions 0.030 x 0.030 x 0.15 mm3) was placed onto the tip of a glass capillary and mounted on a Huber three-circle diffractometer and measured at 100 K.

Data collection

The data collection was carried out using synchrotron radiation ($\lambda = 0.41328$, silicon 111 and 311 monochromators, two mirrors to exclude higher harmonics) with a frame time of 0.5 seconds and a detector distance of 5.0 cm. A randomly oriented region of reciprocal space was surveyed to the extent of hemispheres. Two major sections of frames were collected with 0.50° steps in φ and a detector position of 0° in 20. Data to a resolution of 0.77 Å were initially considered in the reduction but was changed to

0.84 due to lack of reflections at higher angle. Final cell constants were calculated from the xyz centroids of 9550 strong reflections from the actual data collection after integration (SAINT).⁸ The intensity data were corrected for absorption (SADABS).⁹

Structure solution and refinement

The space group *Pbca* was determined based on intensity statistics and systematic absences. The structure was solved using Superflip¹⁰ and refined (full-matrix-least squares) using the Oxford University Crystals for Windows system.¹¹ The charge-flipping solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms. The final full matrix least squares refinement converged to R1 = 0.0649 and wR2 = 0.1889 (F2, all data).

ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant number NSF/CHE-1346572. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

General procedure for tetrazine + NaOCP reaction

In 20 ml scintillation vial 0.1 mmol of tetrazine was dissolved in 3 ml of THF, in separate vial 0.1 mmol of NaOCP was dissolved in 3 ml of THF. Both solution was precooled to -78°C and then NaOCP solution was added to tetrazine solution using Pasteur pipette. Reaction immediately turned color from deep violet to yellow-orange and intense gas evolution was observed. Reaction mixture was removed from cold and stirred at r.t. for 1 h. Volatiles were removed under vacuum yielded yellow amorphous solid.

Sodium 3,6-dimethyl-1,2,4-diazaphosphinin-5-olate 2a.

Off-white solid. ¹H NMR (400 MHz, $[d_8]$ THF, 298K): δ (ppm) 2.43 (d, $J_{H,P}$ = 11.9 Hz, 3H), 2.18 (s, 3H). ³¹P NMR (162 MHz, $[d_8]$ THF, 298K): δ (ppm) 117.54. ¹³C NMR (126 MHz, $[d_8]$ THF) δ (ppm) 204.76 (d, $J_{C,P}$ = 47.7 Hz), 187.64 (d, $J_{C,P}$ = 70.7 Hz), 168.44 (d, $J_{C,P}$ = 50.7) Hz), 27.14 (d, $J_{C,P}$ = 40.8 Hz), 26.18. MS (APCI-) m/z = 141.0.

Sodium 3,6-diethyl-1,2,4-diazaphosphinin-5-olate 2b.

Off-white solid. ¹H NMR (400 MHz, $[d_8]$ THF, 298K): δ (ppm) 2.74 (m, 4H), 1.23 (t, $J_{H,H} = 7.7$ Hz, 3H), 1.23 (t, $J_{H,H} = 7.6$ Hz, 3H). ³¹P NMR (162 MHz, $[d_8]$ THF, 298K): δ (ppm) 117.56. ¹³C NMR (126 MHz, $[d_8]$ THF) δ (ppm) 204.56 (d, $J_{C,P} = 46.8$ Hz), 194.38 (d, $J_{C,P} = 70.9$ Hz), 153.74 (d, $J_{C,P} = 19.8$) Hz), 35.20 (d, $J_{C,P} = 35.0$ Hz), 26.37, 16.69 (d, $J_{C,P} = 7.6$ Hz), 13.03. MS (APCI-) m/z = 169.1.

Sodium 3,6-diphenyl-1,2,4-diazaphosphinin-5-olate 2c. Off-white solid. ¹H NMR (400 MHz, CD₃CN, 298K): δ(ppm) 8.00-7.94 (m; 4H), 7.45-7.27 (m, 6H). ³¹P NMR (162 MHz, CD₃CN, 298K): δ(ppm) 125.11. ¹³C NMR (120 MHz, CD₃CN, 298K): δ(ppm) 201.87 (d, J_{C,P} = 45.7 Hz), 190.27 (d, J_{C,P} = 72.0 Hz), 171.22, 148.92 (d, J_{C,P} = 23.1 Hz), 144.60 (d, J_{C,P} = 24.7 Hz), 139.32, 130.59, 129.45, 129.25, 128.21, 128.12, 127.51 (d, J_{C,P} = 13.1 Hz). **MS (ESI-)**: m/z: 265.0 (M-Na); **(APCI+)**: m/z: 267.1 (M⁻+2H)

Sodium 3,6-dipyridyl-1,2,4-diazaphosphinin-5-olate 2d. Yellow solid. ¹H NMR (400 MHz, CD₃CN, 298K): δ(ppm) 8.54 (m, 2H), 8.24 (d, *J*_{H,H} = 8.2 Hz, 1H), 8.17 (d, *J*_{H,H} = 7.7 Hz, 1H), 7.81 (dt, *J*_{H,H} = 14.7, 7.6 Hz, 2H), 7.35 (t, 1H), 7.28 (t, 1H). ³¹P NMR (162 MHz, CD₃CN, 298 K): δ(ppm) 143.02. ¹³C NMR (126 MHz, [d₆]DMSO, 298K): δ(ppm) 201.20 (d, *J*_{C,P} = 46.3 Hz), 189.33 (d, *J*_{C,P} = 71.9 Hz), 160.09 (d, *J*_{C,P} = 21.1 Hz), 158.43, 149.18 149.05, 148.01 (d, *J*_{C,P} = 24.3 Hz), 137.08, 135.88, 125.42, 124.19, 122.36, 119.34 (d, *J*_{C,P} = 5.3 Hz). **MS** (**APCI+**): m/z: 269.2 (M⁻+2H).

Sodium 3-methyl-6-phenyl-1,2,4-diazaphosphinin-5-olate 2ea and Sodium 6-methyl-3-phenyl-1,2,4-diazaphosphinin-5-olate 2eb. Mixture of two regio isomers in 5:1 ratio. ¹H NMR (400 MHz, CD₃CN, 298K): δ (ppm) *major isomer* 7.84-7.81 (m, 2H, *Ph*), 7.31-7.23 (m, 3H, *Ph*), 2.53 (d, $J_{H,P}$ = 11.6 Hz, 3H, *Me*), *minor isomer* 7.90-7.87 (m; 2H, *Ph*), 7.37-7.35 (m, 2H, *Ph*), 2.24 (s, 3H) ³¹P NMR (162 MHz, CD₃CN, 298K): δ (ppm) *major isomer* 129.7; *minor isomer* 112.5. ¹³C NMR (120 MHz, CD₃CN, 298K): δ (ppm) *major isomer* 203.05 (d, $J_{C,P}$ = 46.8 Hz), 190.00 (d, $J_{C,P}$ = 67.1 Hz), 139.91, 130.49, 128.19, 127.99, 27.20 (d, $J_{C,P}$ = 29.3 Hz) *minor isomer* 203.82 (d, $J_{C,P}$ = 44.3 Hz), 188.90 (d, $J_{C,P}$ = 74.1 Hz), 149.25 (d, $J_{C,P}$ = 19.7 Hz), 129.99, 129.19, 127.54 (d, $J_{C,P}$ = 13.2 Hz), 26.25. MS (APCI-): m/z: 203.1.

Sodium 3-methyl-6-pyridyl-1,2,4-diazaphosphinin-5-olate 2fa and Sodium 6-methyl-3-pyridyl-1,2,4diazaphosphinin-5-olate 2fb. Mixture of two regio isomers in 3:1 ratio. ¹H NMR (400 MHz, CD₃CN, 298K): δ (ppm) *major isomer* 8.55 (d, J_{H,H} = 4.6 Hz, 1H, Py), 8.05 (d, J_{H,H} = 7.9 Hz, 1H, Py), 7.82-7.76 (m, 1H, Py), 7.31-7.23 (m, 1H, *Py*) 2.59 (d, $J_{H,P}$ = 12.3 Hz, 3H, *Me*), *minor isomer* 8.57-8.55 (m, 1H, *Py*), 8.17 (d, $J_{H,H}$ = 7.9 Hz, 1H, *Py*), 7.82-7.76 (m, 1H, *Py*), 7.34-7.29 (m, 1H, *Py*), 2.27 (s, 3H, *Me*). ³¹P NMR (162 MHz, CD₃CN, 298 K): δ (ppm) 140.1, 119.51. ¹³C NMR *major isomer* (126 MHz, [d₈]THF): δ (ppm) 202.57 (d, $J_{C,P}$ = 45.6 Hz), 190.95 (d, $J_{C,P}$ = 70.9 Hz), 159.50, 148.64, 146.14 (d, $J_{C,P}$ = 20.1 Hz), 136.43, 126.27, 122.21, 29.86 (d, $J_{C,P}$ = 14.2 Hz) *minor isomer* not resolved during overnight ¹³C NMR. **MS:** (ESI+): m/z: 206.1 (M⁻+2H)

3,6-diphenyl-5-trimethylsiloxy-1,2,4-diazaphosphinin 3. To a stirring solution of sodium 3,6-diphenyl-1,2,4-diazaphosphinin-5-olate (37.1 mg, 0.073 mmol) at -78°C in a 20 mL scintillation vial was added dropwise 9.26 μ L (0.073 mmol) TMSCl at -78°C. The solution changed colors from yellow to orange, and the reaction was stirred at r.t. for 30 minutes before volatiles were removed to afford an amorphous solid. **¹H NMR** (400 MHz, CD₃CN, 298K): δ (ppm) 8.20-8.11 (m, 2H), 7.86-7.80 (m, 2H), 7.60-7.55 (m, 3H), 7.54-7.49 (m, 3H), 0.33 (s, 9H, *TMS*). ^{**³¹P NMR** (162 MHz, CD₃CN, 298K): δ (ppm) 141.15. **MS (ESI-)**: m/z: 265.0 (M-TMS)}

3,6-diethyl-5-methoxy-1,2,4-diazaphosphinin-5-olate 4a

To a freshly prepared solution of 2a in [d₈]THF 1 eq. of MeI was added and reaction was monitored with 1H and 31P NMR. After 5 min two products were detected and after 5h only a complete rearrangement to a major one was observed. *4a major* ¹H NMR (400 MHz, [d₈]THF, 298K): δ (ppm) 3.97 (s, 3H), 2.91 (dq, $J_{H,H} = 7.4, J_{H,P} = 13.5$ Hz 2H), 2.55 (q, $J_{H,H} = 7.5$ Hz, 2H), 1.27 (t, $J_{H,H} = 7.4$ Hz, 3H), 1.07 (t, $J_{H,H} = 7.4$ Hz, 3H). ³¹P NMR (162 MHz, [d₈]THF, 298K): δ (ppm) 119.68. ¹³C NMR (120 MHz, CD₃CN, 298K): δ (ppm) 201.56 (d, $J_{C,P} = 48.7$ Hz), 193.61 (d, $J_{C,P} = 72.5$ Hz), 155.53 (d, $J_{C,P} = 23.2$ Hz), 47.00, 32.44 (d, $J_{C,P} = 26.6$ Hz), 23.83, 13.61 (d, $J_{C,P} = 15.0$ Hz), 11.29 . MS (ESI+): m/z: 219.1 (M+H). MS (ESI+): m/z: 185.1 (M+H). *4a minor* ¹H NMR (400 MHz, [d₈]THF, 298K): δ (ppm) 4.29 (s, 3H), 3.01 (m 2H), 2.69 (m, 2H), 1.21 (m, 3H), 1.17 (m, 3H). ³¹P NMR (162 MHz, [d₈]THF, 298K): δ (ppm) 144.99.

