Reversible Modulation of the Redox Characteristics of Acid-Sensitive

Molybdenum and Tungsten Scorpionate Complexes

Alexander J. Heyer,[#] Philip J. Shivokevich,[#] Shelby L. Hooe, Kevin D. Welch, W. Dean Harman* and

Charles W. Machan*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904

* - <u>machan@virginia.edu</u> (0000-0002-5182-1138); <u>wdh5z@virginia.edu</u> (0000-0003-0939-6980)

equal contribution

Table of Contents: S2-S3..... Description of Electrochemical Studies and pKa Determination S4-S9..... IR-SEC data and Simulated IR data S10-S16..... **DFT Calculations** S17-S18..... Cyclic Voltammetric data ¹H-NMR (d⁶-DMSO) and ¹³C $\{^{1}H\}$ -NMR (d₆-DMSO) of Compound 9 S19 S20..... ¹H-NMR (d_6 -MeCN) of BF₃•Et₂O added to Compound **3**: S21-S28..... Mulliken Charges for Selected Complexes S29-S36..... DFT Optimized Atomic Coordinates

Electrochemical studies were carried out for complexes $2^{-5^{-}}$ with the following general procedure. Stock solutions of 0.02 M [ML(CO)₃]⁻ and 1.0 M tetrabutylammonium hexafluorophosphate in MeCN were prepared, along with 0.1 M DPhAT in MeCN, 0.1 M BF₃ etherate in 90% MeCN 10% Et₂O, 0.1 M borane-tetrahydrofuran in 90% MeCN 10% THF, 0.1 M Cu(II)(OTf)₂ in MeCN, and 0.1 M Sc(III)(OTf)₃. The concentration of complex was held constant by adding 1 mL of the (complex + electrolyte) solution to the CV cell, and adding variable amounts of acid and solvent until a final volume of 2 mL was reached. For example, the introduction of 0.5 eq of DPhAT solution is obtained by adding (0.1 mL x N) DPhAT solution then adding (1 mL – (0.10 mL x N)) of MeCN to reach the final 2 mL volume. Through these additions, the effects of acid were tested from 0 – 5 eq of DPhAT and the varying Lewis acids (0 – 0.05 M acid vs 0.01 M $2^{-5^{-}}$). All runs were performed in the presence of cobaltocenium hexafluorophosphate as an internal standard.

Nernst plots were constructed by starting with a solution of 0.002 mM 3° or 5° and 0.38 M 2methoxypyridine solution in 1 mL acetonitrile. Varying amounts of 2-methoxypyridinium triflate were added to create a 6-point log₁₀([A]/[HA⁺]) range of -0.93 to -0.42 for 3° and of -0.04 to 0.44 for 5° .

Non-electrochemical infrared spectroscopy studies

Infrared spectroscopy studies were carried out for complexes 2^{-5} . 2 mL samples of 0.05 M DPhAT, BF₃-etherate, and Sc(III)(OTf)₃ vs 0.01 M complex were prepared and drop-cast on a NaCl salt plate. A sample of MeCN drop-cast on a NaCl salt plate was used as a background.

Determination of pK_a of complexes 3⁻ and 5⁻

The parent pyridine para resonance was determined via NMR of pyridine in DMSO to be δ 7.79. To account for natural dissociation of pyridinium in DMSO, the pyridinium para resonance was determined by adding pyridinium trifluoromethanesulfonate (24.8 mg, 0.0108 mmol) to 1 mL of d₆-DMSO. Using pyridinium's pK_a ^{DMSO} of 1.8, the mole ratio of pyridinium to pyridine in solution was calculated to be about 16.13. Using the equation

$$HA^{+}(resonance) = \frac{Obs(resonance) - \frac{[A]}{[HA^{+}]} * A(resonance)}{1 - \frac{[A]}{[HA^{+}]}}$$

the observed para resonance of δ 8.61, and the pyridine para peak of δ 7.79, the pyridinium para resonance was calculated to be δ 8.66. Pyridinium trifluoromethanesulfonate (21 mg, 0.0916 mmol) and complex **3**⁻ (86 mg, 0.163 mmol) were added to an NMR tube with 3 mL of d₆-DMSO. Rapid interconversion was observed between the pyridinium and pyridine and complex **3**⁻ and **3H**. Relative abundance of the pyridinium and pyridine species was determined by the observed para proton resonance shift with that of the pyridinium in ¹H NMR. The observed resonance of δ 8.50 corresponds to a mole ratio of 4.35 pyridinium to pyridine. Using the equilibrium between complex **3**⁻ and pyridinium

with pyridine and protonated complex 3H the mole ratio of complex 3^{-} to its conjugate acid 3H was calculated to be 8.68. Relating various equilibria, using the equation

