Supporting Information

Incorporation of Keplerate type Mo-O based macroanions into layered double hydrotalcite resulting in formation of all-inorganic composite films with remarkable third-order optical nonlinearities

Haizhou Ren,[†] Farooq Khurum Shehzad,[†] Yunshan Zhou,* Lijuan Zhang,* Arshad Iqbal, Yi Long

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Preparation of (NH₄)₄₂[{(Mo^{VI})Mo₅^{VI}O₂₁(H₂O)₆}₁₂{Mo₂^VO₄(CH₃COO)}₃₀] ·≈300H₂O· 10CH₃COONH₄

The compound was prepared according to the literature method (Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F., Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. *Angewandte Chemie International Edition* **1998**, *37*, 3359-3363.). In a typical preparation, 5.6 g (NH₄)₆[Mo₇O₂₄]·4H₂O and 12.5 g CH₃COONH₄ was dissolved in 250 mL of water. The solution of 0.8 g N₂H₄·H₂SO₄ in water was added to the above solution, stirred for ten minutes and the colour of the solution changed to blue-green, followed by addition of 83 mL 50% (V/V) glacial acetic acid. After the reaction, the mixture was placed in an open conical flask at room temperature in a fume hood (the colour slowly turns to brown). Red-brown crystals were filtered off and the precipitate was washed with ethanol, finally dried and kept at room temperature for 4 days. Yield: 52% (based on ammonium molybdate).

Fig. S1 UV-vis spectrum of the aqueous solution of $(NH_4)_{42}[\{(Mo^{VI})Mo_5^{VI}O_{21}(H_2O)_6\}_{12}\{Mo_2^{V}O_4(CH_3COO)\}_{30}]$ \approx 300H₂O·10CH₃COONH₄

Zn₂Al-LDH preparation

The ZnAl-CO₃ and ZnAl-NO₃ LDH compounds were prepared according to the literature method (Zhao, J.; Kong, X.; Shi, W.; Shao, M.; Han, J.; Wei, M.; Evans, D. G.; Duan, X., Self-Assembly of Layered Double Hydroxide Nanosheets/Au Nanoparticles Ultrathin Films for Enzyme-Free Electrocatalysis of Glucose. *Journal of Materials Chemistry* **2011**, *21*, 13926-13933.). In a typical preparation, $Zn(NO_3)_2 \cdot 6H_2O$ (2 mmol), $Al(NO_3)_3 \cdot 9H_2O$ (1 mmol) and urea (12 mmol) were dissolved in 200 mL of water. The solution was heated and stirring for 24 hours at 100 °C. The obtained carbonate type LDH (Zn_2Al-CO_3) was washed with water and dried at 60 °C. The 0.1 g obtained Zn_2Al-CO_3 containing 0.15 mmol NaNO₃ is dispersed in 100 mL of aqueous solution containing 0.15 mmol NaNO₃ and CO₂ is removed, 31 uL concentrated HNO₃ was added and stirred under N₂ atmosphere for 24h, the ion exchange transformed to NO₃⁻ form. The precipitated (Zn_2Al-NO_3) was isolated by centrifugation, washed with deionized water and dried at room temperature. The XRD patterns and SEM images of the resulting $Zn_2Al-LDH$ were shown in Figs. S2 and S3, respectively, which are matching with the reported ones.

Fig. S2 XRD patterns of Zn₂Al-CO₃ (red line) and ZnAl-NO₃ LDH (black line).

Fig. S3 SEM images of Zn₂Al-LDH with different magnifications. Both the ZnAl-CO₃ LDH and ZnAl-NO₃ LDH show the same morphology.

Zn₂Al-LDH exfoliation

The exfoliation of ZnAl-NO₃ LDH was carried out according to the literature method (Li, L.; Ma, R.; Ebina, Y.; Iyi, N.; Sasaki, T., Positively Charged Nanosheets Derived Via Total Delamination of Layered Double Hydroxides. *Chemistry of materials* **2005**, *17*, 4386-4391.). In detail, the Zn₂Al-NO₃ (0.1 g) and 100 mL of formamide was added to the Erlenmeyer flask, stirred with a mechanical stirrer at 160 rpm under N₂ for two days. The resulting mixture was centrifuged at 3000 rpm for further 10 minutes to obtain a transparent and stable well-dispersed colloidal suspension.

The following formulas are used to calculate the third order nonlinear refractive index n_2 (esu), the nonlinear absorption coefficient β (esu) and the third-order optical nonlinear

susceptibility $\chi^{(3)}$ (esu) (Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Stryland WV. IEEE J Quantum Electron 1990; 26: 760).

$$\Delta T_{P-V} = 0.406(1-S)^{0.25} \left| \Delta \phi_0 \right| \tag{1}$$

$$\Delta \phi_0 = k L_{eff} \gamma I_0 \tag{2}$$

$$L_{eff} = (1 - e^{-\alpha_0 L}) / \alpha_0$$
 (3)

$$n_2(esu) = \frac{cn_0}{40\pi} \gamma(m^2 / W) \tag{4}$$

where, ΔT_{P-V} is the normalized peak-valley difference, $\Delta \varphi_0$ is the phase shift of the beam at the focus, $K = 2\pi/\lambda$ is the wave vector, I_0 (unit: W/m²) is the intensity of the light at focus, L_{eff} is the effective length of the sample defined in terms of the linear-absorption coefficient α_0 and the true optical path length through the sample, n_0 is the linear refractive index, and γ is optical Kerr constant. The conversion can be realized between n_2 (esu) and γ (m²/W) by equations (4).

When the sample is measured under open aperture, the normalized transmittance T (z, s = 1) can be expressed as

$$T(z, s = 1) = \sum_{m=0}^{\infty} \frac{[-q_0(z)]^m}{(m+1)^{3/2}}$$
(5)

where $q_0(z) = \frac{\beta I_0 L_{eff}}{(1 + z^2/z_0^2)}$, β is nonlinear absorption coefficient. From equation (5) we

can get β . From equation (6), we can get the third-order optical nonlinear susceptibility $\chi^{(3)}$.

$$\chi^{(3)} = \sqrt{\left(\frac{cn_0}{160\pi^2}\gamma\right)^2 + \left(\frac{c\beta n_0^3 \lambda}{64\pi^3}\right)^2} \qquad (6)$$

Fig. S4 Z-scan curves of the Zn₂Al-NO₃ LDH suspension under open-aperture (a) and closedaperture (b).

Fig. S5 The XRD patterns of the composite films $(Zn_2Al-LDH/\{Mo_{132}-Ac\})_n$ with number of layers; n = 12 (red line) and n = 24 (blue line), showing only wide peaks because of the fact that the materials deposited on the films are not thick enough..