3-phenyl-6-methyl-5-methoxy-1,2,4-diazaphosphinin-5-olate 4b

In 20 ml scintillation vial 17.2 mg (0.1 mmol) of 3-methyl-6-phenyltetrazine **1e** was dissolved in 3 ml of THF, in separate vial 30.2 mg (0.1 mmol) of NaOCP was dissolved in 3 ml of THF. Both solution was precooled to -78°C and then NaOCP solution was added to tetrazine solution using Pasteur pipette. Reaction immediately turned color from deep violet to yellow-orange and intense gas evolution was observed. Reaction mixture was removed from cold and stirred at r.t. for 1 h. One equivalent of Mel was

added and reaction mixture was stirred at r.t. for 6 h, then filtered. Volatiles were removed, yielding lightyellow amorphous solid in 70% yield. Only one isomer was detected with NMR. ¹H NMR (400 MHz, CD₃CN, 298K): δ (ppm) 7.77 (m, 2H), 7.40 (m, 3H), 4.00 (s, 3H), 2.64 (d, $J_{H,P}$ = 14.4 Hz, 3H). ³¹P NMR (162 MHz, CD₃CN, 298K): δ (ppm) 136.33. ¹³C NMR (120 MHz, CD₃CN, 298K): δ (ppm) 202.62 (d, $J_{C,P}$ = 51.5 Hz), 188.47 (d, $J_{C,P}$ = 68.41 Hz), 150.33 (d, $J_{C,P}$ = 23.3 Hz), 134.79, 130.21, 130.04, 128.60, 67.51, 26.06 (d, $J_{C,P}$ = 33.14 Hz). **MS (ESI+)**: m/z: 219.1 (M+H)

Bis(triphenylphosphine)(hydrido)(carbonyl)ruthenium(3,6-diphenyl-1,2,4-diazaphosphinin-5-olate) 5

In 20 ml scintillation vial 23.5 mg (0.1 mmol) of **2c** was dissolved in 3 ml of THF, in separate vial 30.2 mg (0.1 mmol) of NaOCP was dissolved in 3 ml of THF. Both solution was precooled to -78°C and then NaOCP solution was added to tetrazine solution using Pasteur pipette. Reaction immediately turned color from deep violet to yellow-orange and intense gas evolution was observed. Reaction mixture was removed from cold and stirred at r.t. for 1 h and then cooled back to -78°C and transferred to a precooled vial containing 95.2 mg (0.1 mmol) of (PPh₃)₃RuH(CO)Cl in 5 ml of THF. Reaction mixture was removed from cold and stirred for 12h. A deep red-brown solution was filtered through Celite pad and concentrated to ~2 ml. Pentane was added causing precipitation of tan solid. Precipitate was filtered and dried in vacuum. Yield 51% (mixture of isomers). *Major isomer* ¹H NMR (400 MHz, CD₂Cl₂, 298K): δ (ppm) 7.70-7.11 (m, 40H) -14.43 (t, *J*_{H,P} = 18.2 Hz, 1H), ³¹P NMR (162 MHz, CD₃CN, 298K): δ (ppm) 139.27 (t, *J*_{P,P} = 5.8 Hz, 1P), 43.83 (d, *J*_{P,P} = 5.7 Hz, 2P) fully decoupled ³¹PNMR spectra require careful placement of the decoupling central frequency to avoid the hydride at -15 ppm from escaping decoupler power. **IR (KBr):** 2227 cm⁻¹ (v_{RuH}), 1924 cm⁻¹ (v_{co}). *Minor isomer* ¹H NMR (400 MHz, CD₂Cl₂, 298K): δ (ppm) 135.50 (t, *J*_{P,P} = 5.8 Hz, 1P), 43.22 (d, *J*_{P,P} = 5.7 Hz, 2P).

DFT calculations

Bond lengths for dimethyl tetrazine

Key bond lengths (Table S1 and Figure S1) in the various stationary states are revealing of reaction progress. At **TSI** the PC_c distance is shorter than the C_AC_B distance; since P is inherently larger than C_A of PCO⁻¹, this inequality shows that the main stabilization in reaching **TSI** is from PC_c bond formation, and the C_AC_B bond forms later. The reaction mechanism is thus asynchronous with regard to the ultimate formation of these two bonds. The PCO angle undergoes most of its bending in forming **TSI** and adduct **II**, but the DFT results (Figure S1) show that half of the bending has occurred by **TSI**; **TSI** thus prepares C_A for C_AC_B interaction.

Table S1. Bond lengths (in Å) and angle (in degrees)

	P-C _A	C _A -0	$N_A - N_B$	$N_{C}-N_{D}$	$C_A - C_B$	P-C _c	0-C-P
1 + OCP	1.631	1.206	1.317	1.326	-	-	180.0
TS1	1.697	1.196	1.278	1.278	2.299	2.017	153.7
2	1.778	1.234	1.248	1.248	1.631	1.928	131.8
TS2	1.788	1.243	1.289	1.179	1.556	1.865	128.6
3 + N ₂	1.812	1.250	1.362	1.106	1.475	1.778	123.0

Figure S1. Graph of bond length changes across PES (top) and of OCP angle changes (bottom)

As shown by the green line in Figure S1 most of the $C_A C_B$ bond forms following **TSI**, to give **II**. Following formation of **II**, the bond length changes become monotonic and with similar rate of change. Thus, the reaction starts with P-C_c attraction, but at cost of PCO bending, which rehybridizes at that carbon, allowing subsequent $C_A C_B$ bond formation; during the formation of **TSI**, the animations show how the tetrazine folds from planar to boat shape, with an energy penalty, to prepare (pyramidalize) C_c and C_B to form the bonds present in **II**.

Substituent effect

As seen in Figure S2, The $-CF_3$ and $-C_6F_5$ groups have the lowest energy products, and they are ~15 kcal/mol lower in energy than the products containing electron donating groups. However, we believed that pentafluorobenzene would act as the *most* electron withdrawing substituent, yielding the lowest energy product, but in reality $-CF_3$ is the winner. One plausible explanation for this discrepancy from prediction lies in the optimized structures of each of these species compared to other tetrazines that contained a ring (i.e. phenyl and pyridyl). Each structure shows that the $-C_6F_5$ ring has been rotated nearly perpendicular to the tetrazine ring, whereas the other ring systems that were calculated have the substituent ring oriented nearly parallel to the tetrazine. A comparison of the optimized structure of the transition state and product for methyl/phenyl compared to methyl/pentafluorobenzene is shown in Figure S2.

Figure S2. structural comparisons between Me/Ph and Me/C₆F₅

The ring rotation is likely due to the repulsion of the lone pairs on fluorine unfavorably interacting with the nitrogen lone pair in the tetrazine. This twist effectively shuts off the pi electron donating capabilities by breaking the conjugation, making it a sigma withdrawer only and therefore unexpectedly yielding products that are slightly less thermodynamically favorable than when $-CF_3$ is used.

Additionally, the pentafluorobenzene substituent was the only tetrazine where the computed isomers had significantly different energies of TSI. This is due to the orientation of the $-C_6F_5$ ring between the two isomers; in one, the ring is oriented nearly perpendicular to the tetrazine, and in the other isomer it is closer to parallel (Figure S3). When it is perpendicular it shuts of pi conjugation and weakens the amount of electron withdrawing ability of the ring. The reason there is a difference in the optimized geometries of these two isomers is because of repulsion between the PCO⁻ oxygen lone pairs and the fluorides when the oxygen is on the same side as the ring. Repulsion of the lone pairs cause the C_6F_5 ring to orient away from the oxygen of PCO, and therefore that isomer is lower in energy (~6 kcal/mol) than the isomer where the phosphorous is on the same side as C_6F_5 ring, where the ring prefers to be perpendicular to the tetrazine. Not as much repulsion. Efforts to "force" the C_6F_5 ring planar in both isomers fails (multiple attempts).

Figure S3. Comparison of TSI for both regioisomers of methyl/C₆F₅ tetrazine

Alternative products

In addition to reacting as a dienophile, PCO⁻¹ can also lose CO, and thus be a formal equivalent for transfer of the anion P¹⁻, hence a 2 electron oxidant¹²⁻¹⁶. We therefore used DFT to compare the energy of this behavior with a tetrazine, to make a diazaphosphole anion (Scheme S1).

Scheme S1. Alternative tetrazine/OCP reaction pathway.

The ΔG° calculated for this reaction is -52.3 kcal/mol showing it is highly competitive with the observed product, and so the observed selectivity may have a kinetic origin. Note that this preference rests on the T ΔS advantage for the diazaphospholide liberating two moles of gas; in fact, the reluctance of phosphorus to participate in π bonding tends to destabilize, enthalpically, the diazaphospholide, since it leaves negative charge more localized on the less appropriate P vs. N atom. There is increasing evidence that PCO(-)¹⁷ can be a source of P(-1), by release of CO from primary products. Our report here thus contrasts to this, and apparently originates in the fact that the CO unit is incorporated into an aromatic ring, in which the CO bond moves towards single bond character.

In addition to reacting as a dienophile, PCO⁻¹ can also lose CO, and thus be a formal equivalent for transfer of the anion P¹⁻, hence a 2 electron oxidant. We therefore used DFT to compare the energy of this behavior with a tetrazine, to make a diazaphosphole anion, as shown in Figure S4.

Figure S4. PES of two potential reactions of dimethyl tetrazine with PCO⁻

NMR spectra

Figure S5. ¹H NMR spectrum of **2a** sodium 3,6-dimethyl-1,2,4-diazaphosphinin-5-olate in THF-*d*₈.

Figure S6. ³¹P NMR spectrum of 2a sodium 3,6-dimethyl-1,2,4-diazaphosphinin-5-olate in THF-d₈.

Figure S7. ¹³C NMR spectrum of 2a sodium 3,6-dimethyl-1,2,4-diazaphosphinin-5-olate in THF-d₈.

Figure S8. ¹H NMR spectrum of sodium 2b 3,6-diethyl-1,2,4-diazaphosphinin-5-olate in THF-d₈.

Figure S9. ¹³C NMR spectrum of **2b** sodium 3,6-diethyl-1,2,4-diazaphosphinin-5-olate in THF-*d*₈.

Figure S10. ³¹P NMR spectrum of **2b** sodium 3,6-diethyl-1,2,4-diazaphosphinin-5-olate in THF-*d*₈.

Figure S11. ¹H NMR spectrum of 2c sodium 3,6-diphenyl-1,2,4-diazaphosphinin-5-olate

Figure S12. ³¹P NMR spectrum of 2c sodium 3,6-diphenyl-1,2,4-diazaphosphinin-5-olate

Figure S13. ¹³C NMR spectrum of 2c sodium 3,6-diphenyl-1,2,4-diazaphosphinin-5-olate

Figure S14. ¹H NMR spectrum of 2d sodium 3,6-dipyridyl-1,2,4-diazaphosphinin-5-olate

Figure S15. ³¹P NMR spectrum of **2d** sodium 3,6-dipyridyl-1,2,4-diazaphosphinin-5-olate.

Figure S16. ¹³C NMR spectrum of 2d sodium 3,6-dipyridyl-1,2,4-diazaphosphinin-5-olate.