 $pK_a(complex 3) = pK_a(pyridinium) - pK_{eq}$

the pK_a was calculated to be 1.8. This was repeated twice with 21.2 mg of pyridinium triflate (0.0925 mmol) and 93 mg of complex **3**⁻ (0.177 mmol) for the first trial and 19.6 mg of pyridinium triflate (0.0855 mmol) and 105 mg of complex **3**⁻ (0.2 mmol) to receive pK_a values of 1.7 and 1.8 respectively. The mode of 1.8 was used. This experiment was repeated for complex **5**⁻ with 3 separate trials. Trial 1 used 20.4 mg of pyridinium trifluoromethanesulfonate (0.089 mmol) and 100 mg of complex **5**⁻ (0.162 mmol) to result in a pK_a of 1.7. Trial 2 used 21.4 mg of pyridinium trifluoromethanesulfonate (0.0934 mmol) and 113 mg of complex **5**⁻ (0.184 mmol) to result in a pK_a of 1.8. Trial 3 used 19.6 mg of pyridinium trifluoromethanesulfonate (0.0934 mmol) and 106 mg of complex **5**⁻ (0.173 mmol) to result in a pK_a of 1.8. The mode of 1.8 was used.

The same method was repeated for pK_a^{AN} for complexes **3**⁻ and **5**⁻, again using pyridinium as the acid with the pK_a^{AN} of 12.53. The pyridinium para peak was again used at δ 8.62 now in AN with a corresponding pyridine peak of δ 7.73. For complex **3**⁻, trial 1 had 0.04 M **3**⁻ and 0.044 M pyridinium triflate, resulting in a pK_a of 11.0, trial 2 had 0.04 M **3**⁻ and 0.048 M pyridinium triflate resulting in a pK_a of 10.9, and trial 3 had 0.04 M **3**⁻ and 0.039 M pyridinium triflate resulting in a pK_a of 11.0 The mode of 11.0 was used. For complex **5**⁻, trial 1 had 0.024 M **5**⁻ and 0.039 M pyridinium triflate, resulting in a pK_a of 11.8, trial 2 had 0.051 M **5**⁻ and 0.048 M pyridinium triflate resulting in a pK_a of 11.9, and trial 3 had 0.031 M **5**⁻ and 0.039 M pyridinium triflate resulting in a pK_a of 11.9 was used.

Figure S1. IR-SEC data from the oxidation of K[WTtz(CO)₃] (5⁻) (0.019 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S2. Simulated IR data from numerical frequency calculations performed on **3**⁻, **3H**, and **3**. ORCA 4.0.0: B3LYP/G functional and ZORA-def2-TZVP basis set (def2/J and SARC/J auxiliary basis sets where necessary) with the RIJCOSX approximation, D3BJ dispersion correction, and CPCM to model the AN solvent.

Figure S3. Simulated IR data from numerical frequency calculations performed on 5⁻, **5H**, **5**, **5H**⁺. ORCA 4.0.0: B3LYP/G functional and ZORA-def2-TZVP basis set (def2/J and SARC/J auxiliary basis sets where necessary) with the RIJCOSX approximation, D3BJ dispersion correction, and CPCM to model the AN solvent.

Figure S4. IR-SEC data showing the oxidation of $K[MoTtz(CO)_3]$ (**3**⁻) (0.013 M) with added 2methoxypyridinium triflate (0.04 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S5. IR-SEC data comparing the species at resting potential and the oxidation products of $K[MoTtz(CO)_3]$ (**3**⁻) (0.013 M) with and without added 2-methoxypyridinium triflate (0.04 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S6. IR-SEC data showing the oxidation of K[MoTtz(CO)₃] (3^{-}) (0.013 M) with added DPhAT (0.03 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S7. IR-SEC data comparing the species at resting potential and the oxidation products of $K[MoTtz(CO)_3]$ (**3**⁻) (0.013 M) with and without added DPhAT (0.03 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S8. IR-SEC data from the oxidation of K[WTtz(CO)₃] (5^{-}) (0.013 M) with added 2methoxypyridinium triflate (0.058 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S9. IR-SEC data comparing the species at resting potential and the oxidation products of $K[WTtz(CO)_3](5^{-})$ (0.013 M) with and without added 2-methoxypyridinium triflate (0.058 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S10. IR-SEC data from the oxidation of $K[WTtz(CO)_3](5^{-})$ (0.007 M) with added DPhAT (0.019 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S11. IR-SEC data comparing the species at resting potential and the oxidation products of $K[WTtz(CO)_3]$ (5⁻) (0.007 M) with and without added DPhAT (0.019 M). Conditions: glassy carbon working electrode, glassy carbon counter electrode, Ag bare metal pseudoreference electrode; internal ferrocene reference; referenced to NHE.

