Electronic Supplementary Information (ESI) for:

Stable Ruthenium Olefin Metathesis Catalysts Bearing Symmetrical NHC Ligands with Primary and Secondary *N*-Alkyl Groups

Chiara Ambrosio,[†] Veronica Paradiso,[†] Chiara Costabile,[†] Valerio Bertolasi,[‡] Tonino Caruso,[†] and Fabia Grisi*[†]

[†]Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy

[‡]Dipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Università di Ferrara, Via L. Borsari 46, I-44100 Ferrara, Italy

TABLE OF CONTENT:

EXPERIMENTAL PROCEDURES	S2
NMR SPECTRA	S7
ESI-FT-ICR SPECTRA	S19
CRYSTAL STRUCTURE DETERMINATION	S21
CYCLIC VOLTAMMOGRAMS	S24
GC DATA ANALYSIS	S26
CARTESIAN COORDINATES AND ENERGIES OF CALCULATED STRUCTURES	S28

Experimental Procedure

General Information

All reactions involving the manipulation of organometallic compounds were carried on under inert atmosphere using standard glove box or Schlenk techniques. Toluene, methylene chloride and diethyl ether were stored on sodium benzophenone, calcium hydride and lithium aluminium hydride respectively and distilled before use. Deuterated solvents were dried using 4 Å activated molecular sieves. Ethyl oleate was purchased by Sigma Aldrich Company and filtered on neutral alumina. All other reagents and solvents were purchased by Sigma Aldrich Company or by TCI Chemicals and used without any other purification.

Purification using chromatographic column of organic molecules and organometallic compounds was carried on using silica gel 60 (230-400 mesh) purchased by Sigma Aldrich Company and silica gel 60 (230-400 mesh) purchased by TSI Cambridge. Thin layer chromatography (TLC) was accomplished using silica gel 60 aluminium foils with F254 fluorescence indicator.

NMR analysis was carried on using Bruker AVANCE 250 (250 MHz for ¹H; 62.5 MHz for ¹³C), Bruker AM 300 (300 MHz for ¹H; 75 MHz for ¹³C), Bruker AVANCE 400 (400 MHz for ¹H; 100 MHz for ¹³C; 161.97 MHz for ³¹P) and Bruker ASCEND 600 (600 MHz for ¹H; 150 MHz for ¹³C). NMR samples were prepared dissolving about 10 mg of substance in 0.5 mL of deuterated solvent. Chemical shifts of spectra were reported as follows: chemical shift (ppm), multiplicity and integration. Multiplicity was abbreviated as follows: singlet (s), doublet (d), triplet (t), multiplet (m), broad (br), overlapped (o). ¹H and ¹³C NMR chemical shifts were assigned using tetramethylsilane (TMS) as internal standard.

ESI-MS analysis was accomplished on a Waters spectrometer with an electrospray source. ESI-FT-ICR analysis of organometallic compounds was carried on Bruker Solaris XR spectrometer.

Optical rotatory power of enantiomerically pure compounds was evaluated on a JASCO P2000 polarimeter. Cyclic voltammetry analysis was carried out on a AUTOLAB PG STAT 302N potentiostat with a three electrode configuration: a platinum electrode (2 mm diameter) as working electrode, a platinum disc (2 mm diameter) as auxiliary electrode and a *quasi-reference* (PtQRE)1, calibrated with octamethyl ferrocene as internal standard. All voltammograms were recorded with a 100mV/s scan rate in dry methylene chloride using NBu₄PF₆ (0.1 M) as supporting electrolyte.

Enantiomeric excesses were evaluated using chiral gas chromatography (Agilent Technologies 6850, column Supelco β -DEX 120L*30m*0.25mm. Method for **28**: isotherm at 60°C for 60 minutes, then 5°C/min until 100°C, then isotherm at 100°C for 10 minutes. Method for **30**: isotherm

at 40°C for 100 minutes, then 1°C/min until 50°C, then isotherm at 50°C for 120 minutes, then 1°C/min until 100°C, then isotherm at 100°C for ten minutes.

Conversions and selectivities of ethenolysis reactions were determined using gas chromatography (Agilent Technologies 7890A. Column: HP 5MS UI 60m*0.25mm. Method: isotherm at 60°C for 2 minutes, then 5°C/min until 250°C, then isotherm at 250°C for 18 minutes.).

<u>Catalysis</u>

Ring Closing Metathesis

An NMR tube with a screw-cap septum top was charged with 0.80 mL of a solution of the catalyst (1-5mol%) in benzene-d₆. After equilibration of the sample at 60 °C in the NMR probe, 0.080 mmol of substrate (0.1 M) was injected into the tube. Conversion of each substrate was monitored over time by ¹H NMR.

<u>RCM of Diethyl Diallylmalonate</u> (8). A 19.3 μ L portion of 8 was injected into a heated NMR tube containing 0.80 mL of catalyst solution (1 mol %). The conversion to 9 was determined by integrating the methylene protons of the reagent at δ 2.84 (dt) and of the product at δ 3.14 (s).

<u>RCM of Diethyl Allylmethallylmalonate</u> (10). A 20.5 μ L portion of 10 was injected into a heated NMR tube containing 0.80 mL of catalyst solution (1 mol %). The conversion to 11 was determined by integrating the methylene protons of the reagent at δ 2.96 (d), 2.93 (s) and of the product at δ 3.18 (m), 3.07 (s).