Figure S17. ¹H NMR spectrum of sodium **2e** 3-methyl-6-phenyl-1,2,4-diazaphosphinin-5-olate and sodium 6-methyl-3-phenyl-1,2,4-diazaphosphinin-5-olate mixture

Figure S18. ³¹P NMR spectrum of **2e** sodium 3-methyl-6-phenyl-1,2,4-diazaphosphinin-5-olate and sodium 6-methyl-3-phenyl-1,2,4-diazaphosphinin-5-olate mixture

Figure S19. ¹³C NMR spectrum of **2e** sodium 3-methyl-6-phenyl-1,2,4-diazaphosphinin-5-olate and sodium 6-methyl-3-phenyl-1,2,4-diazaphosphinin-5-olate mixture

Figure S20. ¹H NMR spectrum of **2f** sodium 3-methyl-6-dipyridyl-1,2,4-diazaphosphinin-5-olate and 3-pyridyl-6-methyl-1,2,4-diazaphosphinin-5-olate

Figure S21. ³¹P NMR spectrum of **2f** sodium 3-methyl-6-dipyridyl-1,2,4-diazaphosphinin-5-olate and 3-pyridyl-6-methyl-1,2,4-diazaphosphinin-5-olate

Figure S22. ¹13 NMR spectrum of **2f** sodium 3-methyl-6-dipyridyl-1,2,4-diazaphosphinin-5-olate and 3-pyridyl-6-methyl-1,2,4-diazaphosphinin-5-olate

Figure S23. ¹H NMR spectrum of sodium 3,6-dipheynyl-1,2,4-diazaphosphinin-5-trimethoxysilane 3

Figure S24. ³¹P NMR spectrum of sodium 3,6-dipheynyl-1,2,4-diazaphosphinin-5-trimethoxysilane 3

Figure S25. ¹H NMR spectrum of sodium 4a major 3,6-diethyl-5-methoxy-1,2,4-diazaphosphinin in THF d_8 .

Figure S26. ¹H³¹P NMR spectrum of **4a major** 3,6-diethyl-5-methoxy-1,2,4-diazaphosphinin in THF-*d*₈.

Figure S27. ³¹P NMR spectrum of 4a major 3,6-diethyl-5-methoxy-1,2,4-diazaphosphinin in THF-*d*₈.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S281. ¹³C NMR spectrum of 4a major 3,6-diethyl-5-methoxy-1,2,4-diazaphosphinin in THF-*d*₈.

Figure S29. ¹H NMR monitoring of the reaction between 2a and MeI

Figure S30. ³¹P NMR monitoring of the reaction between 2a and MeI

Figure S31. ¹H NMR spectrum of **4b** 6-methyl-3-phenyl-5-methoxy-1,2,4-diazaphosphinin in CD₃CN.

Figure S32. ¹³C NMR spectrum of **4b** 6-methyl-3-phenyl-5-methoxy-1,2,4-diazaphosphinin in CD₃CN.

Figure S33. ³¹P NMR spectrum of **4b** 6-methyl-3-phenyl-5-methoxy-1,2,4-diazaphosphinin in CD₃CN.

Figure S34. ¹H NMR spectrum of **5** bis(triphenylphosphine)(hydrido)(carbonyl)ruthenium(3,6-diphenyl-1,2,4-diazaphosphinin-5-olate)

diazaphosphinin-5-olate)

	Tetrazine	e Species	E(SCF) / E _h	G(gas) / E _h	Δ G(gas) / kcal/mol
-		IA + PCO-	-1037.460534	-1037.366265	0.00
	Me I	TSIaA	-1037.459250	-1037.343095	14.54
		TSIbA	-1037.463374	-1037.346650	12.31
	ŇŢŇ	llaA	-1037.466056	-1037.348277	11.29
	ġу	IIbA	-1037.468260	-1037.350411	9.95
		TSIIaA	-1037.453959	-1037.338356	17.51
		TSIIbA	-1037.456535	-1037.341012	15.85
		IIIaA + N_2	-1037.544817	-1037.449103	-51.98
		IIIbA + N ₂	-1037.543997	-1037.449519	-52.24
-	Me	IB + PCO ⁻	-829.686817	-829.629332	0.00
	N∕∕N 	TSIB	-829.684990	-829.604442	15.62
	N ↓ N	IIB	-829.694916	-829.612620	10.49
	Me	TSIIB	-829.682287	-829.602876	16.60
		IIIB + N_2	-829.767847	-829.709105	-50.06
-		IC + PCO ⁻	-1127.385205	-1127.354673	0.00
		TSIaC	-1127.404078	-1127.350257	2.77
		TSIbC	-1127.403134	-1127.349215	3.42
	Me	llaC	-1127.413530	-1127.357995	-2.08
N N	/ N > .N	IIbC	-1127.410075	-1127.353976	0.44
	CF ₃	TSIIaC	-1127.401200	-1127.348176	4.08
	Ū	TSIIbC	-1127.397345	-1127.343884	6.77
		IIIaC + N ₂	-1127.491087	-1127.458237	-64.99
		IIIbC + N ₂	-1127.486535	-1127.454893	-62.89
		ID + PCO ⁻	-845.735315	-845.686847	0.00
	Ме	TSIaD	-845.720003	-845.650745	22.65
N'	∕∧ _N	TSIbD	-845.723885	-845.653067	21.20
Ń.	<> ^Ň				
	ŃH₂				

Table S2. Thermodynamics for Tetrazines plus OCP at double zeta

	llaD	-845.728233	-845.656959	18.75
	llbD	-845.734170	-845.661589	15.85
	TSIIaD	-845.720698	-845.650975	22.51
	TSIIbD	-845.722065	-845.652111	21.80
	IIIaD + N_2	-845.810704	-845.760618	-46.29
	IIIbD + N ₂	-845.813434	-845.763370	-48.02
	IE + PCO ⁻	-1517.542291	-1517.482671	0.00
Ņе	TSIaE	-1517.544255	-1517.464322	11.51
Ņ ₩ N	TSIbE	-1517.555704	-1517.474082	5.39
I II N ∖ N	llaE	-1517.558439	-1517.476239	4.04
C_6F_5	IIbE	-1517.558710	-1517.476030	4.17
	TSIIaE	-1517.547996	-1517.467204	9.71
	TSIIbE	-1517.548275	-1517.467408	9.58
	IIIaE + N_2	-1517.642323	-1517.582441	-62.61
	IIIbE + N ₂	-1517.642358	-1517.582599	-62.71
	IF + PCC	o [_] −904.89688	38 –904.833678	0.00
	TSIaF	-904.88881	-904.805110	17.93
Me	TSIbF	-904.88763	-904.803564	18.90
	l IIaF	-904.89805	-904.813536	12.64
Ň	l IIbF	-904.89435	58 –904.809275	15.31
ÓМе	TSIIaF	-904.88952	-904.806555	17.02
	TSIIbF	-904.88438	-904.801436	20.23
	IIIaF + N	J₂ −904.98205	58 –904.918602	-53.29
	IIIbF + N	J₂ −904.97592	-904.913008	-49.78
	IG + PCO ⁻	-1021.431477	-1021.324554	0.00
Ме	TSIaG	-1021.427506	-1021.299594	15.66
	TSIbG	-1021.430974	-1021.302580	13.79
i II				

llaG	-1021.436566	-1021.306972	11.03
IIbG	-1021.433767	-1021.304533	12.56
TSIIaG	-1021.426048	-1021.298414	16.40
TSIIbG	-1021.422511	-1021.294766	18.69
IIIaG + N_2	-1021.516048	-1021.408428	-52.63
IIIbG + N ₂	-1021.513978	-1021.408368	-52.59

Table S3. Thermodynamics for species optimized at B3LYP/6-311G(d,p) level of theory

Tetrazine	Species	E(SCF) / E _h	G(gas) / E _h	Δ G(gas) / kcal/mol
Me ↓	IB + PCO ⁻	-829.836312	-829.779594	0.00
N∕∕ N N \ N	TSIB	-829.829926	-829.750172	18.46
Me	IIB	-829.838961	-829.757702	13.74
	TSIIB	-829.828456	-829.749818	18.68
	IIIB + N_2	-829.920362	-829.862446	-51.99

Table S?. Frequencies for all optimized species at B3LYP/6-31G(d,p) level of theory

SI Computational details

Figure S36. All frequencies/coordinates/thermo data is based on this labelling scheme.

Table S4. Cartesian coordinates for all optimized species at B3LYP/6-31G(d,p) level of theory

	IA				TSIaA		
Ν	-0.970816	-1.206117	-0.091911	С	0.112666	-0.225432	-0.069690
С	-0.330916	-0.019986	-0.026289	С	-2.318526	-0.817348	-0.251306
С	-2.908312	0.006993	0.003156	С	-2.225094	1.329049	0.428182
Ν	-2.287620	-1.187435	-0.076046	Ν	-0.367341	-0.550236	-1.409502
N	-2.270938	1.190246	0.021426	Ν	-1.618807	-0.767910	-1.460339
N	-0.951419	1.172484	0.007474	Ν	-1.629757	-1.437317	0.788763
С	1.158006	-0.009894	-0.008634	Ν	-0.375071	-1.217510	0.860267
С	1.851410	1.208837	-0.038685	Ρ	-0.547096	1.610452	0.456818
N	1.772912	-1.201723	0.039988	0	-3.359420	1.685402	0.562342
С	3.243183	1.179741	-0.020137	С	-3.793802	-1.072921	-0.333581
н	1.300149	2.140267	-0.075043	Н	-4.069904	-1.332336	-1.360230
С	3.106498	-1.210019	0.057661	Н	-4.069001	-1.893439	0.336736
С	3.890224	-0.053225	0.028371	Н	-4.359614	-0.180148	-0.036866
н	3.810682	2.105167	-0.043762	С	1.621866	-0.133518	-0.035756
н	3.576013	-2.191074	0.098405	С	2.374479	-0.916639	0.853778
Н	4.973078	-0.123573	0.044224	С	3.528808	0.827147	-0.883244
С	-4.404110	0.011024	0.068318	С	3.760266	-0.798590	0.849639
Н	-4.815739	-0.732671	-0.617777	Н	1.849281	-1.593147	1.516135
н	-4.737398	-0.254313	1.078032	С	4.361652	0.091731	-0.040892
н	-4.787519	1.003182	-0.173164	Н	3.956448	1.537818	-1.591258
				Н	4.364021	-1.394062	1.530836
	TSIbA			н	5.440256	0.217272	-0.081577

С	-2.478352	-0.469496	-0.057662	Ν	2.196179	0.729713	-0.888839
С	0.024379	-0.426356	-0.082485				
С	-0.582829	1.554501	0.207066		llaA		
Ν	-1.812365	-1.183917	1.033016	С	-2.340841	0.557546	0.187443
Ν	-0.550155	-1.094107	1.021457	С	0.130866	0.145825	0.064884
Ν	-0.574364	-0.771743	-1.319410	Ν	-1.614912	1.415037	-0.762583
Ν	-1.832871	-0.860249	-1.319688	Ν	-0.385390	1.204462	-0.824939
С	-3.957664	-0.821744	-0.093252	Ν	-0.397855	0.432994	1.426963
н	-4.453554	-0.299947	-0.916326	Ν	-1.624150	0.635428	1.482663
н	-4.075466	-1.900432	-0.241899	С	-3.776281	1.015848	0.341867
н	-4.438231	-0.544416	0.849053	н	-4.294834	0.371519	1.053904
Ρ	-2.308088	1.457928	0.207459	н	-3.806770	2.050080	0.697722
0	0.369469	2.269972	0.312280	н	-4.291413	0.946323	-0.617817
С	1.502557	-0.348547	-0.068075	С	1.637961	0.116464	0.049465
С	2.215793	-0.582902	1.123403	С	2.356680	0.694962	-1.010037
С	3.597912	-0.455437	1.121592	С	3.744493	0.608051	-1.010582
Н	1.666061	-0.869822	2.011638	н	1.812486	1.201370	-1.797153
С	3.451164	0.136833	-1.185481	С	3.581813	-0.590373	1.047147
С	4.244293	-0.088688	-0.061447	С	4.382471	-0.049040	0.042400
Н	4.166638	-0.637267	2.030898	Н	4.321016	1.047017	-1.821586
Н	3.914122	0.435392	-2.127248	Н	4.038697	-1.113935	1.887631
Н	5.323414	0.028079	-0.110709	н	5.464116	-0.142621	0.085186
N	2.121049	0.020120	-1.205017	N	2.247419	-0.519989	1.062523