Figure S12. Kohn-Sham orbital representations of [W(Ttz)(CO)₃]⁻ **5**⁻ (A); LUMO (B); HOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S13. Kohn-Sham orbital representations of [Mo(Ttz)(CO)₃] **3** (A); LUMO (B); SOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S14. Kohn-Sham orbital representations of [Mo(HTtz)(CO)₃] **3H** (A); LUMO (B); HOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S15. Kohn-Sham orbital representations of $[Mo(HTtz)(CO)_3]^+$ **3H**⁺ (A); LUMO (B); SOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S16. Kohn-Sham orbital representations of [W(Ttz)CO)₃] **5** (A); LUMO (B); SOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S17. Kohn-Sham orbital representations of [W(HTtz)(CO)₃] **5H** (A); LUMO (B); HOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S18. Kohn-Sham orbital representations of [W(HTtz)(CO)₃]⁺ **5H**⁺ (A); LUMO (B); SOMO (C); and (D) HOMO-7. ORCA 4.0.0; B3LYP/G; ZORA; def2-TZVP; CPCM(Acetonitrile).

Figure S19. Cyclic Voltammogram of 0.002 M **3**⁻ and 0.01 M BF₃-etherate with decamethylferrocene and tetrabutylammonium hexafluorophosphate in acetonitrile.

Figure S20. Cyclic Voltammogram of 0.002 M **5**⁻ and 0.01 M BF₃-etherate with decamethylferrocene and tetrabutylammonium hexafluorophosphate in acetonitrile.

¹H-NMR (d₆-DMSO) and ¹³C{¹H}-NMR (d₆-DMSO) of Compound 9:

Table S1. Mulliken Charges

 $[Mo(Ttz)(CO)_3]^{-3}$

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 Mo: 1.022843 0.000000 1 O : -0.286466 0.000000 2 C : 0.002725 0.000000 3 O : -0.285554 0.000000 4 N : 0.072683 0.000000 5 C : 0.014449 0.000000 6 N : 0.052979 0.000000 7 N : 0.069447 0.000000 8 C : 0.010613 0.000000 9 N : -0.251737 0.000000 10 C : -0.010354 0.000000 11 H : 0.195144 0.000000 12 Nexo: -0.364909 0.000000 13 B : 0.096203 0.000000 14 Nexo: -0.363860 0.000000 15 N : -0.233705 0.000000 16 C : -0.005014 0.000000 17 H : 0.194208 0.000000 18 C : 0.002419 0.000000 19 H : 0.190573 0.000000 20 N : -0.251427 0.000000 21 C : -0.223501 0.000000 22 Nexo: -0.369147 0.000000 23 C : -0.231423 0.000000 24 C : -0.234940 0.000000 25 H : -0.057191 0.000000 26 H : 0.174151 0.000000 27 O : -0.288332 0.000000 28 H : 0.186068 0.000000 29 H : 0.173051 0.000000 Sum of atomic charges : -1.0000000

Sum of atomic spin populations: 0.0000000

$[Mo(HTtz)(CO)_3]$ **3H**

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0.000000 0.993914 0 Mo: -0.272912 10: 0.000000 2 C : 0.008431 0.000000 3 O : -0.267500 0.000000 4 N : 0.076131 0.000000 5 C : 0.019779 0.000000 6 N : 0.074542 0.000000 7 N : 0.073832 0.000000 8 C : 0.092396 0.000000 9 N : -0.252274 0.000000 10 C : -0.006440 0.000000 11 H : 0.199758 0.000000 12 Nexo: -0.356498 0.000000 13 B : 0.089929 0.000000 14 Nexo: -0.355152 0.000000 15 N : -0.193300 0.000000 16 C : -0.001000 0.000000 17 C : 0.095662 0.000000 18 H : 0.249963 0.000000 19 N : -0.252836 0.000000 20 C : -0.211896 0.000000 21 NexoH: -0.174340 0.000000 -0.219620 22 C : 0.000000 23 C : -0.223459 0.000000 24 H : -0.032532 0.000000 25 H : 0.178595 0.000000 26 O : -0.2749330.000000 27 H : 0.189903 0.000000 28 H : 0.229887 0.000000 29 H : 0.323655 0.000000 0.000000 30 H : 0.198317

Sum of atomic charges : -0.0000000 Sum of atomic spin populations: 0.0000000

[Mo(Ttz)(CO)₃] **3**

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 Mo: 0.915345 0.879662 1 O: -0.113064 0.055888 2 C: 0.013397 0.019202 3 O: -0.160774 0.021889 4 N : 0.064072 -0.001595 5 C : 0.024814 0.020811 6 N: 0.055046 0.002034 7 N: 0.059136 -0.002070 8 C : 0.022862 0.006873 9 N : -0.232456 -0.021423 10 C : 0.014224 0.015370 11 H : 0.203686 -0.000706 12 Nexo: -0.348578 -0.001538 13 B: 0.097084 -0.002329 14 Nexo: -0.346022 -0.001773 15 N : -0.223744 -0.024687 16 C : 0.018771 0.016901 17 H : 0.203521 -0.000768 18 C : 0.015301 -0.000265 19 H : 0.197698 0.000399 20 N : -0.230958 -0.020628 21 C : -0.097666 0.000258 22 Nexo: -0.357256 -0.000050 23 C: -0.101036 0.000883 24 C : -0.114942 -0.015700 25 H : -0.039503 0.000028 26 H: 0.190442 -0.000935 27 O: -0.116812 0.055038 28 H: 0.201418 -0.000915 29 H: 0.185993 0.000144 Sum of atomic charges : -0.0000000 Sum of atomic spin populations: 1.0000000

