Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Electrodeposited-Film Electrodes Derived from A Precursor Dinitrosyl Iron Complex for Electrocatalytic Water Splitting

Wei-Liang Li,[†] Tzung-Wen Chiou,^{†*} Chien-Hong Chen,[‡] Yi-Ju Yu,[†] Li-Kang Chu[†] and Wen-Feng Liaw^{†*}

[†]Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan [‡]Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan

* e-mail: <u>d9623817@oz.nthu.edu.tw</u> (TWC) & <u>wfliaw@mx.nthu.edu.tw</u> (WFL)

Experimental Section

Manipulations, reactions, and transfers were conducted under N₂ according to Schlenk techniques or in a glovebox (N2 gas). Solvents were distilled under N2 from appropriate drying agents (diethyl ether from CaH₂; acetonitrile from CaH₂/P₂O₅; methylene chloride from CaH₂; hexane and THF from sodium benzophenone) and stored in dried, N2-filled flasks over 4-Å molecular sieves. N2 was purged through these solvents before use. The solvent was transferred to the reaction vessel via a stainless cannula under positive pressure of N2. The reagents and materials iron tetrafluoroborate pentacarbonyl, nitrosonium $[NO][BF_4],$ nitrosonium hexafluoroantimonate [NO][SbF₆], tris[2-(dimethylamino)ethyl]amine (Me₆tren), platinum on carbon (40 wt. % Pt/C, Pt on an activated carbon support), 99.9% IrO₂ powder, Nafion[®] perfluorinated resin solution (5 wt. % in lower aliphatic alcohols and water, contains 15-20% water) (Sigma-Aldrich), FeCl₂, FeCl₃, Fe₂(SO₄)₃, Fe(NO₃)₃ (Alfa Aesar), bis(triphenylphosphoranylidene)ammonium chloride ([PPN][Cl]; Fluka), platinum disk electrode (surface area = 0.0707 cm^2) (ALS), glassy carbon disk electrode (surface area = 0.0707 cm^2 , CH instruments), graphite plate (R8340, $50 \times 4 \times 1$ mm, 12 µΩm resistivity, Great Carbon Co., Ltd., Taiwan) were used as received. Compounds $[PPN][Fe(CO)_3(NO)],$ $[Fe(CO)_2(NO)_2],$ and $[(PMDTA)Fe(NO)_2][BF_4]$ (PMDTA = pentamethyldiethylenetetraamine) were synthesized based on the reported procedures.¹⁻² IR and ATR-IR spectra of the $v_{(NO)}$ stretching frequencies were recorded on a PerkinElmer model spectrum one B spectrometer with sealed solution cells (0.1 mm, CaF₂ windows) and a VERTEX 80 BioATRII. ¹H NMR spectra were obtained on a Varian Unity-500 spectrometer. UVvis spectra were recorded on a Jasco V-570 spectrometer. Analyses of C, H, and N were obtained with a CHN analyzer (Heraeus).

Preparation of $[(Me_6 tren)Fe(NO)_2]$ (1) $(Me_6 tren = tris[2-$

(dimethylamino)ethyl]amine). Ligand Me₆tren (0.30 mL, 1.1 mmol) was added into the THF solution (10 mL) of [Fe(CO)₂(NO)₂], freshly prepared from reaction of [PPN][Fe(CO)₃(NO)] (0.712 g, 1.0 mmol) and [NO][BF₄] (0.120 g, 1.1 mmol), and the reaction solution was stirred for 4 h under N₂ at ambient temperature. The reaction was monitored with FTIR. The appearance of IR v_(NO) stretching frequencies at 1697, 1643 cm⁻¹ (THF) was assigned to the formation of [(Me₆tren)Fe(NO)₂] (1). Complex 1 was isolated as dark brown semi-oil. IR: v_(NO) 1697, 1643 cm⁻¹ (THF). ¹H NMR (C₄D₈O): δ 2.47 (br (CH₂, CH₃)).