				Ρ	-0.588833	-1.561294	-0.532793
	IIbA			С	-2.258271	-0.977178	-0.347830
С	2.495715	-0.459656	0.092698	0	-3.342491	-1.531062	-0.547116
С	0.001720	-0.208774	0.052752				
С	0.551525	1.350563	-0.278729		TSIIaA		
Ν	1.792515	-1.224851	-0.957564	С	1.438916	-0.080109	0.139274
Ν	0.548849	-1.093740	-0.978031	С	-1.100348	-0.482675	-0.218537
Ν	0.556431	-0.622255	1.355147	Ν	-0.328656	-0.108329	-1.339721
Ν	1.795143	-0.753376	1.370264	Ν	0.929772	0.049888	-1.170623
С	3.944861	-0.905544	0.182507	Ρ	0.637471	0.935301	1.486543
Н	4.457078	-0.356890	0.977176	С	-1.022171	0.488576	0.995335
Н	4.001739	-1.977336	0.403935	0	-2.096235	0.855449	1.497084
Н	4.455386	-0.716662	-0.765506	Ν	0.841281	-1.791352	0.495207
С	-1.503186	-0.231393	0.055787	Ν	-0.324189	-1.886437	0.337298
С	-2.215082	-0.644847	-1.080607	С	-2.509559	-0.882940	-0.588601
С	-3.604638	-0.611540	-1.054884	Н	-2.977428	-1.413142	0.243214
Н	-1.665675	-0.990502	-1.947392	Н	-3.101889	0.013161	-0.787748
С	-3.452474	0.230411	1.173633	Н	-2.500942	-1.519898	-1.477305
С	-4.248635	-0.164145	0.099305	С	2.932061	-0.205748	0.147398
Н	-4.177868	-0.928329	-1.923185	С	3.729970	0.482483	1.076444
Н	-3.915335	0.591431	2.092811	С	4.795717	-1.178297	-0.789579
Н	-5.332186	-0.117376	0.166227	С	5.110269	0.318561	1.042797
N	-2.117092	0.204962	1.165494	н	3.258010	1.133493	1.803807

Ρ	2.324698	1.418888	-0.288040	С	5.666956	-0.531391	0.086030
0	-0.317921	2.188340	-0.478176	Н	5.188163	-1.857089	-1.547855
				Н	5.742597	0.847474	1.751874
	TSIIbA			Н	6.739488	-0.692731	0.020800
С	-2.542408	-0.455201	0.015442	Ν	3.468137	-1.032242	-0.770448
С	0.026030	-0.124094	0.084261				
N	-0.508729	-1.196752	0.802924		IIIaA		
Ν	-1.780544	-1.378217	0.750798	Ν	-0.424639	-1.361852	-0.289680
С	-3.958981	-0.939363	-0.215723	С	0.069653	-0.154659	-0.027752
Н	-3.963007	-2.005144	-0.465807	С	-2.669838	-0.645629	-0.130646
Н	-4.556330	-0.796441	0.690319	Ν	-1.760759	-1.579851	-0.327686
Н	-4.424072	-0.376937	-1.029486	С	1.568024	-0.109976	-0.018326
Ρ	-2.356823	1.353294	0.419939	С	2.254790	0.992961	-0.564751
С	-0.566293	1.297182	0.421694	Ν	2.234252	-1.149564	0.525245
0	0.230948	2.203869	0.681312	С	3.644262	1.018090	-0.544481
Ν	-1.736315	-0.610182	-1.579376	Н	1.684573	1.806101	-0.999951
Ν	-0.572637	-0.433424	-1.554088	С	3.568848	-1.109130	0.531922
С	1.524116	-0.168985	0.012326	С	4.330024	-0.059797	0.016435
С	2.263661	-0.892414	0.961476	Н	4.184286	1.861795	-0.968092
С	3.651442	-0.892121	0.879158	Н	4.065988	-1.969148	0.983734
н	1.730361	-1.440673	1.728304	Н	5.415501	-0.090118	0.054701
С	3.444543	0.503231	-1.047904	С	-4.106282	-1.101487	-0.215034
С	4.266263	-0.175872	-0.148807	Н	-4.141257	-2.173726	-0.421736

Н	4.245751	-1.441153	1.606119	Н	-4.637638	-0.881756	0.718655
н	3.885184	1.069765	-1.869053	Н	-4.642558	-0.551904	-0.997971
н	5.347299	-0.143998	-0.254263	Ρ	-0.773914	1.376397	0.311459
Ν	2.110988	0.517152	-0.981291	С	-2.480293	0.784850	0.156100
				0	-3.467163	1.537541	0.297851
	IIIbA						
Ν	-0.609156	-1.290137	-0.252904		IB		
С	-0.050188	-0.102426	-0.041540	Ν	-0.662788	1.192266	0.000040
С	-2.822555	-0.557032	-0.081652	С	-1.288488	0.005295	0.000009
Ν	-1.925501	-1.527783	-0.297722	С	1.288488	0.005295	0.000009
С	1.444712	-0.149884	-0.011066	Ν	0.662788	1.192266	0.000040
С	2.231477	0.941679	-0.438573	Ν	0.658656	-1.187768	0.000040
Ν	2.019163	-1.292572	0.426984	Ν	-0.658656	-1.187768	0.000040
С	3.617188	0.828568	-0.434260	С	2.786888	-0.003215	-0.000057
н	1.732546	1.852721	-0.737751	н	3.163991	1.019822	0.000350
С	3.349987	-1.377146	0.425288	н	3.163682	-0.532287	0.880495
С	4.205107	-0.358445	0.003712	н	3.163603	-0.531506	-0.881118
н	4.232035	1.661048	-0.770243	С	-2.786889	-0.003215	-0.000057
н	3.765335	-2.317912	0.792375	н	-3.163603	-0.531495	-0.881125
Н	5.283717	-0.490674	0.028882	н	-3.163683	-0.532298	0.880488
с	-4.255738	-1.058641	-0.127946	н	-3.163991	1.019822	0.000361
н	-4.450418	-1.566131	-1.080028				
н	-4.428682	-1.794276	0.667054		TSIB		

Н	-4.974658	-0.242121	-0.009092	С	-1.361969	-0.255682	0.000000
Ρ	-2.556532	1.151470	0.225332	С	1.071438	-0.869435	0.000038
С	-0.738162	1.190645	0.140095	С	0.957264	1.426472	0.000016
0	-0.136801	2.281853	0.248746	Ν	-0.874741	-0.933972	1.181494
				Ν	0.382640	-1.158967	1.175358
	IIB			Ν	0.382703	-1.158866	-1.175351
С	-1.386559	-0.177084	0.000000	Ν	-0.874671	-0.933880	-1.181547
С	1.089871	-0.576900	0.000000	С	-2.881727	-0.183592	-0.000068
С	0.982345	1.049746	0.000000	Н	-3.239680	0.338730	-0.891706
N	-0.853971	-0.886525	1.188949	Н	-3.294785	-1.198011	-0.000113
N	0.377765	-1.086878	1.190344	Н	-3.239773	0.338688	0.891558
N	0.377765	-1.086878	-1.190344	Ρ	-0.723852	1.657864	0.000069
Ν	-0.853971	-0.886525	-1.188949	0	2.091506	1.804928	-0.000037
С	-2.904419	-0.229086	-0.000001	С	2.550575	-1.112860	-0.000005
Н	-3.296226	0.271290	-0.889517	Н	2.836220	-1.676730	0.893865
Н	-3.253529	-1.268166	-0.000017	Н	2.836269	-1.676292	-0.894137
Н	-3.296227	0.271262	0.889530	Н	3.102485	-0.163382	0.000240
Ρ	-0.700623	1.624829	0.000001				
0	2.057795	1.654138	-0.000001		TSIIB		
С	2.533418	-1.036774	0.000000	С	1.420492	-0.096863	-0.151852
н	2.582656	-2.130074	-0.000023	С	-1.135643	-0.519540	-0.147249
н	3.044631	-0.650794	-0.883804	Ν	-0.375610	-1.147366	-1.142595
Н	3.044619	-0.650833	0.883828	Ν	0.897421	-0.955247	-1.128483

				С	2.929321	-0.188878	-0.053289
	IIIB			Н	3.257339	-1.226791	-0.171239
Ν	-0.364204	1.614286	-0.000004	Н	3.396691	0.411143	-0.841051
С	-1.223827	0.619324	-0.000005	Н	3.270001	0.188122	0.914810
С	1.536821	0.240413	0.000005	С	-2.565397	-1.003813	-0.098948
Ν	0.987916	1.449824	0.000007	Н	-3.161575	-0.463310	-0.838542
С	3.058016	0.278019	0.000002	Н	-2.608601	-2.077035	-0.304405
н	3.388053	1.321035	0.000148	Н	-2.996405	-0.798551	0.883631
н	3.472925	-0.226497	0.881209	Ρ	0.697996	1.614933	0.003428
Н	3.472908	-0.226234	-0.881365	С	-0.989533	1.024462	-0.016979
Ρ	0.767377	-1.361037	-0.000005	0	-2.041659	1.682249	0.052967
С	-0.965518	-0.832926	0.000000	Ν	0.805085	-0.939991	1.331490
0	-1.922820	-1.637414	0.000009	Ν	-0.362547	-1.101365	1.324095
С	-2.682583	1.012564	-0.000001				
Н	-3.197498	0.595763	-0.873926		IC		
Н	-3.197500	0.595740	0.873911	Ν	-0.295897	1.191462	0.007525
Н	-2.770417	2.101923	0.000011	С	0.307824	-0.000121	-0.018764
				С	-2.244176	-0.000039	0.008517
	TSIaC			Ν	-1.616628	1.193045	0.022129
С	0.616769	-0.175307	0.000002	Ν	-1.616722	-1.193133	0.022132
С	-1.762385	-0.919799	-0.000012	Ν	-0.295938	-1.191629	0.007544
С	-1.746297	1.393902	0.000023	С	-3.739439	0.000070	-0.024203
N	0.184241	-0.879200	-1.184588	н	-4.127555	0.896263	0.462370