<u>RCM of Diethyl Dimethallylmalonate</u> (12). A 21.6 μ L portion of 12 was injected into a heated NMR tube containing 0.80 mL of catalyst solution (5 mol %). The conversion to 13 was determined by integrating the methylene protons of the reagent at δ 2.98 (s) and of the product at δ 3.15 (s).

<u>RCM of (±) linalool</u> (14). A 14.3 µL portion of 14 was injected into a heated NMR tube containing 0.80 mL of catalyst solution (1 mol %). The conversion to 15 was determined by integrating the methylene protons of the reagent at δ 1.13 (br s) and of the product at δ 1.26 (br s).

Cross Metathesis

Under nitrogen atmosphere, substrates were simultaneously added to a methylene chloride solution of the catalyst (2.5 mol %). The reaction mixture was refluxed under nitrogen overnight and then purified by column chromatography on silica gel (hexaneethyl acetate 9/1). *E/Z* ratios of products were determined by ¹H NMR.

<u>CM of allylbenzene (16) and 1,4-diacetoxy-2-butene (17)</u>. 66 μ L of 16 (1 eq.) and 160 μ L of 17 (2 eq.) were added to a solution of the catalyst . *E/Z* ratio of 18 was determined integrating the signals at δ =4.55 (d) and δ =4.73 (d) (*chemical shifts* in CDCl₃).

<u>CM of eugenol acetate (19) and 1,4-dichloro-2-butene (20)</u>. 47 µL of 19 (1 eq.) and 77 µL of 20 (3 eq.) were added to a solution of the catalyst . *E/Z* ratio of 21 was determined integrating the signals at δ =4.19 (d) and δ =4.06 (d) (*chemical shifts* in CDCl₃).

Ethenolysis of ethyl oleate (22).

Under nitrogen atmosphere, in an autoclave, ethyl oleate (5.4 mmol) and dodecane (150 μ L) were introduced. At this point, a t = 0 sample was prepared. The autoclave was purged with ethylene three times, and then a toluene solution of the catalyst was added. The autoclave was purged with ethylene three times and then charged with a pressure of 150 psi. The reaction mixture was stirred at 50 °C for 3 h and then cooled in an ice bath and quenched with ethyl vinyl ether.

After that, GC samples were prepared in hexane. Samples were stored at -20 °C until GC analysis. Conversions, selectivities and yields were calculated using the following equations:

Conversion (%) =
$$100 * (1 - \frac{Area (22)sample * Area (dodecane)t0}{Area (22)t0 * Area (dodecane)sample})$$

Selectivity (%) = $100 * (\frac{n(23) + n(24)}{n(23) + n(24) + 2(n(25) + n(26))})$
Yield (%) = $\frac{Conversion * Selectivity}{100}$
 $TON = Yield (%) \frac{mol (22)}{mol (cat) * 100}$

Ring Opening Metathesis Polymerization of COD (27)

An NMR tube with a screw-cap septum top was charged with 0.8 mL of a benzene- d_6 solution of the catalyst (0.8 µmol) and then was equilibrated at 60°C in the NMR probe.

After that, 49.1 μ L (0.40 mmol) of **27** was injected and the reaction was monitored as a function of time, determining the conversion by integrating protons in the monomer, δ = 2.22 (s), and those in the polymer, δ = 2.14 (s) and 2.11 (s). When the conversion was complete, the polymerization was quenched with a solution of ethyl vinyl ether in methanol.

Asymmetric Ring Closing Metathesis

ARCM of **28** and **30** with chloride catalyst were carried out by adding the complex (0.0028 mmol, 0.025 equiv.) to a 2.0 mL solution of the prochiral triene (1 equiv., 0.055 M) in dry CD_2Cl_2 .

The flask was stirred a 40°C for two hours for **28** and for three hours for **30**. Yields were determined via ¹H NMR spectroscopy of the crude product. The reaction mixture was filtered on neutral alumina and injected into the GC system without further purifications.

ARCM of **28** with iodide catalyst were carried out by adding NaI (0.055 mmol, 1 equiv.) to a 1.0 mL THF-d₈ solution of the chloride complex (0.0022 mmol, 0.04 equiv.). The reaction mixture was stirred at room temperature for one hour. After that, **28** (0.055 mmol, 1 equiv.) was added. Then, the flask was stirred a 40 °C for two hours. Yields were determined by ¹H NMR spectroscopy of the crude product. The reaction mixture was filtered on neutral alumina and injected into the GC system without further purifications.

NMR spectra

Figure S6: ¹³C{H}NMR of C (CDCl₃, 75 MHz).

Figure S10: ¹³C {H}NMR of E (CDCl₃, 100 MHz).

S15

Figure S20: ¹³C{H}NMR of **5** (C₆D₆, 125 MHz).