$[Mo(HTtz)(CO)_3]^+ \mathbf{3H}^+$

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 Mo: 0.893124 0.884880 10: -0.099176 0.057446 2 C : 0.020379 0.020323 3 O : -0.151743 0.016391 4 N : 0.068164 -0.001820 5 C : 0.030694 0.021653 6 N : 0.081223 0.001570 7 N : 0.064991 -0.002249 8 C : 0.106532 0.006151 9 N : -0.234347 -0.021994 10 C : 0.018359 0.016335 11 H : 0.208494 -0.000726 12 Nexo: -0.339734 -0.001669 13 B : 0.089722 -0.002225 14 Nexo: -0.337326 -0.001883 15 N : -0.186716 -0.020541 16 C : 0.023312 0.017552 17 C : 0.105682 -0.000379 18 H : 0.256250 0.000301 19 N : -0.232698 -0.021321 20 C : -0.086653 -0.000226 21 NexoH: -0.166120 0.000051 22 C : -0.091644 -0.001911 23 C : -0.104424 -0.022648 24 H : -0.016139 0.000014 25 H : 0.194844 -0.000958 26 O : -0.099772 0.059564 0.205589 -0.000976 27 H : 28 H : 0.242337 0.000117 29 H : 0.328938 -0.000046 30 H : 0.207860 -0.000774 Sum of atomic charges : 1.0000000 Sum of atomic spin populations: 1.0000000

$[W(Ttz)(CO)_3]^{-5}$

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 W: 0.643111 0.000000 10: -0.314275 0.000000 2 C : 0.003133 0.000000 3 O : -0.313353 0.000000 4 N : 0.049875 0.000000 5 C : 0.017998 0.000000 0.030681 6 N : 0.000000 7 N : 0.046528 0.000000 8 C : 0.013006 0.000000 9 N : -0.210485 0.000000 10 C : -0.002776 0.000000 11 H: 0.197754 0.000000 12 Nexo: -0.355885 0.000000 13 B: 0.083659 0.000000 14 Nexo: -0.353495 0.000000 15 N : -0.192242 0.000000 16 C : 0.002091 0.000000 0.000000 17 H : 0.197576 18 C : 0.009693 0.000000 19 H: 0.193782 0.000000 20 N : -0.208779 0.000000 21 C: -0.113866 0.000000 22 Nexo: -0.359152 0.000000 23 C: -0.120093 0.000000 24 C : -0.131071 0.000000 25 H : -0.047177 0.000000 26 H: 0.179877 0.000000 27 O: -0.315233 0.000000 28 H : 0.190803 0.000000 29 H : 0.178315 0.000000 : -1.0000000 Sum of atomic charges Sum of atomic spin populations: 0.0000000

[W(HTtz)(CO)₃] **5H**

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 W :	0.642378	0.000000
10:	-0.299064	0.000000
2 C :	0.008934	0.000000
3 O :	-0.292848	0.000000
4 N :	0.054240	0.000000
5 C :	0.022671	0.000000
6 N :	0.054558	0.000000
7 N :	0.051412	0.000000
8 C :	0.099970	0.000000
9 N :	-0.212949	0.000000
10 C :	0.000968	0.000000
11 H :	0.202401	0.000000
12 Nexc	-0.34744	5 0.000000
13 B :	0.071356	0.000000
14 Nexe	o: -0.34519	1 0.000000
15 N :	-0.156620	0.000000
16 C :	0.006543	0.000000
17 C :	0.102200	0.000000
18 H :	0.252338	0.000000
19 N :	-0.211543	0.000000
20 C :	-0.111336	0.000000
21 Nexc	oH: -0.1703	23 0.000000
22 C :	-0.115037	0.000000
23 C :	-0.125248	0.000000
24 H :	-0.023247	0.000000
25 H :	0.184467	0.000000
26 O :	-0.300064	0.000000
27 H :	0.195020	0.000000
28 H :	0.235416	0.000000
29 H :	0.324338	0.000000
30 H :	0.201705	0.000000
a 0		0.00

Sum	of atomic	charg	ges	:	-0.0	000000	
Sum	of atomic	spin	populati	on	is: (0.0000000)