Ν	-1.059948	-1.165497	-1.174295	Η	-4.086968	0.003372	-1.063835
Ν	-1.059988	-1.165402	1.174317	н	-4.127487	-0.899032	0.456957
Ν	0.184201	-0.879122	1.184649	С	1.831332	-0.000022	-0.011446
Ρ	-0.082004	1.722435	-0.000062	F	2.285486	0.001576	1.256919
0	-2.896252	1.713595	0.000018	F	2.311856	1.087257	-0.629501
С	-3.228775	-1.224205	-0.000019	F	2.312108	-1.088627	-0.626910
Н	-3.490668	-1.799177	-0.893567				
Н	-3.490873	-1.797908	0.894278		TSIbC		
Н	-3.818735	-0.298003	-0.000730	С	1.932514	-0.538978	0.000062
С	2.138587	-0.072140	0.000010	С	-0.544476	-0.425139	-0.000122
F	2.600874	0.586675	-1.087282	С	0.195428	1.740654	0.000088
F	2.600878	0.586706	1.087279	Ν	1.267605	-1.059995	-1.188100
F	2.726408	-1.288976	0.000025	Ν	0.003524	-0.915452	-1.180459
				Ν	0.003413	-0.915573	1.180189
	llaC			Ν	1.267486	-1.060156	1.188024
С	1.790374	-0.621506	0.000477	С	3.404374	-0.924381	0.000065
С	-0.63762	-0.076068	0.000022	н	3.902870	-0.532583	0.890859
Ν	1.049496	-1.085404	-1.188949	н	3.492237	-2.015732	0.002119
Ν	-0.168216	-0.818283	-1.191542	н	3.901764	-0.535961	-0.892817
Ν	-0.168034	-0.817198	1.192727	Ρ	1.877977	1.446399	0.000094
Ν	1.050144	-1.084703	1.189455	0	-0.752343	2.456314	-0.000062
С	3.205266	-1.160735	-0.000331	С	-2.041305	-0.321407	0.000006
н	3.736345	-0.803392	0.883476	F	-2.493524	0.335148	1.090806

Н	3.193248	-2.254693	-0.000886	F	-2.493509	0.333533	-1.091755
н	3.735263	-0.802531	-0.884421	F	-2.670877	-1.534067	0.001032
Ρ	0.131596	1.697791	0.00001				
С	1.771786	1.011223	-0.000212		IIbC		
0	2.878271	1.553311	-0.000478	С	1.984430	-0.423635	-0.000156
С	-2.157476	-0.067975	-0.000171	С	-0.490785	-0.175193	0.000031
F	-2.657606	0.55704	1.087213	С	0.015990	1.390970	-0.000363
F	-2.667802	-1.324093	0.00067	Ν	1.286594	-0.966717	-1.189682
F	-2.657111	0.555582	-1.088444	Ν	0.044634	-0.847173	-1.194228
				Ν	0.044870	-0.847703	1.193679
	TSIIaC			Ν	1.286497	-0.967168	1.189146
С	0.662015	-0.005469	-0.138112	С	3.437014	-0.866221	-0.000293
С	-1.844562	-0.555400	-0.147921	Н	3.943833	-0.483885	0.889318
Ν	-1.051368	-1.135577	-1.151462	Н	3.504864	-1.959855	-0.000219
Ν	0.208377	-0.884515	-1.125378	Н	3.943446	-0.484001	-0.890166
Ρ	-0.118404	1.677964	0.021784	Ρ	1.791048	1.494031	0.000886
С	-1.770679	0.997737	-0.027064	0	-0.862297	2.248273	-0.000946
0	-2.851780	1.604393	0.026602	С	-2.008830	-0.302015	0.000144
N	0.088570	-0.904617	1.349731	F	-2.562787	0.258118	-1.091115
N	-1.072320	-1.101133	1.303841	F	-2.562527	0.259824	1.090701
С	-3.250698	-1.103892	-0.116777	F	-2.388527	-1.608056	0.001165
н	-3.719795	-0.873685	0.841816				
н	-3.844522	-0.625302	-0.899143		TSIIbC		

Н	-3.239532	-2.185587	-0.274925	С	2.042366	-0.338847	-0.160554
С	2.173930	-0.052764	-0.035909	С	-0.514543	-0.113735	-0.120935
F	2.774982	0.525830	-1.104031	Ν	0.029601	-0.906398	-1.130465
F	2.622608	0.592166	1.064145	Ν	1.308844	-1.031645	-1.138762
F	2.642554	-1.320262	0.034358	С	3.481297	-0.805178	-0.088850
				Н	3.534924	-1.895344	-0.170311
	IIIaC			н	4.055686	-0.370035	-0.912559
Ν	-0.185393	1.351107	-0.000151	н	3.935304	-0.491147	0.854459
С	-0.639965	0.105462	-0.000355	Ρ	1.773174	1.498514	0.000899
С	2.065095	0.664844	-0.000094	С	-0.011205	1.356508	-0.012136
Ν	1.143708	1.607487	-0.000264	0	-0.861691	2.253515	0.047751
С	3.495148	1.145770	-0.000126	Ν	1.267769	-1.003978	1.317847
н	3.518026	2.237942	-0.000936	Ν	0.096768	-0.880645	1.351329
н	4.032515	0.760080	0.874244	С	-2.022428	-0.289195	-0.042386
Н	4.032906	0.758808	-0.873708	F	-2.660556	0.273203	-1.090064
Ρ	0.198421	-1.450915	-0.000826	F	-2.533541	0.237385	1.086580
С	1.893624	-0.797986	0.000257	F	-2.361879	-1.604806	-0.042911
0	2.891827	-1.547204	0.000985				
С	-2.158191	0.093495	0.000070		IIIbC		
F	-2.683795	0.716937	-1.084544	Ν	-0.137906	-1.371644	0.000932
F	-2.682916	0.714697	1.086586	С	0.485920	-0.212492	0.000256
F	-2.670716	-1.164428	-0.001008	С	-2.276743	-0.437852	0.000250
				N	-1.474843	-1.510144	0.001493

	ID			С	-3.749333	-0.812711	-0.000287
N	0.685921	-1.200300	-0.040340	Н	-3.986980	-1.417862	-0.883174
С	1.308514	0.000040	0.006438	Н	-3.986130	-1.423256	0.879057
С	-1.261439	0.000080	-0.006716	Н	-4.392571	0.072294	0.002505
N	-0.630103	-1.188170	-0.042061	Ρ	-1.877277	1.277056	-0.001159
N	-0.630114	1.188234	-0.042040	С	-0.056419	1.154254	0.000672
N	0.686017	1.200313	-0.040360	0	0.676860	2.157458	0.001997
С	-2.759851	-0.000002	0.054222	С	1.998277	-0.324537	-0.000369
Н	-3.157536	-0.890819	-0.435591	F	2.557830	0.265938	-1.088709
Н	-3.101977	-0.008797	1.095646	F	2.437715	-1.604872	-0.001701
Н	-3.156540	0.899158	-0.420793	F	2.558788	0.264030	1.088513
N	2.660760	-0.000079	0.103239				
Н	3.142592	-0.868805	-0.066012		TSIaD		
Н	3.142748	0.868567	-0.065976	С	1.376733	-0.194196	0.003366
				С	-1.045507	-0.843083	0.000147
	TSIbD			С	-0.976463	1.367429	-0.000387
С	1.366910	-0.218996	-0.000759	Ν	0.896413	-0.883840	-1.188682
С	-1.034234	-0.903021	-0.027498	Ν	-0.352639	-1.122076	-1.185701
С	-1.023808	1.338344	0.001506	Ν	-0.338852	-1.166018	1.163126
N	0.898750	-0.851798	-1.211622	Ν	0.911855	-0.924593	1.166497
Ν	-0.344759	-1.141557	-1.214320	Ρ	0.706808	1.666754	0.033797
N	-0.346568	-1.213979	1.136565	0	-2.109494	1.754469	-0.008616
N	0.905771	-0.946673	1.150603	С	-2.515023	-1.148245	0.003503

С	2.880590	-0.077020	-0.000052	Н	-2.779827	-1.725976	-0.887920
н	3.215543	0.428815	0.909746	н	-2.774874	-1.721544	0.898981
н	3.344015	-1.068825	-0.038587	н	-3.102873	-0.221109	0.001766
н	3.209330	0.495775	-0.871415	Ν	2.825591	-0.093548	0.026396
Ρ	0.628071	1.690607	0.063517	н	3.158026	-0.889312	0.570210
0	-2.196098	1.608567	-0.035355	н	3.138371	-0.240015	-0.932307
Ν	-2.423482	-1.170116	-0.026025				
н	-2.905419	-0.308251	-0.299683		llaD		
н	-2.680488	-1.342138	0.944435	С	1.081311	-0.572555	-0.004716
				С	-1.397375	-0.178250	0.028290
	llbD			Ν	0.366032	-1.082196	-1.191771
С	1.379467	-0.143742	-0.013308	Ν	-0.865986	-0.886165	-1.175807
С	-1.087347	-0.629578	0.035223	Ν	-0.856853	-0.908676	1.195800
С	-1.015695	1.006695	0.007197	Ν	0.377005	-1.097835	1.183951
Ν	0.856858	-0.900626	-1.167083	С	2.528387	-1.020349	-0.012201
Ν	-0.369626	-1.140478	-1.143125	н	3.039523	-0.633985	0.871516
Ν	-0.332632	-1.090816	1.234967	н	2.586700	-2.113157	-0.016651
Ν	0.884445	-0.838515	1.210177	н	3.032979	-0.626128	-0.896109
С	2.898461	-0.146527	-0.029640	Ρ	-0.724834	1.620823	0.033499
н	3.283211	0.381416	0.846818	С	0.960663	1.053725	-0.006890
н	3.279992	-1.173767	-0.015423	0	2.030178	1.667137	-0.024814
н	3.265522	0.349875	-0.931926	Ν	-2.840660	-0.202770	0.068467
Р	0.636591	1.635814	-0.033355	н	-3.175781	0.414077	-0.668177

0	-2.119797	1.567031	0.004720	Н	-3.147008	-1.142174	-0.185927
N	-2.446000	-1.080865	0.057149				
Н	-3.008719	-0.224114	0.042370		TSIIaD		
Н	-2.611129	-1.568851	-0.820712	С	1.437172	-0.105918	-0.147252
				С	-1.107902	-0.532627	-0.108964
	TSIIbD			Ν	-0.355351	-1.162012	-1.125764
С	1.403594	-0.077529	-0.112905	Ν	0.913332	-0.973577	-1.118456
С	-1.134977	-0.569910	-0.185027	Ρ	0.726269	1.622667	-0.029192
N	-0.327390	-1.196437	-1.147082	С	-0.959835	1.030445	-0.015763
N	0.933470	-0.965889	-1.104474	0	-2.011683	1.684989	0.040087
С	2.916987	-0.090429	-0.017915	Ν	0.786789	-0.917620	1.328493
Н	3.293345	-1.117427	-0.070724	Ν	-0.392243	-1.071193	1.302203
Н	3.351165	0.477508	-0.846625	С	-2.548675	-0.993085	-0.092530
Н	3.243082	0.362842	0.922137	Н	-2.599374	-2.078490	-0.218391
Ρ	0.619069	1.626828	-0.043324	Н	-3.018992	-0.708998	0.851057
С	-1.037294	0.977766	-0.036599	Н	-3.101575	-0.506812	-0.899517
0	-2.121469	1.581631	0.089921	Ν	2.853980	-0.165912	-0.105309
N	0.836414	-0.873511	1.325163	Н	3.189386	0.248094	0.758113
N	-0.325463	-1.099852	1.321238	Н	3.159866	-1.134399	-0.155190
N	-2.472925	-1.015458	-0.183828				
Н	-3.028330	-0.272324	0.239488		IIIaD		
Н	-2.572143	-1.887423	0.323778	Ν	-0.998970	1.452833	0.007685
				С	-1.550293	0.244848	-0.016234