S17

S18

ESI-FT-ICR spectra

Figure S26. ESI-FT-ICR of 5

Figure S28. ESI-FT-ICR of 7

Crystal structure determination

The crystal data of compound **6** were collected at room temperature using a Nonius Kappa CCD diffractometer with graphite monochromated Mo-K α radiation. The data set was integrated with the Denzo-SMN package¹ and corrected for Lorentz, polarization and absorption effects (SORTAV).² The structure was solved by direct methods using SIR97³ system of programs and refined using full-matrix least-squares with all non-hydrogen atoms anisotropically and hydrogens included on calculated positions, riding on their carrier atoms.

Ill-defined regions of residual eletron density were found, occupied probably by disordered solvent molecules of pentane and diethyl ether, which can not be localized. For these reasons the program SQUEEZE was used to cancel out mathematically the effects of the disordered solvent, treated as a diffuse contribution to the overall scattering without specific atom positions. SQUEEZE is part of the PLATON⁴ program system.

All calculations were performed using SHELXL-2014/6⁵ and PARST⁶ implemented in WINGX⁷ system of programs. The crystal data are given in Table S1. A selection of bond distances and angles is given in Table S2.

Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 1564122. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> or on application to CCDC, Union Road, Cambridge, CB2 1EZ, UK [fax: (+44)1223-336033, e-mail: <u>deposit@ccdc.cam.ac.uk</u>]

¹ Z. Otwinowski, W. Minor, *Methods in Enzymology*, C.W. Carter, R.M. Sweet Editors, Vol. 276, Part A, Academic Press, London, 1997, 307.

² R. H. Blessing, Acta Crystallogr., 1995, A51, 33.

³ A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115.

⁴ A. L. Spek, *Acta Crystallogr.*, **2009**, **D65**, 148.

⁵ G. M. Sheldrick, Crystal Structure Refinement with SHELXL, Acta. Crystallogr., 2015, C71, 3.

⁶ M. Nardelli, J. Appl. Crystallogr., 1995, 28, 659.

⁷ L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837.

Table S1. Crystallographic data.

Compound	6
Formula	C ₃₇ H ₄₆ Cl ₂ N ₂ ORu
М	706.73
Space group	$P2_1/c$
Crystal system	Monoclinic
a/Å	10.6467(1)
b/Å	22.5668(5)
c/Å	15.5514(4)
β/°	93.659(1)
U/Å ³	3728.8(1)
Ζ	4
T/K	295
$D_c/g \text{ cm}^{-3}$	1.259
F(000)	1472
μ (Mo-K α)/mm ⁻¹	0.592
Measured Reflections	34036
Unique Reflections	10835
R _{int}	0.0547
Obs. Refl.ns [I≥2σ(I)]	7684
$\theta_{\min} - \theta_{\max} / ^{\circ}$	3.32 - 30.00
hkl ranges	-14,14;-31,30;-14,21
$R(F^2)$ (Obs.Refl.ns)	0.0367
wR(F ²) (All Refl.ns)	0.0930
No. Variables/Restraints	390/0
Goodness of fit	1.012
$\Delta \rho_{\text{max}}$; $\Delta \rho_{\text{min}} / e \text{ Å}^{-3}$	0.338; -0.717
CCDC Dep. N.	1564122

Table S2. S	Selected bond	distances and	l angles (Å and	degrees)
-------------	---------------	---------------	------------	-------	----------

Distances	6
Ru1-Cl1	2.3286(5)
Ru1-Cl2	2.3595(6)
Ru1-C1	1.975(2)
Ru1-C4	1.828(2)
Ru1-O1	2.291(1)
C1-N1	1.354(2)
C1-N2	1.351(2)
Angles	
Cl1-Ru1-Cl2	156.54(2)
Cl1-Ru1-C1	90.38(5)
Cl1-Ru1-C4	101.72(6)
Cl1-Ru1-O1	86.79(4)
Cl2-Ru1-C1	93.13(5)
Cl2-Ru1-C4	100.40(6)
Cl2-Ru1-O1	89.97(4)
C1-Ru1-C4	100.73(8)
C1-Ru1-O1	176.90(6)
C4-Ru1-O1	78.63(7)
Ru1-C1-N1	119.14(13)
Ru1-C1-N2	131.83(12)
N1-C1-N2	108.98(15)

Cyclic Voltammograms

Figure S29. Cyclic voltammograms of 4 and 5

Figure S30. Cyclic voltammograms of 6, 7 and HGII

GC data analysis

Supelco β -DEX 120, 1mL/min, 40°C for 100min, then 1°C/ min up to 50°C for 120 min, then 1°C/ min up to 100°C for 10 min.

Racemic

36% ee

Figure S31: GC chromatogram of 29 obtained with catalyst 5

Supelco β -DEX 120, 1mL/min, 40°C for 100min, then 1°C/ min up to 50°C for 120 min, then 1°C/ min up to 100°C for 10 min.

Racemic

33%ee

Figure S32: GC chromatogram of 31 obtained with catalyst 7

Cartesian coordinates and energies of calculated structures

Computational details relative to calculations on Hoveyda-Grubbs' catalysts and BDE of NHC

The DFT calculations were performed with the Gaussian09 set of programs,⁸ using the PBE0 model.⁹ The electronic configuration of the molecular systems was described with 6-311G(d,p) basis set for H, C, N, O, and Cl.¹⁰ For Ru we used the small-core, quasi-relativistic Stuttgart/Dresden effective core potential, with an associated (8s7p6d)/[6s5p3d] valence basis set contracted according to a (311111/22111/411) scheme (standard SDD keywords in gaussian09).¹¹ The geometry optimizations were performed without symmetry constraints.