Preparation of [(Me₆tren)Fe(NO)₂][SbF₆] (2). To a 30-mL Schlenk flask loaded with [NO][SbF₆] (or [NO][BF₄]) (0.292 g (or 0.120 g), 1.1 mmol) was added the MeCN solution (10 mL) of complex **1** (0.346 g, 1.0 mmol). After stirring for 10 min, the shift of IR $v_{(NO)}$ stretching frequencies from 1689, 1633 cm⁻¹ to 1765, 1679 cm⁻¹ indicates the formation of [(Me₆tren)Fe(NO)₂][SbF₆] (**2**). The MeCN solution of **2** was then filtered through Celite to remove the insoluble solid. The THF-diethyl ether was added to precipitate the brown solid **2**. Recrystallization from the MeCN solution of complex **2** layered with diethyl ether at room temperature led to the dark brown crystals suitable for X-ray crystallography. IR: $v_{(NO)}$ 1765, 1679 cm⁻¹ (MeCN). Absorption spectrum (MeCN) [λ_{max} , nm (ε, M⁻¹cm⁻¹)]: 386 (454), 513 (147), 670 (72), 833 (64). Anal. Calcd. for C₁₂H₃₀FeN₆O₂F₆Sb: C, 24.76; H, 5.20; N, 14.44. Found: C, 23.69; H, 5.15; N, 14.13.

EPR Spectroscopy. EPR measurements were performed at X-band using a Bruker EMX spectrometer equipped with a Bruker TE102 cavity. The microwave frequency was measured with a Hewlett-Packard 5246L electronic counter. X-band EPR spectrum of **2** in MeCN was obtained with a microwave power of 1.5 mW, modulation amplitude of 1.60 G at 100 KHz, and microwave frequency at 9.469 GHz. The spectral simulation was performed using Bruker WinEPR.

Magnetic Measurements. The magnetization data was recorded on a SQUID magnetometer (MPMS5 Quantum Design company) with an external 1.0 T magnetic field for **2** in the temperature range 2-300 K. The magnetic susceptibility of the experimental data was corrected for diamagnetism by the tabulated Pascal's constants.

Crystallography. Each crystal was mounted on a glass fiber and quickly coated with an epoxy resin. Unit-cell parameters were obtained by least-squares refinement. Diffraction measurement for complex **2** was carried out on a Bruker Kappa Apex DUO diffractometer (Brucker X8 APEX II CCD diffractometer) with graphite-monochromated Mo K_{α} radiation ($\lambda = 0.7107$ Å). Least-squares refinement of the positional and anisotropic thermal parameters of all non-H atoms and fixed H atoms was based on F^2 . A *SADABS* absorption correction was made. The *SHELXTL* structural refinement program was employed. CCDC number: CCDC 1559817 for **2**.

Electrode Preparation. 40 wt.% Pt-C (3.6 mg) or IrO_2 (2.1 mg) were dispersed in a 2 mL mixture solution containing 0.8 mL water, 120 µL 5% Nafion solution, and 1.08 mL ethanol, followed by sonication for 30 min to obtain a homogeneous catalyst ink. The catalyst ink (50 µL for each loading) was loaded on the surfaces of the glassy carbon electrode (surface area: 0.0707 cm²) or graphite plate (surface area: 0.16 cm²) to achieve the suitable weight.³

Electrochemical Studies. All electrochemical measurements were performed in a three-electrode cell with a CHI model 621b potentiostat (CH Instrument) instrumentation. Cyclic voltammograms in MeOH were obtained from 3.0 mM analyte concentration in O₂-free MeOH using 0.1 M [n-Bu₄N][PF₆] as the supporting electrolyte. The potential was measured at 298 K vs Ag/AgNO₃ reference electrode (0.01 M AgNO₃, ALS) by using a glassy carbon working electrode (surface area = 0.0707 cm²) and a platinum wire auxiliary electrode (ALS) at a scan rate of 50 mV/s. The working electrode was polished with Al₂O₃ powders with size down to 0.05 µm. The potentials are reported against the ferrocenium/ferrocene (Fc⁺/Fc) couple. In all experiments, the iR compensation was performed by CHI model 621b software. Aqueous cyclic voltammogram (CV) and linear sweep voltammetry (LSV) were obtained from 3.0 mM analyte concentration in 1.0 M NaOH as the supporting electrolyte with the saturated calomel electrode (SCE, ALS) as reference electrode at a scan rate of 2 mV/s. Controlled potential electrolysis (CPE) experiments of complex **2** solution (3.0 mM) were conducted in 25-mL 1.0 M NaOH aqueous solution stirred constantly. The auxiliary electrode in CPE cell was separated from the solution of the working electrode by a medium-porosity sintered-glass frit. To avoid the corrosion of the expensive glassy carbon electrode, graphite plate (surface area = 0.16 cm^2) was used as the working electrode in the CPE experiments of water oxidation and two-electrode setting. All potentials reported in this paper were converted from vs SCE to vs reversible hydrogen electrode (RHE).