	IIIbD			С	1.207059	0.618826	-0.003127
Ν	0.336201	-1.644241	0.022665	Ν	0.349997	1.613358	-0.004595
С	1.209247	-0.666118	-0.029876	С	2.667428	1.005866	-0.002233
С	-1.526181	-0.216226	0.003366	Н	2.757954	2.095214	-0.007095
N	-1.014871	-1.432118	0.034411	Н	3.181306	0.593819	0.874783
С	-3.046651	-0.198081	-0.008125	Н	3.184627	0.586360	-0.873811
Н	-3.414192	-1.226230	0.062710	Ρ	-0.791492	-1.372962	-0.026806
Н	-3.453140	0.384445	0.828329	С	0.938964	-0.832604	0.008634
Н	-3.437692	0.253027	-0.929363	0	1.890953	-1.642413	0.032785
Ρ	-0.704242	1.375461	-0.011044	Ν	-2.961367	0.291367	-0.069080
С	0.995704	0.802939	-0.004144	Н	-3.401697	-0.467093	0.437751
0	2.003808	1.551786	0.042653	Н	-3.284018	1.200902	0.247868
Ν	2.557155	-1.014859	-0.113089				
Н	3.133637	-0.237038	0.193004		IE		
Н	2.762442	-1.916966	0.294522	Ν	1.936697	-0.888701	-0.798477
				С	1.316132	-0.000311	-0.004780
	TSIaE			С	3.885135	-0.002399	-0.001538
С	0.820618	-0.074910	0.000030	Ν	3.258041	-0.896703	-0.786532
С	3.153426	-1.035223	0.000338	С	5.381884	-0.002384	0.009584
С	3.374960	1.425643	-0.000496	Н	5.762254	0.989109	-0.252918
Ν	1.224895	-0.785837	1.190460	Н	5.751947	-0.235869	1.012788
N	2.446299	-1.174702	1.174282	Н	5.759791	-0.741139	-0.697441
N	2.446345	-1.175337	-1.173571	С	-0.163788	-0.000146	-0.002585

Ν	1.224957	-0.786467	-1.190011	С	-0.890559	1.194505	-0.090003
Ρ	1.738556	1.820810	-0.000553	С	-0.890149	-1.194999	0.087110
0	4.555604	1.578573	-0.000533	С	-2.282275	1.202792	-0.089934
С	4.598966	-1.417250	0.000468	С	-2.281813	-1.203078	0.091974
Н	4.830190	-2.003204	0.895322	С	-2.978739	-0.000154	0.002257
Н	4.830166	-2.003951	-0.893904	F	-0.258649	2.364651	-0.214368
Н	5.239489	-0.524726	0.000085	F	-2.951017	2.354990	-0.190759
С	-0.702439	0.039702	-0.000041	F	-4.311544	-0.000361	0.004467
С	-1.423528	-1.170559	-0.000153	F	-2.950367	-2.355223	0.194918
С	-1.489936	1.195487	0.000173	F	-0.257859	-2.365080	0.209065
С	-2.814593	-1.226170	-0.000190	Ν	3.255197	0.897869	0.780348
С	-2.886840	1.161036	0.000146	Ν	1.938061	0.892413	0.789685
С	-3.556952	-0.051951	-0.000042				
F	-0.964509	2.431759	0.000436		TSIbE		
F	-3.585383	2.311404	0.000327	С	-3.380666	-0.277801	-0.374081
F	-4.900234	-0.092683	-0.000075	С	-0.879638	-0.292006	-0.325739
F	-3.447872	-2.413135	-0.000327	Ν	-2.743480	-1.579126	-0.163342
F	-0.797845	-2.351489	-0.000189	Ν	-1.482056	-1.548012	-0.090585
				Ν	-1.451362	0.408279	-1.421126
	llaE			Ν	-2.710974	0.380978	-1.497874
С	-0.815523	-0.037682	-0.164916	С	-4.861710	-0.456036	-0.671658
С	-3.291273	-0.057459	-0.571846	н	-5.336056	0.514749	-0.839040
С	-3.191581	0.103533	1.044379	Н	-4.984596	-1.065333	-1.573102

Ν	-1.333605	1.074531	-1.016038	Η	-5.359187	-0.960253	0.161158
Ν	-2.564420	1.062691	-1.200135	С	0.599169	-0.227887	-0.264199
Ν	-2.583120	-1.290939	-0.962357	С	1.236210	1.019088	-0.407910
Ν	-1.351836	-1.285362	-0.776754	С	1.450533	-1.309425	0.021710
Ρ	-1.515123	0.147036	1.635581	С	2.615046	1.179132	-0.311854
0	-4.266487	0.172963	1.641620	С	2.833089	-1.161063	0.128813
С	0.694462	-0.032423	-0.136369	С	3.424017	0.084249	-0.037055
С	1.420035	1.170729	-0.108206	Ρ	-3.209858	0.811902	1.242652
С	1.462321	-1.204217	-0.038209	С	-1.491535	0.838796	1.349076
С	2.812849	1.206121	-0.063918	0	-0.529626	1.213875	1.953758
С	2.856706	-1.182736	0.006164	F	0.993735	-2.559035	0.183181
С	3.540358	0.024874	-0.009662	F	0.527034	2.128294	-0.650915
С	-4.732381	-0.092521	-1.036648	F	3.170655	2.395097	-0.468050
Н	-5.247278	-0.938100	-0.577498	F	4.758551	0.226545	0.059965
Н	-5.240973	0.823040	-0.730336	F	3.606995	-2.234880	0.381264
Н	-4.776078	-0.187381	-2.125571				
F	0.905152	-2.418740	0.035337		llbE		
F	3.544975	-2.336754	0.080878	С	-3.398087	0.230002	-0.424008
F	4.883700	0.051132	0.033962	С	-0.908038	0.171073	-0.141369
F	3.458011	2.386833	-0.055669	С	-1.470852	-0.622499	1.229903
F	0.810174	2.361688	-0.102384	Ν	-2.653807	-0.514147	-1.466122
				Ν	-1.415830	-0.548660	-1.334731
	TSIIaE			Ν	-1.491161	1.519913	-0.156420

С	0.785094	-0.138334	-0.170791	Ν	-2.731352	1.543599	-0.293922
С	3.278869	0.588040	-0.139323	С	-4.844378	0.417072	-0.848115
N	2.485843	1.004921	-1.232541	Н	-5.384081	0.993174	-0.092237
Ν	1.248578	0.682037	-1.226505	Н	-4.896687	0.953797	-1.801760
Ρ	1.701847	-1.742919	0.152591	Н	-5.328807	-0.555535	-0.966563
С	3.304622	-0.955414	0.099646	Ρ	-3.238095	-0.707124	1.249982
0	4.419344	-1.484085	0.224966	0	-0.604415	-1.017487	2.002539
Ν	1.315148	0.917440	1.255587	С	0.598647	0.165237	-0.143713
Ν	2.466490	1.177354	1.197220	С	1.256798	-1.067554	-0.280497
С	4.649052	1.225315	-0.142803	С	1.425519	1.278232	0.054385
Н	4.571751	2.290237	-0.378339	С	2.642650	-1.187287	-0.270043
Н	5.123158	1.094702	0.831787	С	2.818464	1.173775	0.070402
Н	5.276162	0.730706	-0.887733	С	3.433146	-0.058923	-0.091023
С	-0.714926	-0.102350	-0.101626	F	0.947327	2.516421	0.236604
С	-1.556557	-1.223974	-0.090670	F	3.572071	2.276298	0.245325
С	-1.372363	1.141113	-0.049549	F	4.773863	-0.160871	-0.079004
С	-2.946163	-1.121805	-0.017953	F	3.224165	-2.391486	-0.418826
С	-2.757160	1.262943	0.026052	F	0.564592	-2.200849	-0.438174
С	-3.553718	0.124740	0.040042				
F	-0.682010	2.288794	-0.050551		TSIIbE		
F	-3.331597	2.478071	0.085247	С	-3.441395	-0.333214	-0.339608
F	-4.891606	0.230112	0.110543	С	-0.885639	-0.211329	-0.000295
F	-3.704449	-2.233365	-0.017897	N	-1.434989	-1.471706	-0.263424

F	-1.075499	-2.471731	-0.163873	Ν	-2.703811	-1.532967	-0.434847
				С	-4.860494	-0.504565	-0.843223
	IIIaE			Н	-4.868280	-1.064247	-1.783872
N	-2.737408	0.908482	1.324285	н	-5.448967	-1.060262	-0.107299
С	-3.655185	0.380116	0.540558	н	-5.329009	0.470299	-1.000289
С	-0.942374	0.040105	0.113444	Р	-3.265017	0.657877	1.236643
N	-1.402845	0.758691	1.132994	С	-1.482145	0.592166	1.213438
Ρ	-1.782796	-0.830704	-1.178068	0	-0.676372	1.076013	2.019663
С	-3.482153	-0.451352	-0.663777	Ν	-2.638000	0.626209	-1.544376
0	-4.477304	-0.865978	-1.291378	Ν	-1.468913	0.721482	-1.423369
С	-5.086784	0.666831	0.922264	С	0.611741	-0.169891	-0.051726
Н	-5.611612	1.170808	0.102213	С	1.447241	-1.284519	0.106475
н	-5.634613	-0.266637	1.096860	С	1.261289	1.065092	-0.205871
Н	-5.112224	1.288481	1.820096	С	2.838739	-1.181274	0.059830
С	0.559804	0.019419	0.068664	С	2.646687	1.183916	-0.254234
С	1.303003	-1.144269	0.286710	С	3.444362	0.054081	-0.119859
С	1.290501	1.186800	-0.179678	F	0.562977	2.197667	-0.339253
С	2.696473	-1.156004	0.253974	F	3.222234	2.388573	-0.423409
С	2.682829	1.199313	-0.217909	F	4.784424	0.157121	-0.166693
С	3.390148	0.021754	0.001094	F	3.601406	-2.282043	0.205493
F	3.377443	-2.295084	0.479954	F	0.970089	-2.515312	0.330202
F	0.691126	-2.306692	0.561760				
F	4.734856	0.022641	-0.033877	IIIk	DE		

F	3.352229	2.339258	-0.472562	Ν	1.570404	-0.950115	-0.931654
F	0.662460	2.345351	-0.420847	С	1.035355	-0.076671	-0.097848
				С	3.772983	-0.399951	-0.384379
	IF			Ν	2.894895	-1.123678	-1.087754
Ν	0.442588	0.970173	0.000050	Ρ	3.502630	0.852069	0.826308
С	0.856594	-0.299532	0.000036	С	1.682666	0.860137	0.834015
С	-1.671653	0.106731	-0.00008	0	1.015056	1.600225	1.579917
Ν	-0.870148	1.176462	0.000002	С	5.214907	-0.747784	-0.714556
С	-3.154479	0.325717	0.000003	Н	5.919752	-0.158216	-0.120619
н	-3.609171	-0.137165	-0.881061	н	5.401257	-1.811887	-0.528295
Н	-3.609183	-0.137342	0.880967	Н	5.415721	-0.568696	-1.777411
Н	-3.371183	1.394403	0.000105	С	-0.460105	-0.077231	-0.089405
Ν	-1.231348	-1.174810	-0.000050	С	-1.199519	1.078202	-0.364997
Ν	0.060287	-1.392797	-0.000036	С	-1.194668	-1.231290	0.199232
0	2.158437	-0.574957	0.000132	С	-2.591471	1.090687	-0.352021
С	3.069145	0.537773	-0.000100	С	-2.588325	-1.244054	0.209961
Н	4.061711	0.088839	-0.000861	С	-3.291009	-0.076591	-0.063448
Н	2.925948	1.157109	-0.888932	F	-0.581812	2.216388	-0.706069
Н	2.927089	1.156482	0.889370	F	-3.270678	2.218518	-0.638101
				F	-4.637389	-0.076847	-0.056722
	TSIbF			F	-3.261497	-2.375500	0.498705
С	1.575902	-0.388728	-0.067985	F	-0.575136	-2.380362	0.509843
с	-0.866646	-0.626903	0.279997				

