Spectroscopy, electrochemistry and antiproliferative properties of Au(III), Pt(II) and Cu(II) complexes bearing modified 2,2':6',2''-terpyridine ligands. Impact of metal center and substituent incorporated into terpy framework

Anna Maroń^a, Katarzyna Czerwińska^a, Barbara Machura^{a,*}, Luis Raposo^b, Catarina Roma-Rodrigues^b, Alexandra R Fernandes^{b,*}, Jan Grzegorz Małecki^a, Agata Szlapa-Kula^c, Slawomir Kula^d, Stanisław Krompiec^c

Supplementary information

^{a.} Department of Crystallography, Institute of Chemistry, University of Silesia, 9thSzkolna St., 40-006 Katowice, Poland. Email: <u>barbara.machura@us.edu.pl</u>

^{b.} UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal. Email: <u>ma.fernandes@fct.unl.pt</u>

^c Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland.

^{d.} Department of Polymer Chemistry, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland

Table of Contents

Short intra- and intermolecular hydrogen bonds.	Table S1
Short $\pi \cdots \pi$ interactions.	Table S2
X—Y•••Cg(J)(π -ring) interactions.	Table S3
The energies and characters of the selected spin-allowed electronic transitions and assignment to the experimental absorption bands	Tables S4 – S7
Comparison of ¹ H NMR chemical shifts.	Table S8
IR spectra of the complexes 1-6 and free ligands.	Figure S1
¹ H NMR, ¹³ C NMR, COSY, HMBC and HMQC NMR.	Figures S2 – S5
Comparison of ¹ H NMR of 1 and 2 with the corresponding ligand L^1 and L^2 .	Figure S6
Comparison of ¹ H NMR of 3 and 4 with the corresponding ligands L^1 and L^2 .	Figure S7
The powder XPRD patterns of representative compounds 1 and 4.	Figure S8
UV-Vis spectra of the complexes 1-6 .	Figure S9
UV-Vis spectra of the free ligands.	Figure S10
UV-Vis monitoring of 2 in CH ₃ CN, PBS, $C_2H_5OH:CH_3OH$ and upon addition of glutathione or sodium ascorbate.	Figure S11
Excitation and emission spectra of compounds 1-4.	Figure S12
Emission spectra of L ¹ and L ² in different solvents	Figure S13
View of the supramolecular packing of 1-2, 3 and 6 .	Figures S14- S17
Cyclic voltammograms of compounds 1-6.	Figure S18-S19
Graphical representations of the selected MOs and their TD-DFT energies for 1-4	Figure S20
Cytotoxicity of metallic complexes 1-4, 6 and ligands L^1 and L^2 in HCT116	Figure S21
Induction of apoptosis by complexes 1-4, 6	Figure S22
Induction of Reactive Oxygen Species (ROS) in HCT116 cells incubated with IC50 concentrations of metallic complexes 1-4 and 6	Figure S23

D–H•••A	D–H [Å]	H•••A [Å]	D-A [Å]	D–H•••A[°]						
1										
C(1)–H(1)•••Cl(1)	0.93	2.82	3.372(11)	118.8						
$C(1)-H(1)\cdots F(9)^a$	0.93	2.38	3.106(11)	135.2						
$C(2)-H(2)\cdots F(12)^{a}$	0.93	2.38	3.025(10)	126.2						
C(13)–H(13)•••F(9) ^b	0.93	2.53	3.308(12)	141.6						
$C(22)-H(22B)\cdots F(6)^{c}$	0.96	2.45	3.274(13)	143.5						
$C(23)-H(23B)\cdots F(7)^{a}$	0.96	2.44	3.29(2)	147.1						
2										
C(1)-H(1)•••Cl(1)	0.93	2.81	3.354(8)	118.8						
$C(1)-H(1)\cdots F(10)^{d}$	0.93	2.34	3.232(10)	160.4						
$C(4)-H(4)\cdots F(6)^{e}$	0.93	2.53	3.087(10)	118.4						
C(9)–H(9)•••F(9)	0.93	2.49	3.395(9)	164.7						
C(12)–H(12)•••F(7)	0.93	2.39	3.231(10)	149.9						
$C(14)-H(14)\cdots F(11)^{f}$	0.93	2.53	3.103(10)	120.4						
C(15)–H(15)•••Cl(1)	0.93	2.83	3.387(8)	119.8						
C(15)–H(15)•••F(1)	0.93	2.55	3.304(9)	138.4						
$C(23)-H(23)\cdots F(12)^{g}$	0.93	2.51	3.277(10)	140.2						
$C(21)-H(21)\cdots F(3)^{h}$	0.93	2.48	3.402(11)	174.5						
3										
$C(4)-H(4)\cdots N(4)^{i}$	0.93	2.62	3.548(9)	173.0						
$C(12)-H(12)\cdots N(4)^{i}$	0.93	2.56	3.486(10)	175.0						
		4								
$C(7)-H(7)\cdots Cl(1)^{a}$	0.93	2.80	3.329(8)	116.8						
$C(12)-H(12)\cdots O(3)^{j}$	0.93	2.45	3.236(11)	142.9						
C(21)-H(21)•••O(1)	0.93	2.36	2.682(10)	100.0						
		6								
$C(4)-H(4)\cdots Cl(2)^{f}$	0.93	2.66	3.570(3)	165.0						
$C(7)-H(7)\cdots Cl(2)^{f}$	0.93	2.82	3.661(3)	150.6						
C(12)–H(12)•••N(4)	0.93	2.62	3.380(7)	139.2						
$C(13)-H(13)\cdots Cl(2)^{k}$	0.93	2.64	3.489(3)	151.6						
$C(17)-H(17)-Cl(2)^{f}$	0.93	2.70	3.561(3)	154.6						
C(21)–H(21)•••O(1)	0.93	2.38	3.712(4)	100.9						
$C(28)-H(28A)\bullet\bullet Cl(1)^{k}$	0.96	2.80	3.679(6)	152.5						