RHE = SCE +
$$0.244 + 0.059 \times 14$$
, for 1.0 M NaOH_(aq)

Electrochemical Capacitance Measurements. The electrochemically active surface area (ECSA) was evaluated in terms of double-layer capacitance. CV scans were conducted in static solution by sweeping the potential from the more positive to negative potential and back at 6 different scan rates: 2, 4, 8, 12, 16 and 20 mV/s. This range is typically a 0.1 V potential window centered on the OCP (open-circuit potential) of the system. The capacitance was determined from the tenth cyclic voltammetry curve of each scan rate. The electrochemical double-layer capacitance, C_{DL} , as given by $i_c = vC_{DL}$ (i_c : current density from CV, v: scan rate).⁴ The specific capacitance for a flat surface is generally found to be in the range of 20-60 mF/cm². We used a value of 40 mF/cm² in the following calculations of the electrochemical active surface area.

Mass Activity. The values of mass activity were calculated using the equation, mass activity (A/g) = LSV current (A)/electrocatalyst deposited or loading amount (g).

Determination of Faradaic Efficiency, TON and TOF of Electrolysis Using DNIC 2-Deposited Electrode. Quantification of the produced H₂/O₂ gas was performed by gas chromatography (SRI 8610C) equipped with a molecular sieves (MS-13x) column and helium ionization detector (HID). Helium was used as the carrier gas. Calibration curves were built by the injection of the known amounts of pure H₂/O₂. The amounts of H₂/O₂ dissolved in the solution were corrected by the Henry's law ($K_{\rm H} = 7.8 \times 10^{-4}$ mol/atm·L for H₂ and 1.3×10^{-3} mol/atm·L for O₂).

H₂: Faradaic efficiency (%) = [Charge (CPE)/2/96485]×100%/[V(H₂ gas of GC detection)/24.5]

O₂: Faradaic efficiency (%) = [Charge (CPE)/4/96485]×100%/[V(O₂ gas of GC detection)/24.5]

TON (H₂) = $[Q/2/96485] \times [Faradaic efficiency (%)]/[weight of catalyst] (mol/g)$ TON (O₂) = $[Q/4/96485] \times [Faradaic efficiency (%)]/[weight of catalyst] (mol/g)$ Q = accumulated charge of CPE with catalyst – accumulated charge of CPE without catalyst

TOF = [TON]/[time of CPE] (mol/g-h)

Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). ICP-MS was performed on a Agilent 7500ce. Samples were dissolved in concentrated HNO₃.

Powder X-ray Diffraction (pXRD). pXRD data were obtained using a Bruker D8 X-ray Powder Diffractometer with a Cu K- α radiation source in the range $2\theta = 5$ -80°.

Scanning Electron Microscope (SEM). SEM images and EDX spectra were obtained with a JSM 7000F microscope (JEOL) equipped with an Oxford EDX system.

X-ray Photoelectron Spectroscopy (XPS). XPS spectra were collected on a ULVAC-PHI XPS spectrometer equipped with a monochromatized 1486.6 eV Al K α X-ray line source directed 45° with respect to the sample surface. The spectra were registered at a base pressure of $<5\times10^{-10}$ torr. Low-resolution survey scans were acquired with a 100 µm spot size between the binding energies of 1-1100 eV. Higher-resolution scans with a resolution of 0.1 eV were collected between 392-412 (for N), 525-541 (for O) and 700-740 (for Fe) eV.

Reference

(1) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041-6047.