С	-0.492685	1.554912	0.073683		TSIaF		
Ν	0.853339	-1.068991	-1.115958	С	1.050800	-0.289087	0.249673
Ν	-0.414629	-1.117313	-0.928724	С	-1.370559	-0.804102	-0.071351
Ν	-0.104097	-0.952125	1.390197	С	-1.208814	1.383983	-0.051041
Ν	1.161508	-0.898256	1.222603	Ν	0.709515	-0.950750	-0.983925
С	3.078118	-0.536406	-0.254623	Ν	-0.542047	-1.130432	-1.150000
Н	3.614333	-0.006667	0.537371	Ν	-0.839624	-1.144723	1.182011
Н	3.350744	-1.596502	-0.213266	Ν	0.408272	-0.966957	1.351794
н	3.382350	-0.135005	-1.225086	Ρ	0.459931	1.628605	0.206872
Ρ	1.189928	1.598329	-0.165108	0	-2.314099	1.821048	-0.202826
0	-1.575647	2.049816	0.187418	С	-2.839264	-1.048563	-0.261073
0	-2.216295	-0.646500	0.524677	Н	-3.007679	-1.613348	-1.183407
С	-3.044889	-0.587068	-0.624423	Н	-3.236150	-1.612117	0.588974
Н	-2.754849	0.232769	-1.289159	Н	-3.382864	-0.097743	-0.332078
Н	-3.019018	-1.525028	-1.193163	0	2.431375	-0.282221	0.494159
Н	-4.058590	-0.409077	-0.253534	С	3.240039	0.024926	-0.628323
				Н	2.939614	0.971239	-1.099405
	llbF			Н	4.261781	0.124129	-0.247622
С	1.501933	-0.522637	0.000053	Н	3.202096	-0.764756	-1.386669
С	-0.948302	-0.041369	-0.000005				
С	-0.286196	1.464115	-0.000052		llaF		
Ν	0.757015	-0.999414	-1.190414	С	-1.081075	0.199568	0.000145
Ν	-0.470514	-0.766854	-1.185683	С	1.236669	-0.728883	-0.000041

Ν	-0.470700	-0.766769	1.185648	С	1.474031	0.893196	-0.000007
Ν	0.756842	-0.999418	1.190369	Ν	-0.728923	-0.614908	1.184181
С	2.905540	-1.102962	0.000087	Ν	0.433105	-1.073138	1.188473
н	3.447362	-0.770983	0.889469	Ν	0.433118	-1.073103	-1.188445
н	2.868695	-2.198501	0.000410	Ν	-0.728910	-0.614957	-1.184226
н	3.447243	-0.771498	-0.889558	Ρ	-0.045376	1.815351	-0.000039
Ρ	1.494593	1.404525	-0.000018	0	2.653022	1.252222	-0.000020
0	-1.082872	2.394566	0.000037	С	2.551452	-1.480051	0.000014
0	-2.329347	0.086252	-0.000038	н	3.132072	-1.208233	-0.883296
С	-3.035705	-1.143881	-0.000009	н	3.131205	-1.209518	0.884297
н	-4.099985	-0.888456	0.000792	н	2.371780	-2.559587	-0.000813
н	-2.808877	-1.738391	-0.893938	0	-2.438774	0.525369	0.000136
н	-2.807701	-1.739007	0.893206	С	-3.319558	-0.590306	-0.000113
				н	-4.334278	-0.180932	0.001331
	TSIIbF			н	-3.181877	-1.209677	-0.894783
С	-1.551217	-0.462203	0.142511	н	-3.180086	-1.211447	0.893045
С	0.976432	0.008713	0.070706				
Ν	0.521106	-0.871893	1.048168		TSIIaF		
Ν	-0.739786	-1.129833	1.076454	С	-1.107032	0.252609	0.073482
С	-2.953726	-1.035570	0.096292	С	1.283878	-0.684175	0.119946
н	-3.452078	-0.743263	-0.831757	Ν	0.386807	-1.160222	1.095124
н	-2.922627	-2.128422	0.158872	Ν	-0.813793	-0.702352	1.049385
Н	-3.541611	-0.658481	0.939025	Ρ	-0.069398	1.808019	0.009363

Ρ	-1.458991	1.411736	0.083054	С	1.456176	0.877925	0.056423
С	0.329114	1.439038	0.027509	0	2.621460	1.303090	0.051341
0	1.096966	2.404220	-0.023248	Ν	-0.616936	-0.662126	-1.385222
Ν	-0.788910	-0.956876	-1.355920	Ν	0.504662	-1.047448	-1.333660
Ν	0.375604	-0.747653	-1.395833	С	2.598154	-1.431005	0.125297
0	2.340656	0.076233	-0.047924	Н	3.143228	-1.231327	-0.799478
С	3.036527	-1.145382	0.145345	Н	3.216158	-1.084193	0.956654
н	4.067815	-0.957646	-0.169343	Н	2.421402	-2.505765	0.225504
н	3.021796	-1.465816	1.192204	0	-2.449679	0.520358	-0.075193
н	2.611718	-1.949826	-0.469689	С	-3.332981	-0.571924	0.144805
				Н	-3.396594	-0.842097	1.203938
	IIIbF			Н	-4.313133	-0.242575	-0.213577
Ν	0.506666	-1.266697	-0.000019	Н	-3.018703	-1.457460	-0.421777
С	1.014640	-0.068314	-0.000022				
С	-1.714495	-0.545741	0.000024		IIIaF		
Ν	-0.834458	-1.533065	-0.000105	Ν	0.409404	1.572496	0.000324
Ρ	-1.458004	1.219438	0.000327	С	1.439757	0.761559	0.000053
С	0.353200	1.260994	-0.000134	С	-1.170186	-0.145871	0.000028
0	1.018237	2.310853	-0.000365	Ν	-0.883760	1.138018	0.000152
С	-3.156264	-1.030738	-0.000176	Ρ	-0.130330	-1.594455	0.000513
н	-3.702373	-0.670922	0.880520	С	1.457199	-0.717926	-0.000203
Н	-3.701674	-0.672466	-0.881969	0	2.551600	-1.321612	-0.000645
н	-3.164423	-2.124761	0.000697	С	2.797772	1.421778	0.000013

0	2.386302	0.031108	0.000046	Н	3.381973	1.109620	0.873872
С	3.101917	-1.190771	0.000118	Н	3.381611	1.110235	-0.874307
Н	2.870918	-1.799867	-0.882160	Н	2.679651	2.508318	0.000405
н	4.161090	-0.913653	0.000193	0	-2.516835	-0.456492	-0.000343
н	2.870783	-1.799844	0.882376	С	-3.427370	0.633472	-0.000273
				н	-3.301847	1.270356	-0.883093
	IG			н	-4.424803	0.181581	-0.000675
N	0.979009	1.191098	-0.002755	Н	-3.302302	1.269861	0.882959
С	0.342701	0.003171	-0.001881				
С	2.927619	0.003542	0.000114		TSIaG		
Ν	2.298166	1.191449	-0.001741	С	-0.102403	-0.266325	0.000359
С	4.425431	-0.002268	0.004563	С	2.343111	-0.838516	0.001416
н	4.801421	-0.509391	0.898571	С	2.225836	1.406122	-0.002395
н	4.806869	-0.549615	-0.862681	Ν	0.397919	-0.934478	1.184500
н	4.800355	1.021410	-0.016160	Ν	1.653974	-1.143785	1.176938
С	-1.134081	0.000793	-0.000705	Ν	1.654066	-1.147624	-1.173153
С	-1.840391	-1.213118	-0.000043	Ν	0.398011	-0.938291	-1.181510
С	-1.843351	1.213008	-0.000045	Ρ	0.541516	1.661715	-0.002738
С	-3.232662	-1.210571	0.001268	0	3.355277	1.800425	-0.003053
С	-3.235486	1.207191	0.001244	С	3.821387	-1.091781	0.001881
С	-3.933760	-0.002574	0.001905	Н	4.102775	-1.655862	0.896533
N	2.296368	-1.187409	-0.001818	Н	4.102798	-1.659070	-0.890733
N	0.981343	-1.187994	-0.002756	Н	4.377580	-0.145325	0.000189

Н	-1.287730	-2.145320	-0.000598	С	-1.609050	-0.171544	0.000374
н	-3.771831	-2.153066	0.001781	С	-2.319497	-0.107614	1.206254
н	-5.019845	-0.003860	0.002920	С	-2.319654	-0.114291	-1.205764
Н	-3.776917	2.148389	0.001729	С	-3.709843	0.009544	1.205318
Н	-1.292641	2.146399	-0.000591	н	-1.765176	-0.165969	2.136230
				С	-3.710001	0.002916	-1.205345
	TSIbG			н	-1.765335	-0.177801	-2.135416
С	2.490200	-0.489326	-0.000075	С	-4.412531	0.065600	-0.000135
С	-0.017182	-0.419880	-0.000077	н	-4.246507	0.056574	2.150300
С	0.625037	1.578453	0.000195	н	-4.246784	0.044721	-2.150506
N	1.828203	-1.035316	-1.188141	н	-5.496227	0.158188	-0.000316
Ν	0.567847	-0.930608	-1.180618				
Ν	0.567840	-0.930985	1.180306		llaG		
N	1.828195	-1.035730	1.187798	С	0.119550	-0.149455	-0.000050
С	3.964777	-0.862634	-0.000148	С	-2.354520	-0.594416	-0.000337
н	4.458404	-0.464987	0.890861	С	-2.281506	1.034395	0.000660
Н	4.068383	-1.952976	0.000011	Ν	-0.404659	-0.860331	-1.191040
Н	4.458232	-0.465252	-0.891369	Ν	-1.631115	-1.084179	-1.190213
Ρ	2.348036	1.462034	0.000332	Ν	-1.631153	-1.085734	1.188802
0	-0.322488	2.308269	0.000138	Ν	-0.404669	-0.861851	1.189958
С	-1.495808	-0.340600	-0.000048	Ρ	-0.612487	1.652991	0.001007
С	-2.211603	-0.272438	1.205558	0	-3.368989	1.615036	0.001081
С	-2.211625	-0.271902	-1.205612	С	1.625764	-0.122216	-0.000066

С	-3.601020	-0.163575	1.204537	С	2.339409	-0.085961	-1.205711
Н	-1.659654	-0.319967	2.137945	С	2.339447	-0.087924	1.205615
С	-3.601041	-0.163080	-1.204525	С	3.732945	-0.018995	-1.204906
Н	-1.659692	-0.318987	-2.138032	С	3.732987	-0.020966	1.204878
С	-4.306314	-0.110270	0.000025	С	4.437685	0.013647	0.000002
н	-4.136594	-0.116994	2.150337	С	-3.787286	-1.085753	-0.000709
н	-4.136631	-0.116113	-2.150297	н	-4.306447	-0.711108	0.883184
н	-5.390220	-0.021405	0.000056	н	-4.306188	-0.710423	-0.884465
				н	-3.812434	-2.179644	-0.001153
	llbG			н	1.787317	-0.123548	2.137979
С	-2.507762	-0.482490	0.000394	н	4.270113	0.004669	2.150307
С	-0.010331	-0.203171	0.000123	н	5.523888	0.067284	0.000022
С	-0.583682	1.385341	-0.001183	н	4.270045	0.008193	-2.150308
N	-1.800708	-1.010805	1.189788	н	1.787247	-0.120062	-2.138115
N	-0.560864	-0.865266	1.191170				
N	-0.560784	-0.867422	-1.189580		TSIIaG		
N	-1.800659	-1.012954	-1.187999	С	-0.149364	-0.086650	0.162887
С	-3.951550	-0.953810	0.000801	С	2.383269	-0.572483	-0.117577
Н	-4.466861	-0.583149	-0.889123	Ν	1.615016	-1.498346	0.620167
Н	-3.996617	-2.048787	0.001554	Ν	0.358863	-1.267488	0.724250
Н	-4.466784	-0.581944	0.890272	Ρ	0.663905	1.527931	0.653818
Ρ	-2.358127	1.436380	-0.001260	С	2.318147	0.908136	0.384330
0	0.275310	2.256909	-0.001983	О	3.401736	1.489578	0.548186