 Table S1. Short intra- and intermolecular hydrogen bonds detected in complexes.

Symmetry codes: (a) = x,1/2-y,-1/2+z; (b) = -x,-y,2-z; (c) = 1-x,-1-y,2-z; (d) = x,1/2-y,1/2+z; (e) = -1+x,1/2-y,-1/2+z; (f) = 1-x,-y,1-z; (g) = -x,1/2+y,1/2-z; (h) = -1+x,y,-1+z; (i) = 1+x,y,z; (j) = -1+x,y,z; (k) = -x,1-y,1-z

Cg(I)•••Cg(J)	Cg(I)•••Cg(J) [Å]	α[°]	α[°] β[°] γ [°]		Cg(I)-Perp [Å]	Cg(J)-Perp [Å]				
1										
$Cg(1) \bullet \bullet Cg(1)^{c}$	3.867(5)	0	24.57	24.57	-3.517(4)	-3.516(4)				
4										
$Cg(2) \bullet \bullet Cg(3)^d$	g(3) ^d 3.912 (5) 7		26.43	26.91	3.488(4)	3.503(3)				
$Cg(4) \bullet \bullet Cg(5)^{l}$	3.941(4)	3.3(4)	26.25	28.73	-3.456(3)	-3.534(3)				
$Cg(3) \bullet \bullet Cg(3)^m$	3.684(4)	0	21.02	21.02	-3.439(3)	-3.439(3)				
6										
$Cg(2) \bullet \bullet Cg(4)^{f}$	3.9083(17)	7.02(14)	25.82	18.96	-3.6963(12)	-3.5182(11)				
$Cg(5) \bullet \bullet Cg(5)^k$	3.5655(17)	0	21.33	21.33	-3.3213(12)	-3.3213(12)				
$Cg(5) \bullet \bullet Cg(5)^n$	3.7138(17)	0	24.25	24.25	3.3861(12)	3.3860(12)				

Table S2. Short $\pi \cdots \pi$ interactions for the complexes.

 α = dihedral angle between Cg(I) and Cg(J); Cg(I)-Perp = Perpendicular distance of Cg(I) on ring J; Cg(J)-Perp = perpendicular distance of Cg(J) on ring I; β = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to ring I; γ = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane J;

Cg1 is the centroid of atoms C(16)/C(17)/C(18)/C(19)/C(20)/C(21); Cg2 is the centroid of atoms N(1)/C(1)/C(2)/C(3)/C(4)/C(5); Cg3 is the centroid of atoms C(20)/C(21)/C(22)/C(23)/C(24)/C(25); Cg4 is the centroid of atoms N(2)/C(6)/C(7)/C(8)/C(9)/C(10); Cg5 is the centroid of atoms N(3)/C(11)/C(12)/C(13)/C(14)/C(15);

Symmetry codes: (c) = 1-x,-1-y,2-z; (d) = x,1/2-y,1/2+z; (f) = 1-x,-y,1-z; (k) = -x,1-y,1-z, (l) = -x,-y,-z; (m) = -x,-y,-1-z; (n) = 1-x,1-y,1-z;