 $%V_{Bur}$ calculation. $%V_{Bur}$ was calculated with the software developed by Cavallo and coworkers¹², starting from DFT optimized structures by choosing the metal as center of the sphere, selecting atomic bondi radii scaled by 1.17 and radius sphere of 3.5.

⁸ Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; N. Kudin, K.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

⁹ C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.

¹⁰ (*a*) A. D. McLean and G. S. Chandler, *J. Chem. Phys.*, 1980, **72**, 5639; (*b*) K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.

¹¹ (*a*) U. Haeusermann, M. Dolg, H. Stoll, H. Preuss, *Mol. Phys.*, 1993, **78**, 1211; (*b*) W. Kuechle, M. Dolg, H. Stoll, H. Preuss, *J. Chem. Phys.*, 1994, **100**, 7535; (*c*) T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger, *J. Chem. Phys.*, 1996, **105**, 1052.

¹² L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, *Organometallics*, 2016, **35**, 2286.

75

истт	SCE Dono2402	71052963 7	V TT
Du	0 102002	0 462002	0 040624
Ru	-0.102092	0.462902	-0.040024
CI	-0.522009	0.564557	-2.364289
CI	-0.682147	0.665801	2.248/15
С	-0.14/435	-1.504860	-0.001677
Ν	0.854626	-2.410489	0.026709
С	0.390904	-3.799194	0.063209
Н	0.720038	-4.283797	0.988115
С	-1.127131	-3.655457	-0.018594
Н	-1.641674	-4.108887	0.833943
Ν	-1.309275	-2.207392	-0.011437
Н	0.809827	-4.361391	-0.776494
Н	-1.542395	-4.085952	-0.935766
С	2.256397	-2.172189	0.065286
C	2 894996	-2.052462	1 305208
C	4 273248	-1 852008	1 315572
с ц	1 778/78	-1 7/3710	2 271736
C	5 01/202	1 77/550	0 120201
C	J.UI4303	-1.774556	0.130204
C	6.504169	-1.590243	0.179022
C	4.343096	-1.895/83	-1.0/6368
Н	4.903155	-1.823164	-2.004928
С	2.966294	-2.097866	-1.138472
С	2.255301	-2.169206	-2.456748
С	2.110418	-2.072892	2.583364
Η	1.370656	-1.265673	2.603876
Η	2.772454	-1.953977	3.443017
Н	1.566028	-3.014388	2.710788
С	-2.625318	-1.653635	-0.030611
С	-3.296612	-1.435604	1.183377
С	-4.566026	-0.865448	1.141785
Н	-5.079444	-0.670927	2.079861
С	-5.194102	-0.551348	-0.059429
C	-6.538617	0.115944	-0.075353
C	-4.542361	-0.872936	-1,245771
н	-5 037221	-0 685151	-2 195166
C	-3 272321	-1 443607	-1 259058
C	-2 686052	-1 899075	-2 562582
C	-2 733446	-1 880604	2.502502
	2.755440	2 957400	2.500054
п	-2.133193	-2.037490	2.700971
H	-2.993002	-1.1/0200	3.292203
п	-1.040231	-1.957903	2.401221
C	1.591225	0.865655	-0.008739
H	2.405492	0.144/22	0.061528
С	2.003/30	2.24/296	-0.100655
С	3.348234	2.631262	-0.156880
Н	4.108524	1.857010	-0.114862
С	3.700894	3.966528	-0.269417
Н	4.744418	4.257184	-0.313903
С	2.702272	4.933173	-0.326949
Н	2.969034	5.981066	-0.417744
С	1.355351	4.585849	-0.267936
Н	0.599230	5.358991	-0.311022
С	1.012728	3.245767	-0.153253
0	-0.249078	2.755216	-0.094267
С	-1.394873	3.641967	-0.003941
Н	-1.245416	4.422242	-0.758988
С	-1.486870	4.235591	1.388601
H	-1.621221	3.435155	2.119387