- (2) Chiou, T.-W. et al. Angew Chem Int. Ed. 2015, 54, 14824-14829.
- (3) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Angew Chem Int. Ed. 2015, 54, 6251-6254.
- (4) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135, 16977-16987.

Figure S1. (a) EPR spectrum of 2 in MeCN at 77 K. (b) Plot of magnetic moment vs temperature for 2.

Figure S2. Cathodic cyclic voltammogram of 3-mM CH₃OH solution of **2** with 0.1 M $[n-Bu_4N][PF_6]$ as electrolyte ($E_{pc} = -1.035$ V and $E_{pa} = -0.766$ V (vs Fc/Fc⁺), scan rate 50 mV/s).

Figure S3. IR spectrum of 2 in D_2O solution of 1.0 M NaOH.

Figure S4. CV curves of blank (black), 3-mM aqueous solution of **2** (red) in 1.0 M $NaOH_{(aq)}$, and the CV (blue) obtained after CV scanning followed by rinse and subsequently transferred to fresh DNIC **2**-free aqueous solution with 1.0 M $NaOH_{(aq)}$ electrolyte for HER (scan rate 2 mV/s). (Current densities mean geometrical current densities).

Figure S5. XPS spectrum of the graphite electrode after CV scanning for HER catalytic test in the presence of 2 (3 mM) and 1.0 M NaOH_(aq).

Figure S6. Increase of current density with time for the electrolysis of 3 mM **2** in 1.0 M NaOH_(aq) at applied potential -0.48 V (vs RHE). (Current densities mean geometrical current densities).

Figure S7. Current density of -10 mA/cm² for HER using **Re-electrode** in 1.0 M $NaOH_{(aq)}$ at applied potential -0.16 V (vs. RHE). (Current densities mean geometrical current densities).

Figure S8. The corresponding Tafel plots of blank (black), Re-electrode (red), Pt electrode (blue) in $1.0 \text{ M NaOH}_{(aq)}$ (scan rate 2 mV/s).

Figure S9. Mass activity as a function of the overpotential for Re-electrode and Pt/C.

Figure S10. The amount of H_2 gas obtained by theoretical calculation (red) and experimental measurements (black) versus time for the electrolysis of 1.0 M NaOH_(aq) using **Re-electrode** at applied potential -0.48 V (vs. RHE).

Figure S11. LSV curves of **Re-electrode** and electrodeposited electrodes of (a) Fe salts, and (b) Fe salts + Me₆tren ligand in 1.0 M NaOH_(aq). The electrodeposited electrodes prepared by CPE of 1.0 M NaOH_(aq) with Fe(NO)₃, Fe₂(SO₄)₃, FeCl₂, FeCl₃, [Fe(NO)₃ +Me₆tren], [Fe₂(SO₄)₃+Me₆tren], [FeCl₂ + Me₆tren] and [FeCl₃ + Me₆tren] (3 mM), respectively, at an applied potential -0.48 V (vs RHE) for 2 h. (Current densities mean geometrical current densities).

Figure S12. (a) EDX spectrum, and (b-d) SEM-EDX elemental maps (N, O, and Fe elements are shown as blue, red, and green, respectively) of **Re-electrode**.

Figure S13. (a) Survey, (b) Fe 2p, (c) O 1s, (d) C 1s, and (e) N 1s XPS spectra of **Reelectrode** (Cl element of survey spectrum may be from SCE reference electrode). (f) N 1s, (g) Fe 2p, (h) O 1s, and (i) C 1s XPS spectra of **2**.

Figure S14. (a) Survey, (b) Fe 2p, (c) O 1s and (d) N 1s XPS spectra of **Re-electrode** after the CPE for 60h.

Figure S15. ATR-IR spectrum of Re-electrode.

Figure S16. Anodic cyclic voltammogram of CH_3OH solution of 2 (3 mM) with 0.1 M [n-Bu₄N][PF₆] electrolyte ($E_{pa} = 0.51$ V (vs Fc/Fc⁺), scan rate 50 mV/s).