$Y-X(I) \bullet \bullet Cg(J)$	$X(I) \bullet \bullet Cg(J) [Å]$	X-Perp [Å]	γ [°]	$Y-X(I) \bullet \bullet Cg(J) [^{\circ}]$					
1									
$Au(1)-Cl(1)\bullet\bullet\bullet Cg(5)^{\circ}$	3.835(4)	-3.365	28.65	174.38(12)					
$P(1)-F(6)\bullet\bullet\bullet Cg(4)^p$	3.328(8)	-3.041	23.95	124.8(5)					
2									
$Au(1)-Cl(1)\cdots Cg(1)^{q}$	3.834(3)	-3.375	28.32	114.83(7)					
$P(1)-F(2)\cdots Cg(2)^{d}$	3.189(8)	2.920	23.68	155.2(5)					
$P(1)-F(4)\bullet\bullet Cg(4)^d$	3.337(8)	3.222	15.11	124.1(4)					
$P(2)-F(8)\bullet\bullet\bullet Cg(5)^{r}$	3.415(9)	-3.317	13.81	124.5(4)					
3									
C(13)-H(13)•••Cg(6) ^s	2.96	-2.91	10.33	136.00					
$Pt(2)-Cl(1)\bullet\bullet\bullet Cg(2)^t$	3.795(3)	-3.439	25.02	111.71(6)					
$Pt(2)-Cl(1)\bullet\bullet Cg(5)^{u}$	3.837(3)	3.578	21.15	69.93(5)					
6									
$Cu(1)-Cl(2)\cdots Cg(2)^{j}$	3.8024(14)	3.795	3.63	174.33(3)					

Table S3. X—Y•••Cg(J)(π -ring) interactions for the complexes.

 γ = angle X(I) \rightarrow Cg(J) vector and normal to plane J.

Cg1 is the centroid of atoms C(16)/C(17)/C(18)/C(19)/C(20)/C(21); Cg2 is the centroid of atoms N(1)/C(1)/C(2)/C(3)/C(4)/C(5); Cg4 is the centroid of atoms N(2)/C(6)/C(7)/C(8)/C(9)/C(10); Cg5 is the centroid of atoms N(3)/C(11)/C(12)/C(13)/C(14)/C(15); Cg6 is the centroid of atoms C(35)/C(36)/C(37)/C(38)/C(39)/C(40);

Symmetry codes: (d) = x, 1/2-y, 1/2+z; (j) = -1+x, y, z, (o) = -x, 1/2+y, 3/2-z; (p) = x, y, z; (q) = 1+x, 1/2-y, 1/2+z; (r) = -x, -y, 1-z; (s) = 2-x, -y, 1-z; (t) = 1-x, 1-y, -z; (u) = 2-x, 1-y, -z

Table S4. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. UV-Vis absorption spectrum of 1 was recorded in CH₃CN solution ($c = 5 \cdot 10^{-5}$ M).

LE (locally excited) = $\pi_{terpy} \rightarrow \pi^*_{terpy}$; ILCT (intraligand charge transfer) = $\pi_R \rightarrow \pi^*_{terpy}$

Table S5. The energies and characters of the selected spin-allowed electronic transitions for **2** calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. UV-Vis absorption spectrum of **2** was recorded in CH₃CN solution ($c = 5 \cdot 10^{-5}$ M).

Table S6. The energies and characters of the selected spin-allowed electronic transitions for **3** calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. UV-Vis absorption spectrum of **3** was recorded in CH₃CN solution ($c = 5 \cdot 10^{-5}$ M).

Table S7. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. UV-Vis absorption spectrum of 4 was recorded in CH₃CN solution ($c = 5 \cdot 10^{-5}$ M).