	Н	-2.343119	4.914515	1.438663
	Н	-0.589878	4.797895	1.656490
	С	-2 609989	2 822061	-0 374868
	ч	-2 481728	2 359518	-1 355089
	и П	-3 486800	3 475275	-0 400865
	11	2 700701	2 020065	0.400000
	H 	-2.789781	2.038965	0.368244
	Н	-2.922582	-1.195196	-3.362195
	H	-1.602234	-1.986519	-2.521905
	Н	-3.112730	-2.872375	-2.835775
	Н	2.967304	-2.113806	-3.282278
	Н	1.691766	-3.101916	-2.563309
	Н	1.539572	-1.346663	-2.561180
	Н	6 867454	-1 076189	-0.714033
	и П	6 811029	-1 013479	1 05/889
	11	7 014062	1.013479	1.004009
	H	7.014063	-2.558/18	0.229/4/
	Н	-7.120814	-0.1/8865	-0.951907
	Н	-7.116949	-0.128739	0.818826
	Н	-6.428538	1.205648	-0.106943
8 -	7			
4	hov-np	ont-syn SCF	Done: -2559.	78583260 A.U.
	Ru	-1.549239	-0.188526	0.015487
	Cl	-2.115754	-0.483840	2.276892
	Cl	-1.030456	-0.916263	-2.152860
	N	1 096556	-0 975846	0 746286
	N	1 229016	1 155246	0 278615
		1.229010	1.135240	0.270013
	C	0.3/3029	0.1105/6	0.387038
	C	2.53/128	-0.753910	0.672924
	Н	3.021442	-1.132588	1.5/5929
	С	2.582104	0.796727	0.723669
	H	2.682576	1.081485	1.779379
	С	-2.256463	1.471568	-0.217353
	Н	-1.718797	2.413539	-0.108366
	С	-3.664739	1.629647	-0.498821
	С	-4.276864	2.882708	-0.617397
	Н	-3.665435	3,773350	-0.507882
	С	-5 635398	2 989771	-0.865506
	н	-6 102067	3 964085	-0 955061
	C	-6 396666	1 833236	-0 997200
	U U	-7 161997	1 006230	_1 100140
		F 010000	1.900239 0 E71E11	1.190140
	C II	-5.818999	0.571511	-0.887450
	H	-6.436035	-0.310575	-0.997124
	C	-4.456634	0.4/52/9	-0.638296
	С	-4.400873	-1.958703	-0.715883
	H	-5.367679	-1.917815	-0.201924
	С	-3.540930	-3.010036	-0.053523
	Н	-2.579645	-3.097250	-0.567647
	Н	-4.048217	-3.976818	-0.113053
	Н	-3.369934	-2.763368	0.995906
	С	-4.578624	-2.194417	-2.203346
	Н	-5.183571	-1.416179	-2.673517
	Н	-5.075174	-3.155807	-2.363301
	H	-3.601369	-2 211872	-2 690910
	0	-3 758941	-0 676725	-0 486970
	C	0 530000	_0.0/0/2J	0.400970
		0.330988	-2.312433	0.000001
	н	U./6/161	-2.8//016	-0.080201
	Н	-0.556953	-2.190229	0.858557
	C	0.907490	-3.159534	2.070691
	С	2.232645	-3.902148	1.868587
	Н	2.426628	-4.554611	2.726210

	Н	3.08	38746	-3.	231	630	1	.767	592
	Н	2.20	0042	-4.	528	541	0	.9714	482
	С	-0.20)2830	-4.	208	001	2	.212	681
	Н	-0.31	19670	-4.	788	472	1	.290	644
	Н	-1.16	50360	-3.	732	0.5.0	2	444	92.5
	н	0 03	34427	-4	908	717	3	018	768
	C	0.00	55453	-2	310	132	3	340'	345
	U U	0.00	27120	_1	7/0	910 910	3	. J I U. 1 7 7 1	110
	п	1 75	70022	-⊥. 1	500	040 707	с С	2201	506
	н	1 1	19922	-1.	590	107	2	. 3203	506
	H	1.10	J4088	-2.	955	053	4	. 212:	208
	C	0.8	/894/	2.	534	8/3	0	.010	505
	С	3.20)3295	-1.	405	099	-0	. 520	539
	С	4.53	38320	-1.	793	716	-0	.4148	394
	H	5.06	57632	-1.	647	887	0	.5232	222
	С	5.20	2008	-2.	355	869	-1	.496	726
	Н	6.24	11980	-2.	649	694	-1	.3992	202
	С	4.53	31047	-2.	546	732	-2	.6992	241
	Н	5.04	14705	-2.	991	975	-3	.5450	072
	С	3.19	97894	-2.	171	303	-2	.808	695
	Н	2.66	52583	-2.	321	483	-3	.740	640
	С	2.53	35374	-1.	601	721	-1	.7270	063
	Н	1.49	92316	-1.	314	644	-1	.8303	329
	С	3.70)7613	1.	437	956	-0	.0424	469
	С	3.6	74720	1.	571	352	-1	431	116
	н	2 80	13231	1	233	103	-1	9810	
	C	2.00 4 75	50783	2	127	016	-2	1091	138
	н	4.75	11271	2.	225	216	-3	188	762
	C C	5 87	17356	2.	5/0	210 536	_1	, 100 Л11	501
	11	6 71	17550	2.	0.01	017	1	• + I I ·	201 201
	п	0./J		2.	901 410	04/	-1	.944.	
	C II	5.91	L980I	2.	418	8/8 105	-0	.0291	00/ 710
	H	6.75	92288	۷.	/50	C81	0	. 523	/10
	C	4.83	36859	⊥.	8/1	4/6	0	.648.	133
	Н	4.86	58432	1.	782	147	1	.7308	342
	С	0.6	79389	3.	480	608	1	.225	532
	H	1.60	57180	2.	958	595	-0	.6202	209
	Н	-0.01	L4243	2.	505	686	-0	.6090	013
	С	-0.08	31095	4.	703	510	0	.701	764
	С	-0.10	08147	2.	813	701	2	.351	747
	С	2.02	24514	3.	971	415	1	.7730)92
	Н	1.85	57975	4.	725	934	2	.5488	318
	Н	2.60)7377	3.	166	825	2	.2272	261
	Н	2.63	36690	4.	425	377	0	.9873	342
	Н	-0.18	36362	5.	455	290	1	.489	719
	Н	0.44	16472	5.	171	426	-0	.1368	349
	Н	-1.08	37239	4.	439	269	0	.3610	040
	Н	-0.26	55295	3.	526	734	3	.1670	602
	Н	-1.08	34899	2.	448	0.3.8	2	0290	064
	Н	0.42	28429	1	953	914	2	7634	482
87	7	0.12	10125	±•	500	<i>J</i> 1	-	• / 00	102
5	hov-pr	ont-ar	nti SCF	Done	· -	2559	79339	3206	A II
5	D11	ліс аі 1 л1	101 001	_0	236	2000	• / 2000	0200 nan'	798
	C1	1 20	58782	_0.	200	200 270	0	, しりし オクに,	, , , , , , , , , , , , , , , , , , , ,
		1 20	20717 20717	-U.	10J	J 10 106	2	110'	105
	UL N	1 21	50714 55707	-⊥. ^	000	1 70 6 0 7	-2	• ⊥⊥У. 160	100
	IN NT	-1.35)J424	-0.	002	001	0	. 1004	19U
	IN	-1.28)))))))))))))))))))	⊥.	202	oZI 7eo	-0	. TUT;	209 101
	C	-0.51	10393	0.	τ/8	159	0	.0321	
	C.	-2.74	+6113	-0.	526	089	-0	.0800	JZT
	H	-3.39	95652	-0.	986	964	0	.6658	399
	С	-2.69	€3018	0.	994	607	0	.1680	649