Figure S17. Dependence of the catalytic current density on the concentration of **2** in 1.0 M NaOH_(aq) at applied potential 1.77 V (vs. RHE) for OER (scan rate 2 mV/s). (Current densities mean geometrical current densities).

Figure S18. CVs of blank (black), 3-mM solution of **2** (red) in 1.0 M NaOH_(aq), and the CV (blue) obtained after CV scanning followed by rinse and subsequently transferred to fresh **2**-free aqueous solution with 1.0 M NaOH_(aq) electrolyte for OER (scan rate 2 mV/s). (Current densities mean geometrical current densities).

Figure S19. SEM, EDX and XPS spectra of the graphite electrodes (a) before and (bd) after CV scanning OER catalytic test of 2 (3 mM) in 1.0 M NaOH_(aq).

Figure S20. Changes of current density with time for the electrolysis of **2** (3 mM) in 1.0 M NaOH_(aq) at applied potential 1.87 V (vs RHE). (Current densities mean geometrical current densities).

Figure S21. The corresponding Tafel plots of graphite (black), Ox-electrode (red) and IrO_2 electrode (green) in 1.0 M NaOH_(aq) for OER (scan rate 2 mV/s).

Figure S22. Current densities of 1 and 9 mA/cm² for OER using **Ox-electrode** in 1.0 M NaOH_(aq) at applied potential 1.61 and 1.69 V (vs RHE), respectively. (Current densities mean geometrical current densities).

Figure S23. The amount of O_2 gas obtained by theoretical calculation (red) and experimental measurements (black) versus time for the controlled potential electrolysis of 1.0 M NaOH_(aq) employing **Ox-electrode** as working electrode at applied potential 1.87 V (vs. RHE).

Figure S24. LSV curves of **Ox-electrode** and electrodeposited electrodes of (a) Fe salts or (b) Fe salts + Me₆tren ligand in 1.0 M NaOH_(aq). (c) LSV curves based on the active mass of **Ox-electrode** and electrodeposited electrodes of FeCl₂ + Me₆tren in 1.0 M NaOH_(aq). The electrodeposited electrodes prepared by CPE of 1.0 M NaOH_(aq) with Fe(NO)₃, Fe₂(SO₄)₃, FeCl₂, FeCl₃, [Fe(NO)₃+Me₆tren], [Fe₂(SO₄)₃+Me₆tren], [FeCl₂+Me₆tren], and [FeCl₃+Me₆tren] (3 mM), respectively, at applied potential 1.87 V (vs. RHE) for 22 h. (d) The LSV curves from Fig. S24a-b normalized to the electrochemical active surface area (ECSA). In Figures S24a-b, current densities mean geometrical current densities.

Figure S25. (a) EDX spectrum, and (b-d) SEM-EDX elemental maps (N, O, and Fe elements are shown as blue, red, and green, respectively) of **Ox-electrode**.

Figure S26. (a) Survey, (b) Fe 2p, (c) O 1s, (d) C 1s, and (e) N 1s XPS spectra of **Ox-electrode** (Cl element of survey spectrum may be from SCE reference electrode).

Figure S27. (a) ATR-IR spectrum of Ox-electrode. LSV curves of Ox-electrode (black) and Re-electrode (red) in 1.0 M $NaOH_{(aq)}$ for (b) HER and (c) OER, respectively (scan rate 2 mV/s). (Current densities mean geometrical current densities).

Figure S28. Changes of current density with time when graphite-electrode pair modified with CPE of blank (black) and **2** (3 mM) (red), respectively, in 1.0 M NaOH_(aq) at applied voltage 2.20 V. (Current densities mean geometrical current densities).

Figure S29. Current density of 10 mA/cm² for overall water splitting using **Redox-electrode** in 1.0 M NaOH_(aq) at applied voltage 1.77 V. (Current densities mean geometrical current densities).

Figure S30. The corresponding Tafel plots of the fresh graphite-graphite (black), **Redox-electrodes** (red) and IrO_2 -Pt (green) two-electrode setting in 1.0 M NaOH_(aq) for overall water splitting (scan rate 2 mV/s).