$\begin{array}{c} 1.0 \\ 0.8 \\ (1) \\ 0.8 \\ (1) \\ 0.6 \\$							
		vvavelength (nm)	гг				
Experimental absorption λ; nm (10 ⁴ ε; M ⁻¹ cm ⁻¹)	Major contribution (%)	Character	E[eV]	λ [nm]	Oscillator strength		
/	$H \rightarrow L (99\%)$	ILCT	2.60	477.10	$0.2403 S_1$		
422 (0.05)	$H \rightarrow L+1 (98\%)$	ILCT	2.88	430.59	$0.0074 S_2$		
423 (0.85)	$H-2 \rightarrow L (97\%)$	MLCT	3.19	388.36	$0.003 S_3$		
	$H-1 \rightarrow L (93\%)$	MLCT	3.31	374.58	0.0115 S ₄		
	$H-1 \rightarrow L+1 (95\%)$	MLCT	3.66	339.36	0.0151 S ₇		
338 (1.33)	$H-3 \rightarrow L (91\%)$	ILCT	3.82	324.45	0.0138 So		
315 (1.62)	$H \rightarrow L+2 (86\%)$ $H \rightarrow L+4 (7\%)$	ILCT LE/ILCT	3.94	315.22	$0.2849 S_{10}$		
	$H-6 \rightarrow L (34\%)$ $H-1 \rightarrow L+5 (7\%)$	$\begin{array}{c} \text{ILCT/LE/MLCT} \\ d \rightarrow d/MLCT \end{array}$	4.04	307.45	0.2924 S ₁₁		
302 (1.71)	$H-4 \rightarrow L+1 (23\%)$ $H-1 \rightarrow L+5 (16\%)$ $H-5 \rightarrow L+1 (15\%)$	$MLCT/LE$ $d \rightarrow d/MLCT$ $MLCT/ILCT$	4.04	307.01	0.126 S ₁₂		
283 (2.67)	$H-6 \rightarrow L+1 (46\%)$	ILCT/LE/MLCT	4.54	273.15	0.1981 S ₂₃		
· · · · · · · · · · · · · · · · · · ·	$H-4 \rightarrow L+2 (70\%)$	MLCT/LE	4.98	249.34	$0.1712 S_{32}$		
253 (2.4)	$H-4 \rightarrow L+3 (33\%)$ $H-9 \rightarrow L (22\%)$ $H-1 \rightarrow L+4 (17\%)$	MLCT/LE ILCT/LE MLCT	5.17	240.00	0.1504 S ₃₇		
	$H-8 \rightarrow L+1 (80\%)$ $H-4 \rightarrow L+2 (15\%)$	LE MLCT/LE	5.25	236.45	0.4226 S ₃₈		
	$H-3 \rightarrow L+2 (79\%)$ $H \rightarrow L+7 (8\%)$	ILCT LE	5.30	234.26	0.1514 S ₃₉		
	$H-3 \rightarrow L+4 (44\%)$ $H \rightarrow L+7 (9\%)$ $H-6 \rightarrow L+2 (8\%)$	LE/ILCT LE ILCT/LE/MLCT	5.50	225.64	0.2682 S ₄₆		

compound	proton chemical shift (ppm)											
(medium)	A1	A2	A3	A4	B2	C2	C3					C5
1	9.16	8.10	8.73 -	8.73 -	8.73 -	8.16	7.28					3.97
(CD ₃ CN)			8.69	8.69	8.69							
3	8.76 -	7.84	8.44	8.76 -	8.80	8.14	7.21 –					3.92
(CD ₃ SOCD ₃)	8.72			8.72			7.15					
L^1	8.72	7.47 –	7.96	8.67	8.70	7.86	7.11					3.87
(CD ₃ CN)		7.41										
L^1	8.76	7.54 –	8.03	8.66	8.67	7.89	7.14					3.85
(CD ₃ SOCD ₃)		7.48										
	A1	A2	A3	A4	B2	C2	C3	C6	C7	C8	C9	C11
2	9.19	8.14 -	8.67	8.60	8.71	7.84	7.23	8.14 –	7.74 –	7.74 –	8.46 –	4.15
(CD ₃ CN)		8.07						8.07	7.70	7.70	8.43	
4	8.84	7.89	8.44	8.70	8.82	7.73	7.23	8.04 -	7.68 –	7.68 –	8.37 -	4.10
(CD ₃ SOCD ₃)								8.00	7.64	7.64	8.34	
L^2	8.68	7.47 –	8.03 -	8.74	8.57	7.62 –	7.08	8.03 -	7.62 –	7.62 –	8.36	4.08
(CD ₃ CN)		7.41	7.95			7.52		7.95	7.52	7.52		
L ²	8.75 -	7.54 –	8.05	8.75 -	8.53	7.64 –	7.15	7.94 –	7.64 –	7.64 –	8.33 -	4.06
(CD ₃ SOCD ₃)	8.70	7.49		8.70		7.57		7.90	7.57	7.57	8.30	

Table S8. Comparison of ¹H NMR chemical shifts of **1-4** and ligands L^1 and L^2 .

(b)

(d)

(e)

(f)

Figure S1. IR spectra of the free ligands L^1 or L^2 (blue) and complexes 1-6 (red) (a-f).