С	-3.114682	1.394591	1.567368
C	2 220500	1 270260	0 060270
C	2.230308	1.379300	-0.009279
Н	1.730868	2.333740	-0.230931
С	3.668983	1.479057	0.023489
С	4 345328	2 704157	-0.002403
11	2 765670	2 (1(200	0 107010
н	3.765670	3.010399	-0.10/819
С	5.724978	2.756854	0.109681
Н	6.241350	3.709810	0.091169
C	6 442697	1 573364	0 245857
	7 502600	1 (00717	0.240007
Н	1.523688	1.603/1/	0.333970
С	5.801319	0.338026	0.269065
Н	6.386987	-0.566131	0.370860
C	4 419054	0 206420	0 160002
C	4.410004	0.290430	0.100003
С	4.280226	-2.134491	0.132592
Η	5.099833	-2.117406	0.859362
С	3 246937	-3.137650	0.589293
	0 425100	2 200501	0.120042
н	2.435108	-3.208581	-0.139942
Н	3.716191	-4.121823	0.671923
Н	2.839599	-2.856974	1.562538
C	4 791769	-2 412335	-1 267460
		1 ((0005	1 500607
Н	5.522031	-1.668285	-1.59266/
Н	5.271444	-3.394983	-1.292533
Н	3.955395	-2.405070	-1.970241
\cap	3 655251	-0 824761	0 1835/0
Ő	5.055251	0.024701	0.105540
С	-0.8859/5	-2.258586	0.205841
Н	-0.895419	-2.686589	-0.804257
Н	0.163731	-2.217759	0.521043
C	1 595627	2 221005	1 101010
C	-1.383827	-3.231003	1.101910
С	-2.898030	-3.778757	0.609242
Н	-3.297564	-4.548725	1.277162
н	-3 672046	-3 017429	0 493682
11 TT	0.727706	4 007167	0.155002
н	-2.737706	-4.23/10/	-0.3/1850
С	-0.621237	-4.414125	1.338888
Н	-0.371061	-4.855420	0.367818
ч	0 308688	-4 101511	1 823807
11	1.075051		1 052405
н	-1.0/5951	-2.190029	1.953485
С	-1.811866	-2.590455	2.550653
Н	-0.881513	-2.176159	2.947777
ч	-2 542709	-1 777955	2 513601
11	2.342703	1.777955	2.515001
Н	-2.18/569	-3.340255	3.254572
С	-0.872499	2.671852	-0.171105
С	-3.246616	-0.878550	-1.465395
C	-4 614368	-1 078018	-1 655104
	4.014900	1 024014	0.001700
н	-3.286882	-1.034214	-0.801/89
С	-5.123955	-1.334603	-2.921117
Н	-6.189671	-1.490531	-3.053646
C	-1 266712	_1 /017/0	-1 0137/3
C	-4.200712	-1.401/40	-4.013743
Н	-4.66098/	-1.60//36	-5.003382
С	-2.902332	-1.214016	-3.829911
Н	-2.224332	-1.273983	-4.674973
C	_2 201100	_0 053140	-2 562002
C	-2.391100	-0.900149	-2.302002
Η	-1.320098	-0.822743	-2.432950
Н	-3.330665	1.507756	-0.552120
C	-4 408650	1 871885	1 772451
č		1 0 0 1 0 0 0 U U U U U U U U U U U U U	2 040700
C	-4.83036/	2.19905/	3.048/80
С	-3.995531	2.057057	4.134864
С	-2.700809	1.590304	3.936372
C	-2 258306	1 260990	2 660900
	2.230300	1 000000	2.000900
Н	-5.0/5826	T.992003	0.922601

