A pair of new chiral polyoxovanadates with decent NLO property

Jiapeng Cao, ‡^a Yao Xiong, ‡^a Ximing Luo,^a Lu Chen,^a Jie Shi,^a Mengjie Zhou,^a Yan Xu^{*a,b}

- a. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China. *E-mail: <u>yanxu@njtech.edu.cn</u>
- b. Prof. Y Xu State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 (P.R. China)
- t. The authors contributed equally to this work.

Fig. S1 Representation of the 3D supramolecular structure of 1-L.

Fig.S2 Experimental and simulated XRD patterns of compound 1-L and 1-D

Fig.S3 IR spectrum of compound 1-L and 1-D

Fig.S4 Thermogravimetric analyses curve of compound 1-L

Fig.S5 Cyclic voltammograms of L-CPE in a 1 M Na₂SO₄ solution at different scan rates (from inner to outer: 20, 50, 80, 100, 150, 200, 250, 300, 350 and 400 mV·s⁻¹).

Table.S1 bond valence sum (BVS) calculations of 1-L						
BVP	R	S	BVP	R	S	
V1-011	1.785	1.009	V2-O10	1.830	0.877	
V1-O2	2.071	0.413	V2-O11	1.875	0.762	
V1-06	1.595	1.827	V2-O3	2.047	0.445	
V1-07	1.817	0.913	V2-O5	1.860	0.799	
V1-09	1.944	0.614	V2-O8	1.587	1.874	
calculated value		4.777	calculated value		4.756	

Table.S2 hydrogen bond length and Angle of Compound 1-L

<i>D</i> -H··· <i>A</i>	d(DA)	d(HA)	∠(DHA)
N1 H1A O4	2.712(4)	1.80	176
N2 H2B O3	2.870(4)	2.04	151
N2 H2B O11	3.091(4)	2.35	138
C6 H6B O1	3.376(5)	2.60	138
С7 Н7В О5	3.401(5)	2.53	150
C8 H8A O7	3.350(4)	2.54	140
C8 H8A O9	3.385(4)	2.50	152
C8 H8B O8	3.528(5)	2.58	165
C10 H10A O3	3.390(5)	2.45	168

1	able.83 Selected bon	d distances (A) and angles (°).	
V1-O2	2.0713	N2-H2B	0.9100
V1-06	1.5949	C1-C2	1.535(4)
V1-07	1.8170	C2-C3	1.541(4)
V1-09	1.9440	C3-C4	1.505(4)
V1-011	1.7848	C2-H2A	0.9800
V2-08	1.587(3)	СЗ-НЗА	0.9800
V2-O10	1.8296(8)	C5-C8	1.499(6)
V2-O11	1.875(3)	C5-H5A	0.9700
V2-O3_a	2.048(2)	C5-H5B	0.9700
V2-O5_a	1.861(2)	C6-H6A	0.9600
O1-C1	1.218(5)	C6-H6B	0.9600
O2-C4	1.270(5)	C6-H6C	0.9600
O3-C1	1.298(5)	C7-H7A	0.9600
O4-C4	1.248(4)	С7-Н7В	0.9600
O5-C2	1.406(5)	C7-H7C	0.9600
O9-C3	1.402(3)	C8-H8A	0.9700
N1-C10	1.505(5)	C8-H8B	0.9700
N1-C8	1.504(5)	С9-Н9А	0.9600
N1-C9	1.476(5)	С9-Н9В	0.9600
N2-C5	1.481(5)	С9-Н9С	0.9600
N2-C6	1.487(5)	C10-H10A	0.9600
N2-C7	1.478(5)	C10-H10B	0.9600
N1-H1A	0.9100	C10-H10C	0.9600
O2-V1-O6	93.72	C8-N1-C10	107.9(3)
O2-V1-O7	161.62	C9-N1-C10	110.3(3)
O2-V1-O9	77.44	C5-N2-C7	114.5(3)
O2-V1-O11	87.04	C6-N2-C7	108.7(3)
O6-V1-O7	101.22	C5-N2-C6	110.7(3)
O6-V1-O9	106.28	C8-N1-H1A	108.00
O6-V1-O11	105.95	C10-N1-H1A	108.00
07-V1-09	88.04	C9-N1-H1A	108.00
07-V1-011	98.92	C6-N2-H2B	108.00
09-V1-011	144.93	C7-N2-H2B	108.00
O8-V2-O10	101.24(10)	C5-N2-H2B	108.00
O8-V2-O11	103.28(12)	01-C1-O3	125.1(3)
O3_a-V2-O8	104.25(11)	O3-C1-C2	111.6(3)
O5_a-V2-O8	101.07(12)	O1-C1-C2	123.0(3)
O10-V2-O11	90.37(10)	O5-C2-C3	107.5(3)
O3_a-V2-O10) 154.25(11)	C1-C2-C3	108.3(3)
O5_a-V2-O10) 100.57(9)	O5-C2-C1	106.4(3)
O3_a-V2-O1	l 80.30(10)	C2-C3-C4	108.8(2)
O5_a-V2-O1	150.74(11)	O9-C3-C4	109.6(2)

Table S3 Selected bond distances (Λ) and angles (\circ)

O3_a-V2-O5_a	78.19(9)	O9-C3-C2	107.3(2)
V1-O2-C4	116.79	O2-C4-O4	124.9(3)
V2_a-O3-C1	113.3(2)	O2-C4-C3	114.8(3)
V2_a-O5-C2	111.7(2)	O4-C4-C3	120.3(3)
V1-07-V1_a	126.02	O5-C2-H2A	112.00
V1-09-C3	118.65	C1-C2-H2A	111.00
V2-O10-V2_a	166.05(19)	С3-С2-Н2А	111.00
V1-011-V2	110.85	С2-С3-НЗА	110.00
C8-N1-C9	114.9(3)	С4-С3-НЗА	110.00