$[W(Ttz)(CO)_3]$ 5

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0 W : 0.761113 0.785616 1 O : -0.141088 0.072163 2 C: 0.010430 0.020994 3 O: -0.190274 0.026798 4 N : 0.042280 -0.002411 5 C : 0.027175 0.022481 6 N : 0.032584 0.001166 7 N: 0.039051 -0.002817 8 C : 0.026167 0.002277 9 N: -0.196863 -0.015593 10 C: 0.021897 0.017318 11 H : 0.207403 -0.000775 12 Nexo: -0.337695 -0.002054 13 B : 0.074477 -0.001868 14 Nexo: -0.334053 -0.002281 15 N : -0.182303 -0.009518 16 C : 0.024786 0.018825 17 H : 0.208296 -0.000833 18 C : 0.023444 -0.000339 19 H : 0.201309 0.000407 20 N : -0.192795 -0.014863 21 C: -0.069717 0.013013 22 Nexo: -0.347918 0.000142 23 C : -0.075962 0.013030 24 C : -0.052981 -0.008492 25 H: -0.028396 0.000005 26 H: 0.196130 -0.001108 27 O : -0.143641 0.071471 28 H : 0.206036 -0.001140 29 H: 0.191110 -0.001614 Sum of atomic charges : -0.0000000 Sum of atomic spin populations: 1.0000000

$\left[W(HTtz)(CO)_3\right]^+ 5H^+$

MULLIKEN ATOMIC CHARGES AND SPIN POPULATIONS

0.774498 0.778915 0 W : 10: -0.130326 0.074428 2 C : 0.015835 0.022273 -0.182330 0.021825 30: 4 N : 0.044556 -0.002776 5 C : 0.030404 0.023668 6 N : 0.060330 0.000978 7 N : 0.042587 -0.003206 8 C : 0.113059 0.001796 9 N : -0.196571 -0.015696 10 C : 0.027514 0.018731 11 H : 0.212440 -0.000807 12 Nexo: -0.328409 -0.002150 13 B : 0.061833 -0.001806 14 Nexo: -0.325101 -0.002425 15 N : -0.146643 -0.007047 16 C : 0.031969 0.019970 17 C : 0.112604 -0.000484 18 H : 0.259547 0.000361 19 N : -0.193291 -0.015219 20 C : -0.069815 0.013074 21 NexoH: -0.161830 0.000166 22 C : -0.073552 0.010484 23 C : -0.049005 -0.011135 24 H : -0.004471 -0.00000425 H : 0.201346 -0.001253 26 O : -0.126885 0.081090 0.210531 -0.001340 27 H : 28 H : 0.246633 -0.001513 29 H : 0.330213 -0.000045 30 H : 0.212329 -0.000854 Sum of atomic charges : 1.0000000 Sum of atomic spin populations: 1.0000000

Complex	 M_N1	M_N2	M-N3	M_C1	M-C2	M-C3
Complex						
3-	2.298	2.302	2.303	1.942	1.943	1.944
3	2.229	2.232	2.265	1.988	2.016	2.020
3H	2.296	2.297	2.305*	1.944†	1.945	1.946
3H⁺	2.224	2.226	2.289*	1.981†	2.024	2.025
5 ⁻	2.272	2.276	2.277	1.939	1.939	1.940
5	2.210	2.213	2.245	1.974	1.999	2.001
5H	2.270	2.271	2.279*	1.941 [†]	1.942	1.942
5H⁺	2.206	2.207	2.269*	1.969†	2.004	2.006

Table S2. Bond lengths of the primary coordination sphere for computed structures.

All distances in Angstroms.

* - denotes protonated triazole; [†] - denotes CO *trans* to protonated triazole.

DFT Coordinates

[Mo(Ttz)(CO)₃] **3**-

Mo	0 2.94053312599688	3.18705611242101	1.18288972308944
0	3.60256869086909	0.17111569118379	1.59755270084902
С	6.11670203255854	3.71748108822551	2.15396839446395
0	4.14656418589984	2.89246855644533	-1.67534515565584
Ν	4.75972248197280	5.07547375876729	3.06137519415467
С	2.00718469616080	6.23518404100160	0.12000144930377
Ν	2.46943367174854	4.69323344081944	3.99516154095068
Ν	2.79636642703574	6.28028439372096	2.09064104405124
С	1.31784672006476	2.91249610939942	4.10590385778166
Ν	2.51404526593553	5.44497857273495	1.05116536261387
С	5.99814767659202	5.33536012695533	3.48998414339332
Н	6.21637374250865	6.12602533545816	4.18881489890518
Ν	6.88172038437140	4.50417612233311	2.94409870993163
В	3.41707136163032	5.75317455517388	3.39926863696688
Ν	1.94342835654231	7.53263551630874	0.49526140058066
Ν	2.13570603109389	3.56903474720462	3.30083736740675
С	2.44405378255408	7.51654014099768	1.72752448904063
Η	2.56493695334742	8.36861541136962	2.37597000337323
С	1.83596766312187	4.64906076088199	5.17096483921664
Η	1.93136959140903	5.42598522255481	5.91162872652436
Ν	4.83165934605281	4.02634912734640	2.19361051350874
С	1.24199674654645	2.60643418865510	0.44085321266339
Ν	1.10102940815714	3.54566457132295	5.28075128005196
С	3.36213747787799	1.31021429496619	1.45580342935933
С	3.69951625292853	3.01698276589910	-0.59821684167689
Η	3.58385750562170	6.64665483006443	4.17264946311480
Η	1.68426848260489	5.85791524060293	-0.83575072363788
0	0.22454971020014	2.23627876482005	-0.00992521643871
Н	6.49221168526404	2.91296906537051	1.54373556077476
Η	0.88098054333284	1.96773744699510	3.82941199533876