(d)

Figure S2. ¹H NMR (a), ¹³C NMR (b), COSY (c), HMBC (d) and HMQC (e) NMR of 1

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 f1 (ppm)

Figure S3. ¹H NMR (a), ¹³C NMR (b), COSY (c), HMBC (d) and HMQC (e) NMR of 2.

Figure S4. 1 H NMR (a), 13 C NMR (b), COSY (c), HMBC (d) and HMQC (e) NMR of **3**

(b)

Figure S5. ¹H NMR (a), ¹³C NMR (b), COSY (c), HMBC (d) and HMQC (e) NMR of 4.

(b)

Figure S6. Comparison of ¹H NMR of 1 (a) or 2 (b) with the corresponding ligand L^1 and L^2 in acetonitrile-d₃.

Figure S7. Comparison of ¹H NMR of **3** (a) or **4** (b) with the corresponding ligand L^1 and L^2 in DMSO-d₆.

Figure S8. The powder XPRD patterns of representative compounds **1** (a) and **4** (b) (experimental - black) and the simulations of the powder pattern from the crystal structures (red).

Figure S9. UV-Vis spectra of the complexes 1-6 in CH_3CN (c = 5 \cdot 10⁻⁵ M)

Figure S10. UV-vis spectra of the free ligands in CH_3CN (5 · 10⁻⁵ M).

Figure S11. UV-Vis absorption spectra of **2** in CH₃CN ($5 \cdot 10^{-5}$ M) (a), PBS buffer (pH 7.4, 130 mM NaCl) (b), CH₃OH:CH₃CH₂OH (1:4 v/v) (c), PBS upon addition of stoichiometric amount of glutathione (d), PBS upon addition of excess of glutathione (e) and PBS in the presence of sodium ascorbate (f). Spectra were recorded once every four hours for 24 h.

Figure S12. Excitation and emission spectra of compounds 1-4.

(b)

Figure S13. Emission spectra of $L^1(a)$ and $L^2(b)$ in different solvents. Insert: Plot of Stokes shift ΔE_{exc-em} vs. solvent polarity parameter Δf

Figure S14. View of the supramolecular packing of 1 arising from weak $\pi^{\bullet\bullet\bullet}\pi$ and $\pi^{\bullet\bullet\bullet}$ Cl type interactions.

Figure S15. View of the supramolecular packing of **2** arising from weak $\pi \cdots \pi$ and $\pi \cdots Cl$ type interactions.

Figure S16. View of the supramolecular packing of **3** showing $Cl \cdots \pi$ (red dotted lines) interactions between $[PtCl(L^1)]^+$ cations and formation of a linear chain motifs with altering Pt…Pt distances of 3.499 and 4.549 Å.

Figure S17. View of the supramolecular packing of the cations $[CuCl_2(L^2)]$ in 6.

Figure S18. Cyclic voltammograms of compounds 1–2.

Figure S19. Cyclic voltammograms of compounds 3–6.

Figure S21. Cytotoxicity of metallic complexes 1-4, 6 and ligands L^1 and L^2 in HCT116 (a) and A2780 (b) cell lines. Cells were incubated with $0.5xIC_{50}$, IC_{50} and $2xIC_{50}$ concentrations of complexes for 48 h and cell viability percentage was determined by the trypan blue exclusion method, using cells incubated with 0.1% (v/v) DMSO as control. The results shown are expressed as the mean \pm SD from three independent assays. The symbol * means that the results are statistically significant with a p < 0.05 (as compared to $0.5xIC_{50}$ cell viability for compound concentration in the respective cell line).

Figure S22. Induction of apoptosis by complexes 1-4, 6. Representative images of HCT116 cells incubated for 48 h with the IC₅₀ concentrations of complexes 1-4 and 6 and the control vehicle (0.1% (v/v) DMSO; C), depicting cells with morphological changes characteristic of cells in apoptosis (white arrows). The white scale bar indicates 10 μ m.

Figure S23. Induction of Reactive Oxygen Species (ROS) in HCT116 cells incubated with IC₅₀ metallic complexes 1-4 and for measured concentrations of 6 48 h by the 2',7'-dichlorodihydrofluorescein diacetate (H₂DCF-DA) method. The results shown are expressed the mean fluorescence intensity of each sample normalized to the fluorescence intensity of control cells exposed to 0.1% (v/v) DMSO (vehicle control). Results are expressed as the average \pm SD from three independent assays. Hydrogen peroxide (H₂O₂) was used as positive control. The symbol * means that the results are statistically significant with a p < 0.0001 (as compared to the 0.1% (v/v) DMSO control).