Figure S31. Polarized curves of overall water splitting for **Redox-electrode** and electrodeposited electrode-pair settings derived from (a) Fe salts and (b) Fe [salts+Me₆tren] in 1.0 M NaOH_(aq) (scan rate 2 mV/s). The electrodeposited two-electrode settings prepared by CPE of 1.0 M NaOH_(aq) with 3 mM (a) Fe(NO)₃, Fe₂(SO₄)₃, FeCl₂, FeCl₃, and 3 mM (b) [Fe(NO)₃+Me₆tren], [Fe₂(SO₄)₃+Me₆tren], [FeCl₂+Me₆tren], [FeCl₂+Me₆tren], [FeCl₃+Me₆tren], respectively, at applied voltage 2.20 V for 22 h using graphite as both anode and cathode. (Current densities mean geometrical current densities).

 Table S1. Selected Janus catalysts.

Catalysts	Voltage	Current	рН	Reference
	(V)	Density		
		(mA/cm ²)		
Redox-	1.77	10	14	This work
electrode				
MoOx/Ni ₃ S ₂ /NF	1.45	10	14	Adv. Funct. Mater., 2016, 4839
N-Ni ₃ S ₂ /NF	1.48	10	14	Adv. Mater., 2017, 1701584
Ni ₂ P/NF	1.49	10	14	ACS Catal., 2016, 714
Cu@CoSx/CF	1.50	11	14	Adv. Mater., 2016, 1606200
NiFeOx	1.51	10	14	Electrochim. Acta, 2015, 297
Ni-Fe-P	1.52	10	14	J. Mater. Chem. A, 2017, 2496
CP@Ni-P	1.53	50.4	14	Adv. Funct. Mater. 2016, 4067
NixCo3-xS4/Ni3S2/NF	1.53	10	14	Nano Energy, 2017, 161
Co ₂ P/CNT	1.53	10	14	Nano Energy, 2016, 303
NiFe-P	1.556	10	14	J. Mater. Chem. A, 2016, 13866
FeB ₂	1.57	10	14	Adv. Energy Mater. 2017, 1700513
Ni(OH)2@Ni/CC	1.58	10	14	J. Mater. Chem. A, 2017, 7744
NiCoP	1.58	10	14	Nano Lett. 2016, 7718
Co ₉ S ₈ @NOSC	1.60	10	14	Adv. Funct. Mater. 2017, 1606585
d-NiC0.2NS/Ni/CF	1.61	15	14	J. Mater. Chem. A 2016, 18499
FeNi ₃ N/NF	1.62	10	14	Chem. Mater. 2016, 6934
Ni _{0.7} Fe _{0.3} S ₂	1.625	10	14	J. Mater. Chem. A 2017, 15838
Ni ₂ P	1.63	10	14	EES, 2015, 2347
NiCo2S4 NW/NF	1.63	10	14	Adv. Funct. Mater. 2016, 4661
NiCo ₂ O ₄	1.65	10	14	ACIE, 2016, 6290
Ni3N/CMFs/Ni3N	1.652	20	14	Mater. Chem. Front. 2017, 2155
NiFe/NiCo2O4/NF	1.67	10	14	Adv. Funct. Mater. 2016, 3515
SNCF-NRs	1.68	10	14	ChemCatChem 2017, 1721
NiFe LDH/NF	1.70	10	14	Science, 2014, 1593
FeSe ₂	1.73	10	14	ACIE, 2017, 10506
CoSe	1.75	10	14	J. Mater. Chem. A 2016, 14789
Ni ₃ S ₂ /NF	1.76	13	14	JACS, 2015, 14023
Co ₂ B-500	1.81	10	14	Adv. Energy Mater. 2016, 1502313
NFPGN	1.90	10	14	J. Mater. Chem. A 2017, 7784