Mo	o 2.93679797578977	3.17976942590953	1.17280029465206
0	3.63629974336095	0.17550040910978	1.61922649537977
С	6.08922809675283	3.73112720155813	2.18641477716172
0	4.15376265555864	2.89940155677636	-1.67954231239017
Ν	4.71376481751842	5.08961915031585	3.06421512608165
С	1.93882890823557	6.19873046505546	0.10783582815679
Ν	2.42380213188530	4.69170852672495	3.98485617337274
Ν	2.73716634263816	6.26930647753234	2.07367074972017
С	1.30314736184892	2.87022936029467	4.06130735695494
Ν	2.47432892108096	5.42398883555548	1.03520989883268
С	5.94464045177123	5.35035035228590	3.51912629310962
Η	6.14757380261382	6.14193510916180	4.22153592274043
Ν	6.83688867063729	4.52016828514443	2.99126658865512
В	3.37951689879262	5.77407169480719	3.37141956228469
Ν	1.83869683502382	7.49402861598519	0.48374361867875
Ν	2.10644284942543	3.55225762760328	3.29067407946196
С	2.34426803536322	7.49564349931723	1.71184542228402
С	1.81337982828259	4.68095425515493	5.14814492269049
Η	1.87223463666574	5.44180746426560	5.90629686494104
Ν	4.80377644231638	4.03831751930215	2.19825864300702
С	1.24227936913962	2.58150385874198	0.42774780495702
Ν	1.10419123000610	3.54872740342981	5.21946410723134
С	3.38060751548696	1.30716591845183	1.46284052167710
С	3.70365537858794	3.01161160226207	-0.60572288202766
Η	3.51818993573275	6.66090299851839	4.15312029344334
Η	1.62107413852450	5.81233191996597	-0.84592209738615
0	0.22810935546341	2.20582203809962	-0.02046024128093
Η	6.47854729184155	2.92580658915132	1.58609283099270
Η	0.86278219429173	1.91887287544180	3.82493954379837
Η	0.52804664281470	3.25587179270757	5.99739390227309
Η	2.44362154254907	8.35140717136939	2.35893991054627

[Mo(Ttz)(CO)₃] **3**

Mo	0 2.93844352795747	3.22980087492129	1.24285853244040
0	3.94931484451424	0.25628071039188	1.63912556635365
С	6.08495395804747	3.70202969844826	2.12644693671284
0	4.02866840012358	2.76466666881886	-1.66468301827745
Ν	4.74144752299534	5.05864923819962	3.07323713055563
С	2.02215717855442	6.18971783410236	0.11384380722883
Ν	2.45644635805266	4.69281828896146	4.01910232816791
Ν	2.78592755259727	6.25979936676662	2.10248082232173
С	1.29729463854183	2.91175655655912	4.13022101956165
Ν	2.51571293232801	5.41133017657889	1.06850320849717
С	5.98581452374268	5.30591285202363	3.48092599348493
Η	6.22125827716655	6.08946548059196	4.18198999234477
Ν	6.85794102832945	4.47450783258673	2.91103678392449
В	3.40529332360121	5.74810127606989	3.42032437086433
Ν	1.95530069621211	7.48421880286023	0.47249759640551
Ν	2.12105390243812	3.56729075517709	3.32796367604717
С	2.44054245013010	7.48639569773458	1.71401567554919
Η	2.55511625496173	8.34944747208924	2.34873586770816
С	1.81783733726527	4.65080432473925	5.19088575987083
Η	1.91187485971502	5.42912810177389	5.93013105767145
Ν	4.79808985815539	4.01737712439607	2.19303513232551
С	1.17789924060719	2.76337346499941	0.37806260572342
Ν	1.08033767746413	3.54878304797691	5.29912336261617
С	3.55709645929461	1.32636251278329	1.51390427294912
С	3.64645337661579	2.95974274114418	-0.59453512946667
Η	3.57856900664657	6.64572493368188	4.18286663575928
Η	1.71475735493169	5.79927154289975	-0.84185052681244
0	0.19123396738204	2.52302597275807	-0.15490764071887
Н	6.44740538538283	2.90446726904779	1.49930818735442
Η	0.85770810624524	1.96732938091777	3.85593999283689

