Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplemental Information

Investigation of Ternary Metal Dodecaborides $M_1M_2M_3B_{12}$ (M_1 , M_2 and M_3 = Zr, Y, Hf and Gd)

Georgiy Akopov¹, Inwhan Roh¹, Zachary C. Sobell¹, Michael T. Yeung², and Richard B. Kaner^{1,3,4*} ¹Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA ²Department of Chemistry, Northwestern University, Evanston, IL 60208, USA ³Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA ⁴California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA * Corresponding author: kaner@chem.ucla.edu

(a)

Figure S1. Powder XRD patterns of: (a) (Hf_{1-x}Gd_x) : 20 B, where x = 0.05, 0.25, 0.50, 0.75 and 0.95. The dodecaboride MB₁₂ phase does not form for any composition of this alloy. The diboride (HfB₂, P6/mmm, JCPDS 03-065-3387) phase forms at higher concentrations of hafnium, while the hexaboride (GdB₆, *Pm*3*m*, JCPDS 03-065-1826) phase forms for higher concentrations of gadolinium; (b) (Y_{1-x}Gd_x) : 20 B, where x = 0.05, 0.25, 0.50, 0.70, 0.75 and 0.95. The dodecaboride MB₁₂ phase disappears for compositions of this alloy greater than 30 at.% Gd, with the hexaboride (GdB₆, *Pm*3*m*, JCPDS 03-065-1826) phase forming at higher concentrations of gadolinium. (*) indicates the boron rich phase - solid solution of hafnium in β-rhombohedral boron (HfB₅₀, *R*3*m*, JCPDS 01-086-2400), while (+) indicates GdB₆₆ (*Fm*3*c*, JCPDS 00-024-1256).

(a)

(c)

(d)

Figure S2. Powder XRD patterns of: (a) $(Zr_{1-x-z}Hf_xGd_z)$: 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all 4 compositions, the binary diboride MB₂ phase (Hf_{1-x}Zr_xB₂ solid solution) can be observed for $Zr_{0.25}Hf_{0.50}Gd_{0.25}$: 20B, while the hexaboride MB₆ phase (GdB₆) can be observed for all phases except for $Zr_{0.50}Hf_{0.25}Gd_{0.25}$: 20B; (b) (Y_{1-x-z}Hf_xGd_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all compositions, except for $Y_{0.25}Hf_{0.25}Gd_{0.50}$: 20B, while the binary hexaboride MB₆ phase (Gd_{1-x}Y_xB₆ solid solution) can be observed for all compositions, except for $Y_{0.50}Hf_{0.25}Gd_{0.25}$: 20B; (c) (Zr_{1-x-z}Hf_xY_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all 4 compositions, the binary diboride MB₂ phase (Hf_{1-x}Zr_xB₂ solid solution) can be observed for Zr_{0.25}Hf_{0.50}Y_{0.25}: 20B; (c) (Zr_{1-x-z}Hf_xY_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all 4 compositions, the binary diboride MB₂ phase (Hf_{1-x}Zr_xB₂ solid solution) can be observed for Zr_{0.25}Hf_{0.50}Y_{0.25}: 20B, while the hexaboride MB₆ phase (YB₆) can be observed for all phases except for Zr_{0.50}Hf_{0.25}Q_{1.25}Y_{0.25}: 20B; (d) (Zr_{1-x-z}Y_xGd_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all phases except for Zr_{0.50}Hf_{0.25}Q_{1.25}Y_{0.25}: 20B; (d) (Zr_{1-x-z}Y_xGd_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₆ phase (YB₆) can be observed for all phases except for Zr_{0.50}Hf_{0.25}Y_{0.25}: 20B; (d) (Zr_{1-x-z}Y_xGd_z): 20B, where x and z = 0.25, 0.33 and 0.50. The ternary dodecaboride MB₁₂ phase can be observed for all 4 compositions, the binary hexaboride MB₆ phase (Gd_{1-x}Y_xB₆ solid solution) can be observed for Zr_{0.25}Y_{0.25}Gd_{0.50}:

(a)

(b)

(c)

(d)

Figure S3. Optical images of the polished surfaces for: (a) $(Zr_{1-x-z}Hf_xGd_z) : 20B$; (b) $(Y_{1-x-z}Hf_xGd_z) : 20B$; (c) $(Zr_{1-x-z}Hf_xY_z) : 20B$; (d) $(Zr_{1-x-z}Y_xGd_z) : 20B$, where x and z = 0.25, 0.33 and 0.50. In all cases the dodecaboride MB₁₂ phases exhibit a color from the blue-violet range, hexaboride MB₆ phases exhibit a deep blue color, diboride phases (white streaks) are colorless, while other areas correspond to the boron rich (also colorless) phases: MB₅₀ (for Zr and Hf) and MB₆₆ (for Y and Gd). For hexa- and dodecaborides the blue color is due to the metals in +3 oxidation states (Y and Gd), while the violet color is due to the metals in +4 oxidation states (Zr and Hf).