Н	-5.858871	2.572849	3.192862
Н	-4.334735	2.315604	5.132555
Н	-2.025505	1.480685	4.778492
н	-1 242451	0 900266	2 524020
C	-0 876654	3 324658	-1 572117
с ц	-1 565301	3 234210	0 467199
п	-1.J0JJ01	3.234210	0.407109
H	0.104130	2.770101	0.298338
C	-0.4/195/	4./86584	-1.366434
С	0.104413	2.645983	-2.527892
С	-2.276240	3.277036	-2.189689
Н	-2.293479	3.854525	-3.119356
Н	-2.568606	2.253062	-2.440060
Н	-3.029344	3.705996	-1.518990
Н	-0.438525	5.312383	-2.325236
Н	-1.182691	5.312911	-0.719911
H	0.520467	4 865043	-0 909123
и Ц	_0 012128	3 059282	-3 535033
11	1 144044	2.039202	2.220016
H	1.144044	2.803771	-2.229910
Н	-0.059269	1.56/210	-2.584/91
89			
6 hov-0	cychex-syn SCF	Done: -2635	5.95272585 A.U.
Ru	1.585075	0.281264	0.117053
Cl	1.961276	-0.207851	2.370518
Cl	1.439143	1.761101	-1.707602
N	-1.102000	1.313580	0.481065
Ν	-1.179826	-0.888916	0.462998
С	-0.356764	0.195632	0.375520
С	-2.531700	1.039670	0.436361
н	-3.056164	1 605629	1 211817
C	-2 542530	-0 464567	0 824872
С Н	-2 632708	-0 508502	1 917924
C	1 756937	-1 273131	_0 905602
	0.014764	1 076614	1 156724
П	0.914704	-1.0/0014	-1.150/24
C	3.069/35	-1./61/15	-1.156056
C	3.2/8/92	-2.998184	-1.//82/2
Н	2.414735	-3.609238	-2.021497
С	4.558616	-3.437824	-2.074811
Н	4.711661	-4.397395	-2.555436
С	5.647035	-2.635125	-1.750232
Н	6.653530	-2.971072	-1.976717
С	5.473537	-1.396684	-1.138809
Н	6.338623	-0.790595	-0.903146
С	4.187892	-0.963807	-0.844386
0	3.872296	0.209955	-0.240316
С	4.875697	1.248399	-0.080850
Н	5.755671	0.768847	0.362415
C	4 314538	2 248611	0 903562
ч	3 451880	2 763939	0 470947
и Ц	5 070370	2 996712	1 128773
и П	1 013565	1 757051	1 930924
11 C	UIJJUJ 5 205200	1 960201	_1 /2/5024
	J.20J399 E E0EE00	1 12540C	-1.424JUJ
н	5.595589 F 0(1505	1.133496	-2.132/95
H 	5.961505	2.048U18	-1.289812
Н	4.304624	2.315/81	-1.851987
С	-0.564409	2.618318	0.862306
Н	0.506213	2.581127	0.629007
С	-1.150313	3.775415	0.060913
Н	-2.238433	3.811937	0.203218
Н	-0.971056	3.604583	-1.003075

С	-0.534223	5.101120	0.502830
Н	0.533155	5.101015	0.244676
Н	-0.987968	5.921829	-0.061895
C	-0 691455	5 332252	2 002381
ц	-0.214412	6 273667	2 204672
п	-0.214412	0.273007	2.294072
Н	-1./58450	5.43418/	2.243/59
С	-0.104777	4.170760	2.797597
Н	-0.256042	4.320410	3.871580
Н	0.981559	4.134730	2.640699
С	-0.712858	2.837444	2.370873
Н	-0 232921	2 006571	2 897716
ч	-1 779036	2 825434	2 637121
	1.775050	2.023434	0.046224
C	-0.007249	-2.191/72	0.948234
С	-3.153540	1.3/9313	-0.904339
С	-2.402100	1.402614	-2.077743
Н	-1.330646	1.228172	-2.040802
С	-3.014798	1.680397	-3.294383
Н	-2.416525	1.702276	-4.199548
С	-4 379006	1 939170	-3.352652
ц	-4 853055	2 159108	-4 303673
	E 121100	1 026014	2 102740
C	-5.151180	1.926914	-2.183/49
Н	-6.1954/8	2.135684	-2.21/353
С	-4.519175	1.651242	-0.968328
Н	-5.112512	1.638465	-0.057965
С	-3.663747	-1.283031	0.240996
С	-3.689723	-1.657320	-1.103121
Н	-2.861903	-1.386248	-1.748321
C	-4 762300	-2 373744	-1 612689
	4.760200	2.575744	2 660151
п	-4.709314	-2.030301	-2.000131
С	-5.82/249	-2.726322	-0.788999
Н	-6.664689	-3.287146	-1.190832
С	-5.810174	-2.360872	0.549966
Н	-6.632245	-2.636552	1.202296
С	-4.731339	-1.645632	1.059024
Н	-4.716593	-1.367997	2.109882
C	-1 080489	-3 377512	0 066610
U U	0 300505	-2 099282	0.031571
	0.3395555	2.099202 1.611771	0.931371
C	-0.370303	-4.641//4	0.548559
Н	-2.163975	-3.532042	0.103672
Н	-0.831286	-3.168215	-0.979550
С	-0.683524	-4.928624	2.014527
Н	-0.659178	-5.492929	-0.077139
Н	0.714709	-4.517166	0.429509
С	-0.354395	-3.726471	2.894360
Н	-1 751297	-5 167378	2 112510
и 11	_0 132578	-5 811533	2 355396
11	1 00010	J.011JJJ	2.333390
C	-1.060846	-2.463130	2.405933
Н	-0.632868	-3.926959	3.93419/
Н	0.728624	-3.549400	2.889708
Н	-2.145761	-2.600444	2.504845
Н	-0.764553	-1.607354	3.021128
89			
7 hov-c	vchex-anti	SCF Done: -263	5.95675193 A.U.
R11	-1 439766	-0 299758	-0.130588
 	_1 250306	0 042500	-2 /35/06
	-I.ZJOJOO	0.042309	1 001070
CT	-1.542886	-1.010508	1.0210/8
0	-3.697107	-0.703855	-0.429057
С	0.493060	0.054157	0.042738
N	1.350043	-0.990032	0.135850