[Mo(HTtz)(CO)₃]⁺ **3H**⁺

Mo	2.93318657990802	3.22231436283638	1.22395407324680
0	3.96405415646527	0.25174540767824	1.61830311935622
С	6.05679729865814	3.71223619320201	2.15583623724696
0	4.06497920950428	2.80877972660893	-1.66664777671747
Ν	4.69362159662878	5.06793187882601	3.07518518918857
С	1.95867193230610	6.15744945062051	0.09910355589363
Ν	2.40899866376963	4.69422079081993	4.01266099009466
Ν	2.72454296341143	6.24809094166106	2.08590102092241
С	1.28258046393747	2.87434698156006	4.09703030554470
Ν	2.47689174921123	5.39188331613476	1.05055060896335
С	5.93107462394700	5.31653230689035	3.50818924841467
Η	6.15131586149316	6.10132921335637	4.21287839717715
Ν	6.81218750719945	4.48577103334007	2.95616765097086
В	3.36737474540225	5.76685129814577	3.39112331687106
Ν	1.85502182106067	7.44889226208628	0.46036118714376
Ν	2.08892518707522	3.55294617806505	3.32570731753230
С	2.34121916058624	7.46587654859708	1.69922329543535
С	1.79784112035205	4.68871400290186	5.17447843418345
Н	1.85797881602009	5.45337868366808	5.92903322697135
Ν	4.76838539172520	4.02513272638431	2.19547581998119
С	1.17325804475271	2.71583575646128	0.36208426681280
Ν	1.08568450020720	3.55825487750239	5.24860669632048
С	3.56801781195768	1.31855887962602	1.49490394016202
С	3.66268244419275	2.97801708138527	-0.60117270541066
Η	3.51622394430472	6.65933270743331	4.16057745841640
Н	1.66092472354453	5.76023599366461	-0.85687075939082
0	0.18927850154668	2.43783514067236	-0.15202407798376
Η	6.43394307686051	2.91483348633914	1.53725948560710
Н	0.83906964215852	1.92240172674736	3.86679199519246
Η	0.50909648700015	3.26744641254622	6.02774963627673
Η	2.43182197481287	8.33176463423890	2.33431884557631

[W(Ttz)(CO)₃]⁻ 5⁻

W	2.94222128814805	3.20125266796477	1.19276095026035
0	3.61366300878097	0.18806246416501	1.62817751256666
С	6.09374313748545	3.70770533493603	2.14576566621358
0	4.16011740203261	2.92184425113896	-1.66426673428429
Ν	4.75646252254617	5.08102119108279	3.06559509203702
С	2.01445845313921	6.21293944104041	0.12277979687242
Ν	2.47263911728119	4.70059711988190	3.99631451460257
Ν	2.79935046393552	6.28356118091835	2.09728274190509
С	1.32717387148907	2.91126554796474	4.08144744103294
Ν	2.52361774934061	5.43486869796743	1.06557261422891
С	6.00023921339936	5.32538111708556	3.48516905027059
Η	6.23253547144444	6.11234214038988	4.18356251996069
Ν	6.87012730111268	4.48446261868827	2.93132823946189
В	3.41938101624149	5.76564992820667	3.40935937689912
Ν	1.94375550104318	7.51172206071700	0.48501972881484
Ν	2.14697444845631	3.58209109506607	3.28702227873089
С	2.44159426647869	7.51279154710911	1.71891799456366
Η	2.55630116605827	8.37279239196762	2.35782091525349
С	1.83352600882500	4.63925134033187	5.16732423984958
Η	1.92131920544415	5.40791743652821	5.91743359315088
Ν	4.81075191533549	4.03171016156584	2.19516373902211
С	1.24387088965848	2.62426669444550	0.45606516128480
Ν	1.10322281858950	3.53074184054270	5.26006495916935
С	3.36481452211700	1.32886731513455	1.46960074430470
С	3.70211629217285	3.03403541749590	-0.58421815020575
Η	3.58627243127932	6.65817574632959	4.18205071396745
Η	1.69618763082535	5.82283314548484	-0.82916890245090
0	0.21376607763083	2.26153612657550	0.01360662357096
Η	6.45513694259651	2.90004353999820	1.53154578981642
Η	0.89660986711227	1.96785043927667	3.79149178913001

[W(HTtz)(CO)₃] **5**H

W	2.93994157112239	3.19738158290982	1.18176591611343
0	3.63777417751337	0.19664368705623	1.65940523090201
С	6.06810591411622	3.72357829620991	2.17860828138884
0	4.16409587687395	2.90476935234965	-1.66869142918484
Ν	4.71181989675146	5.09881181807308	3.06693037986350
С	1.94596926692906	6.18038530151515	0.11065340293778
Ν	2.42900741572341	4.70048855690512	3.98590992739725
Ν	2.73979484224115	6.27493887389733	2.08036517219128
С	1.31452061080418	2.87099221859523	4.03453348349252
Ν	2.48614889784743	5.41767578512476	1.04805286032138
С	5.94788849392770	5.34371089197319	3.51367579503760
Η	6.16474324661743	6.13194415457423	4.21557077144298
Ν	6.82675846741774	4.50297556945896	2.97883371738627
В	3.38216642250488	5.78810131074826	3.38083909155728
Ν	1.83554112189481	7.47574422833336	0.47594392959997
Ν	2.11909052513031	3.56739496636925	3.27483875223436
С	2.33766178065118	7.49350542371947	1.70569759007281
С	1.81331042769272	4.67121578518764	5.14563256298202
Η	1.86452057289998	5.42262435934899	5.91377284188619
Ν	4.78448408616369	4.04651483625053	2.19881120770906
С	1.24429251736768	2.60059243108880	0.44811128412665
Ν	1.10879588899388	3.53474916177631	5.19809104596462
С	3.37951821596969	1.33010991406718	1.48244191564506
С	3.70524725723684	3.02125052233700	-0.59332544863900
Η	3.52074869757275	6.67436981385554	4.16184451311331
Η	1.63377707651473	5.78192235151559	-0.83979349520827
0	0.21731029695943	2.22852533747944	0.01242184267560
Η	6.44364382075685	2.91419674953478	1.57524991217124
Η	0.87964744554609	1.92079695977562	3.78406474626235
Η	0.53254403303248	3.22753543180050	5.97043360758771
Η	2.42678113522652	8.35549432816906	2.34605059096908