С	1.493278	-0.227421	0.000173	Ν	0.437145	-0.325184	-1.565506
С	2.206735	-0.212369	1.204683	Ν	1.602413	-0.518525	-1.614780
С	2.206794	-0.215517	-1.204335	С	3.790677	-1.061206	-0.371763
С	3.601407	-0.200564	1.204994	Н	4.386009	-0.945808	0.536856
С	3.601468	-0.203704	-1.204613	Н	3.778546	-2.113455	-0.669131
С	4.306832	-0.197678	0.000203	Н	4.258427	-0.460364	-1.154110
Н	1.654425	-0.221798	2.137700	С	-1.645577	-0.064013	0.085990
Н	4.139112	-0.191235	2.150455	С	-2.428019	-1.062074	0.686985
Н	5.394397	-0.186389	0.000219	С	-2.296338	0.963864	-0.613857
Н	4.139217	-0.196848	-2.150070	С	-3.819482	-1.023301	0.602465
Н	1.654513	-0.227398	-2.137342	Н	-1.920309	-1.859692	1.217044
				С	-3.687516	0.998442	-0.702812
	TSIIbG			Н	-1.694265	1.734601	-1.084777
С	-2.544225	-0.484378	-0.034331	С	-4.457743	0.006123	-0.092936
С	0.022941	-0.104627	0.135008	Н	-4.408911	-1.801990	1.081744
Ν	-0.522005	-1.213141	0.793164	Н	-4.171471	1.803168	-1.251405
Ν	-1.784780	-1.414825	0.702186	Н	-5.542877	0.033719	-0.160167
С	-3.947786	-0.986897	-0.305432				
Н	-3.926945	-2.039725	-0.605106		IllaG		
Н	-4.555999	-0.898729	0.599933	Ν	-1.754435	1.598902	-0.156986
Н	-4.415960	-0.396747	-1.097510	С	-2.683637	0.669492	-0.064930
Ρ	-2.407115	1.309255	0.464194	С	0.059633	0.108187	-0.022218
С	-0.618603	1.291786	0.472339	Ν	-0.427093	1.343113	-0.151994

0	0.144230	2.238426	0.712589	Ρ	-0.825202	-1.424977	0.166463
Ν	-1.724270	-0.552811	-1.583920	С	-2.518335	-0.785983	0.066210
Ν	-0.561612	-0.357712	-1.543225	0	-3.518542	-1.531550	0.126694
С	1.520099	-0.143246	0.062364	С	-4.110332	1.160267	-0.095308
С	2.254637	-1.143720	0.713860	н	-4.656466	0.713540	-0.934823
С	2.215425	0.813944	-0.692574	Н	-4.647148	0.847155	0.808075
С	3.646010	-1.185413	0.617884	н	-4.124493	2.249531	-0.179910
Н	1.712402	-1.884205	1.290378	С	1.560312	0.069790	-0.019158
С	3.604916	0.766885	-0.793901	С	2.279167	-1.116660	-0.246531
Н	1.657369	1.598326	-1.187659	С	2.297740	1.245849	0.213588
С	4.328974	-0.231052	-0.137712	С	3.673694	-1.131024	-0.230477
Н	4.197392	-1.969259	1.132786	С	3.690629	1.232232	0.226821
Н	4.125458	1.517535	-1.384129	С	4.390763	0.043050	0.006959
Н	5.413505	-0.263692	-0.214793	н	1.732158	-2.033577	-0.443646
				н	4.201939	-2.064553	-0.411801
	IIIbG			н	5.478263	0.032261	0.017856
Ν	-0.613135	-1.274831	0.000142	н	4.234862	2.156066	0.412464
С	-0.054954	-0.066089	0.000026	н	1.740144	2.161339	0.374405
С	-2.840813	-0.582368	0.000077				
Ν	-1.919773	-1.554001	0.000151				
Ρ	-2.604196	1.154945	-0.000044				
С	-0.782906	1.221138	-0.000112				
0	-0.228278	2.341532	-0.000275				

- C -4.263078 -1.115714 0.000047
- H -4.998588 -0.305433 0.000026
- H -4.435239 -1.745469 -0.881123
- H -4.435259 -1.745504 0.881185
- C 1.444846 -0.116759 0.000005
- C 2.261456 1.033039 0.000238
- C 2.096483 -1.370643 -0.000240
- C 3.654484 0.925169 0.000267
- C 3.483264 -1.470543 -0.000226
- C 4.279572 -0.320531 0.000036
- H 1.775631 1.999098 0.000339
- H 4.254531 1.833307 0.000470
- H 5.364824 -0.398111 0.000044
- H 3.948624 -2.454636 -0.000434
- H 1.474863 -2.258053 -0.000409

Table S?. Cartesian coordinates for all optimized species at B3LYP/6-311G(d,p) level of theory

	IB				TSIB				
N	-0.660923	1.188152	0.000046	С	-1.358468	-0.250223	0.000017		
С	-1.286965	0.005539	0.000006	С	1.074835	-0.850255	-0.000023		
С	1.286965	0.005541	0.000014	С	0.952909	1.407423	0.000001		

Ν	0.660925	1.188153	0.000049	Ν	-0.865986	-0.929643	1.181280
N	0.656434	-1.183648	0.000049	Ν	0.385111	-1.149081	1.173634
N	-0.656436	-1.183649	0.000047	Ν	0.385053	-1.149176	-1.173623
С	2.783590	-0.003282	-0.000070	Ν	-0.866043	-0.929723	-1.181215
Н	3.159506	1.018452	0.000213	С	-2.876867	-0.197398	0.000046
н	3.158294	-0.532057	0.879647	Н	-3.239831	0.318837	-0.891572
Н	3.158185	-0.531486	-0.880184	Н	-3.271015	-1.217649	0.000073
С	-2.783592	-0.003279	-0.000068	Н	-3.239795	0.318868	0.891662
н	-3.158198	-0.531479	-0.880179	Ρ	-0.729139	1.649479	-0.000072
н	-3.158289	-0.532064	0.879647	0	2.073996	1.801310	0.000041
Н	-3.159493	1.018458	0.000229	С	2.551223	-1.104279	-0.000024
				Н	2.828230	-1.669783	-0.893692
	IIB			Н	3.110565	-0.161228	0.000105
С	-1.383911	-0.175980	0.000052	Н	2.828235	-1.669960	0.893537
С	1.091559	-0.574855	0.000002				
С	0.980965	1.049525	0.000011		TSIIB		
N	-0.848364	-0.883899	1.188746	С	1.416367	-0.103712	-0.141760
N	0.377037	-1.083352	1.190171	С	-1.134409	-0.522392	-0.139943
N	0.376990	-1.083293	-1.190215	Ν	-0.374721	-1.141750	-1.142507
N	-0.848396	-0.883870	-1.188791	Ν	0.890949	-0.950077	-1.129234
С	-2.899137	-0.236775	0.000034	С	2.923188	-0.197825	-0.046828
н	-3.293098	0.259430	-0.889230	Н	3.245174	-1.231180	-0.202745
Н	-3.235458	-1.278660	-0.000140	н	3.389309	0.428732	-0.812289

Н	-3.293065	0.259130	0.889479	Н	3.261943	0.142385	0.934029
Ρ	-0.701962	1.622951	-0.000017	С	-2.560790	-1.010145	-0.093919
0	2.046491	1.659059	0.000038	Н	-2.985470	-0.828617	0.894742
С	2.530952	-1.039989	-0.000012	н	-3.160934	-0.455461	-0.817619
Н	3.042348	-0.658094	-0.883904	Н	-2.597496	-2.077285	-0.323773
Н	3.042807	-0.656759	0.883040	Ρ	0.697946	1.612987	-0.003283
Н	2.570549	-2.132453	0.000804	С	-0.988160	1.024940	-0.016232
				0	-2.032332	1.684156	0.053699
	IIIB			Ν	0.801605	-0.928896	1.322993
Ν	-0.364302	1.607357	-0.000133	Ν	-0.360722	-1.092395	1.317234
С	-1.225608	0.618343	-0.000009				
С	1.536381	0.241137	0.000052				
Ν	0.982348	1.444283	-0.000092				
С	3.056512	0.281807	0.000066				
н	3.377266	1.325844	0.001159				
н	3.469982	-0.220701	0.881010				
н	3.469865	-0.218622	-0.882141				
Ρ	0.766268	-1.357220	0.000037				
С	-0.965430	-0.832433	-0.000032				
0	-1.912428	-1.641267	-0.000110				
С	-2.682434	1.014342	0.000133				
Н	-3.197016	0.599080	-0.873010				
н	-3.196750	0.599453	0.873632				

- 1. A. V. Polezhaev, N. A. Maciulis, C.-H. Chen, M. Pink, R. L. Lord and K. G. Caulton, *Chem. Eur. J.*, 2016, **22**, 13985-13998.
- 2. D. Heift, Z. Benko and H. Grutzmacher, *Dalton Transactions*, 2014, **43**, 831-840.
- G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox., *Journal*, 2009.
- 4. S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200-1211.
- 5. C. Ögretir, I. G. Csizmadia and E. A. Lang, *Computational advances in organic chemistry : molecular structure and reactivity*, Kluwer Academic Publishers, Dordrecht ; Boston, 1991.
- 6. R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys., 1996, **104**, 9047-9052.
- 7. H. B. Schlegel, *Wiley Interdisciplinary Reviews-Computational Molecular Science*, 2011, **1**, 790-809.
- 8. SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
- 9. R. H. Blessing, Acta Crystallographica Section A, 1995, **51**, 33-38.
- 10. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 11. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Crystallogr.*, 2003, **36**, 1487-1487.
- 12. D. Heift, Z. Benko, H. Grutzmacher, A. R. Jupp and J. M. Goicoechea, *Chem. Sci.*, 2015, **6**, 4017-4024.
- 13. W. Lu, C. Wang, Q. Luo, Q.-s. Li, Y. Xie, R. B. King and H. F. Schaefer Iii, *New J. Chem.*, 2015, **39**, 1390-1403.
- 14. T. P. Robinson, M. J. Cowley, D. Scheschkewitz and J. M. Goicoechea, *Angew. Chem. Int. Ed.*, 2015, **54**, 683-686.
- 15. D. Heift, Z. Benko, R. Suter, R. Verel and H. Grutzmacher, *Chem. Sci.*, 2016, **7**, 6125-6131.
- 16. L. Liu, D. A. Ruiz, F. Dahcheh, G. Bertrand, R. Suter, A. M. Tondreau and H. Grutzmacher, *Chem. Sci.*, 2016, **7**, 2335-2341.
- 17. R. J. Gilliard, R. Suter, E. Schrader, Z. Benko, A. L. Rheingold, H. Grutzmacher and J. D. Protasiewicz, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC07654A.