N,S-CNT	2.03	10	14	Adv. Energy Mater. 2017, 1602068			
Table S2. Selected HER catalysts.							
Catalysts	η	Tafel	pН	Reference			
	(10 mA/cm^2)	Slope					
	Fe HER catalysts						
Re-electrode	160	93	14	This work			
FeS ₂	96	78	13	JACS, 2017, 13604			
Vc-FeP	108	62	14	CSSC, 2017, 1509			
FeP NAs/CC	218	146	14	ACScatal, 2014, 4065			
	Metal doping Fe HER catalysts						
FeNi3N	75	98	14	Chem. Mater. 2016, 6934			
	Non-Fe I	HER catalys	ts in all	kaline condition			
MoNi ₄	15	30	14	NatComm, 2017, 15437			
Porous-MoO ₂	27	41	14	Adv. Mater., 2016, 3785			
NiCoP	32	37	14	Nano Lett. 2016, 7718			
NiMo	34 (20)		14	ChemElectroChem, 2014, 1138			
WO ₂ HN	48	43	14	J. Mater. Chem. A, 2017, 9655			
Ni ₅ P ₄	49	98	14	EES, 2015, 1027			
Cu ₉₅ Ti ₅	60	110	13	NatComm, 2015, 6567			
Ni(OH) ₂ @Ni	68	97	14	J. Mater. Chem. A, 2017, 7744			
NiMo	70 (20)		14.3	ACScatal, 2013, 166			
СоО	73	82	14	NatComm, 2017, 1509			
MoC	77	50	14	J. Mater. Chem. A, 2016, 6006			
WC-CNT	137	106	13	ACS.Nano, 2015, 5125			
NiO/Ni-CNT	<100	82	14	NatComm, 2014, 4695			
N-NiO	100	112.58	14	ChemSusChem, 2018, 1020			
MoCx	151	59	14	NatComm, 2015, 7512			
Co-NRCNT	160 (1)		14	ACIE, 2014, 4372			
СоМо	170 (100)	92	14.8	J. Electrochem. Soc., 1994, 382			
CoNx	170	75	14	NatComm, 2015, 7992			
c-CoSe ₂ /CC	190	85	14	Adv. Mater., 2016, 7527			
Ni ₂ P	205		14	JACS, 2013, 9267			
NiCo ₂ S ₄ /NF	210	58.9	14	Adv. Funct. Mater., 2016, 4661			

CoS ₂	244	133	14	Electrochimica Acta, 2014, 170
------------------	-----	-----	----	--------------------------------

Catalysts	η	Tafel	pН	Reference		
	(1 mA/cm^2)	Slope				
	1	Fe OER	catalys	ts		
Ox-electrode	380	40	14	This work		
FeOx	445	40	14	J. Electrochem. Soc., 2013, H142		
FeOx	405	51	14	JACS, 2012, 17253		
Fe ₂ O ₃	430	64	14	NanoLett, 2014, 2123		
FeOx	410	40	13	Science, 2013, 60		
FeOOH	420		11	JACS, 2014, 2843		
Metal doping Fe OER catalysts						
NiFeOx	297	30	14	JACS, 2012, 17253		
NiFeOx	120	32	15	NatComm, 2015, 6616		
NiFeOx	210	31	14	JACS, 2013, 8452		
Fe ₂ Ni ₃ Ox	250	34	13	JACS, 2013, 11580		
FeCoW	191 (10)		14	Science, 2016, 333		
oxyhydroxides						
Ba _{0.5} Sr _{0.5} Co _{0.8} -	320	60	13	Science, 2011, 1383		
$Fe_{0.2}O_{3-\delta}$						
α-Fe ₃₃ Co ₃₃ Ni ₃₃ Ox	230	30	13	Science, 2013, 60		
Non-Fe OER catalysts						
NiCoOx	312	33	14	JACS, 2012, 17253		
NiCoOx	370		13	ChemComm, 2015, 9511		
NiMnOx	300	47	14	J. Mater. Chem. A, 2015, 20056		
NiCoCeOx	250	60	14	EES, 2014, 682		
Co ₃ O ₄	300	49	14	Chem. Mater., 2012, 3567		
СоР	345 (10)	47	14	ACIE, 2015, 6251		
CoMnP	330 (10)	61	14	JACS, 2016, 4006		
NiOx	320 (10)	52	14	JACS, 2016, 6517		
MnOx	<300		13	JACS, 2010, 13612		
NiOx	380	30	9.2	JACS, 2013, 3662		
CoOx	410	60	7	Science, 2008, 1072		

Table S3. Selected OER catalysts.