W	2.94129777684286	3.24029646272874	1.24998517533587
0	3.90514919762895	0.26263012885781	1.63269617523584
С	6.06686143758835	3.70246209950942	2.11803418421808
0	4.03632409712687	2.77513972835362	-1.64825269882300
Ν	4.73969400053794	5.06888604525202	3.08010565117832
С	2.03446913850848	6.17271987128753	0.11719309957383
Ν	2.46046619550889	4.70207231253800	4.02309932113992
Ν	2.78861020205269	6.26678084102357	2.11158489625916
С	1.30932526309913	2.91136496312759	4.10830558515015
Ν	2.52881206807304	5.40548510578948	1.08366109321358
С	5.98851510795902	5.30443872750805	3.47686760053773
Η	6.23643200859959	6.08485584781168	4.17714698945072
Ν	6.84924995768658	4.46650166616065	2.89757851545928
В	3.40757611864613	5.76339909733050	3.43286814385582
Ν	1.95754731362463	7.46737631596262	0.46430594986464
Ν	2.13400239365817	3.58220951179516	3.31646555570135
С	2.43694856859912	7.48564147351054	1.70873465303306
Η	2.54273747744295	8.35602691842521	2.33483432334218
С	1.81708224269654	4.64165559161219	5.19026669115729
Η	1.90302107625724	5.41156321271719	5.93921335231610
Ν	4.78067786716062	4.02787474454786	2.19633100353780
С	1.19839775337848	2.76202046318558	0.39627932867512
Ν	1.08517549581354	3.53376851929665	5.28137379594477
С	3.53424846060889	1.34682263765674	1.50898536041109
С	3.64551723838876	2.96818871894980	-0.57434948088258
Η	3.58047010065432	6.66001649999998	4.19497357696958
Η	1.73532731748923	5.77031249396690	-0.83609603645748
0	0.20414390571185	2.50540883882007	-0.12763195862495
Η	6.41741773905857	2.90365928596934	1.48582866455454
Η	0.87645247959851	1.96800187630555	3.82020148867218

 $[W(HTtz)(CO)_3]^+$ 5H⁺

W	2.93790027043882	3.23616388564903	1.22749575131175
0	3.94760615005262	0.27184531789064	1.60484494640664
С	6.03755119041783	3.70693017505799	2.15621387777008
0	4.05292020195647	2.81021861034359	-1.66156343472846
Ν	4.69127352030344	5.08161453673651	3.07956263813857
С	1.96980610936651	6.14522902326627	0.10125788170029
Ν	2.41353440437949	4.70583368606731	4.01362972166267
Ν	2.72696844692799	6.25837086941897	2.09313014076411
С	1.30176964887367	2.87297020308618	4.07265916628061
Ν	2.48688216395540	5.38967782002534	1.06482978703617
С	5.93123598004702	5.30975254025284	3.51265845660271
Η	6.16320522188504	6.08915236768178	4.21956901896124
Ν	6.80082387739149	4.46765824241452	2.95750241942359
В	3.36872783959365	5.78578203194434	3.40168658289331
Ν	1.86007443490107	7.43706215190139	0.45034910634983
Ν	2.10773294373945	3.56753388601520	3.31267378134580
С	2.34093006958355	7.46921993649564	1.69177854173239
С	1.79292119957362	4.68303154102787	5.16960744857275
Η	1.83985666977019	5.44068176635571	5.93228280275614
Ν	4.75145981563885	4.03894115936956	2.19604815649761
С	1.18893792740347	2.71021846488960	0.39888023041158
Ν	1.09111491550170	3.54492239859733	5.22729834677411
С	3.55961883474744	1.34833362744739	1.48338098567109
С	3.65019513786899	2.98535002285282	-0.59118979792019
Η	3.51730657347821	6.67721248569216	4.17079057483771
Η	1.67849327571584	5.73661392553071	-0.85180139337515
0	0.18905226924754	2.42107162059538	-0.09055527192628
Η	6.40150852884213	2.90401114406942	1.53691548583551
Η	0.86851327826598	1.91956511159349	3.82913297844477
Η	0.51097111792398	3.24220890559368	5.99964410845433
Η	2.42675798220857	8.34176254213732	2.31802696131474