С	2.717329	-0.561277	0.401110
Η	3.422285	-1.116706	-0.222435
С	2.665439	0.913151	-0.067451
н	3 196040	1 543102	0 651729
N	1 226503	1 186060	-0 012857
C	2 172445	1 217270	0.552711
	-2.1/2445	1.21/3/0	1 000426
Н	-1.629585	1.997689	1.089426
С	-3.599926	1.42/615	0.463044
С	-4.218252	2.615028	0.871468
Η	-3.601699	3.405416	1.289155
С	-5.587241	2.784858	0.743556
Η	-6.057298	3.709056	1.059942
С	-6.354503	1.756675	0.206527
н	-7.427290	1.880301	0.101569
C	-5 772644	0 558743	-0 198632
ч	-6 394183	-0 228219	-0 605597
C	4 400142	0.220217	0.000000
C	4.400142	1 040400	-0.0000000
C	-4.383599	-1.940466	-0./5//62
Н	-5.169511	-1.682062	-1.4/633/
С	-4.966238	-2.563013	0.496014
Η	-4.161547	-2.789686	1.199480
Η	-5.485774	-3.489538	0.235483
Η	-5.679686	-1.900144	0.990170
С	-3.371488	-2.832698	-1.438426
Н	-2.916909	-2.327852	-2.292753
Н	-3.870437	-3.741732	-1.785007
Н	-2.588464	-3.122489	-0.731504
C	1 024740	-2 364569	-0 235772
ч	-0 071109	-2 427567	-0 227279
C	1 500124	2.72/30/	1 651006
	1.JUUI24	-2.700433	-1.051090
н	2.392/82	-2.003098	-1.706696
H	1.075269	-1.977013	-2.353818
С	1.099345	-4.122618	-2.0361/6
Η	1.473901	-4.354082	-3.038542
Η	0.004030	-4.182074	-2.093710
С	1.605813	-5.143489	-1.022374
Η	1.277359	-6.150858	-1.299448
Η	2.704288	-5.156493	-1.040314
С	1.129422	-4.797219	0.384723
Η	1.528316	-5.510980	1.112653
Н	0.035835	-4.885785	0.431767
С	1.528724	-3.379830	0.785520
н	1 124520	-3 129874	1 769247
и Ц	2 622874	-3 315279	0 856632
C	0 710072	2515275	0.0000000
C	0.710972	2.545972	1 055270
C	3.123048	-0.690935	1.855379
С	4.4/82/0	-0./84160	2.1/24/8
Η	5.214772	-0.826128	1.373729
С	4.893407	-0.833086	3.497062
Η	5.950341	-0.913242	3.729872
С	3.953722	-0.791229	4.520888
Н	4.274360	-0.834722	5.556571
С	2.601832	-0.706572	4.210507
H	1.861362	-0.687891	5.003519
C	2.184960	-0.657213	2.884953
н	1 125196	-0 623133	2 650267
C	2 078681	1 091569	-1 440400
C	2.2/0001 2 556570	T.03T300	-2 601117
	2.3365/8	U.833828	-2.00444/
Н	1.502128	0.5///45	-2.545895

С	3.176027	0.930641	-3.845071
Н	2.601638	0.732618	-4.744219
С	4.517097	1.284779	-3.937644
Н	4.995348	1.363139	-4.908436
С	5.240272	1.547272	-2.780079
Н	6.284732	1.835200	-2.842757
С	4.622268	1.450953	-1.539403
Н	5.188747	1.664486	-0.636199
С	1.441525	3.544621	-0.799655
Н	-0.318646	2.494350	-0.264382
С	0.825349	4.935367	-0.657101
Н	2.503988	3.593096	-0.528991
Н	1.394450	3.213618	-1.839627
С	0.833580	5.415890	0.790250
Н	1.364393	5.640371	-1.297834
Н	-0.208793	4.910028	-1.025624
С	0.126440	4.415768	1.698491
Н	1.872558	5.536104	1.125936
Н	0.363758	6.401876	0.868216
С	0.723739	3.018880	1.554607
Н	0.176254	4.737594	2.743705
Н	-0.939899	4.384043	1.433743
Н	1.761088	3.028019	1.915820
Н	0.188854	2.294807	2.178531