Silver(I) Complexes of *Bis*- and *Tris*-(pyrazolyl)azine Derivatives – Dimers, Coordination Polymers and a Pentametallic Assembly

Izar Capel Berdiell, Stuart L. Warriner and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK. E-mail: m.a.halcrow@leeds.ac.uk.

Supporting Information

	Page
Figure S1 ¹ H and ¹³ C NMR spectra of bpt.	2
Figure S2 View of the molecule in the crystal structure of bpt.	3
Figure S3 Packing diagram of bpt.	3
Figure S4 View of the dimeric cations in 1.2MeCN and 4, showing the atom numbering schemes.	4
Table S1 Selected bond lengths and angles for the crystal structures of 1.2MeCN and 3.	5
Figure S5 Comparison of the heterocyclic ligand dispositions in the dimeric cations in 1.2MeCN and 3.	6
Figure S6 Packing diagrams of 1.2 MeCN and 3 , showing the canted stacks of dimeric cations.	7
Table S2 Metric parameters for intramolecular and intermolecular π π interactions in 1.2MeCN and 3.	8
Figure S7 View of the asymmetric unit in α - 2 · ¹ / ₂ MeNO ₂ .	8
Figure S8 View of the asymmetric unit in β -2· <i>x</i> MeNO ₂ .	9
Table S3 Selected bond lengths and angles for α -2·½MeNO ₂ and β -2·xMeNO ₂ .	10
Table S4 Metric parameters for intra-dimer $\pi \dots \pi$ interactions in α -2 MeNO ₂	11
Figure S9 Packing diagram of α -2 MeNO ₂ , showing the well-separated coordination polymer chains.	11
Figure S10 An extended helical chain in β -2· <i>y</i> MeNO ₂ , plotted with displacement ellipsoids and space-filling views.	12
Table S5 Metric parameters for intramolecular $\pi \pi$ contacts in β -2·yMeNO ₂ .	13
Figure S11 Packing diagram of β -2· <i>y</i> MeNO ₂ , showing the alternating stripes of Λ and Δ helical chains.	13
Figure S12 View of the pentanuclear $[Ag_5(tpym)_4(BF_4)_2]^{3+}$ assembly in 4·2MeNO ₂ .	14
Table S6 Selected bond lengths and angles for 4.2MeNO2.	14
Table S7 Metric parameters for intramolecular and intermolecular π π interactions in 4.2MeNO ₂ .	15
Figure S13 Packing diagram of 4.2MeNO ₂ , showing the anion- and solvent-filled voids in the lattice.	15
Figure S14 Space-filling packing diagram of 4.2MeNO2, showing the anion- and solvent-filled voids.	16
Figure S15 Views of the asymmetric units of isostructural 5a and 5b.	17
Table S8 Selected bond lengths and angles for isostructural 5a and 5b.	18
Figure S16 Packing diagrams of 5a, showing the coparallel helical chains in the lattice.	19
Figure S17 Views of the coordination polymer asymmetric unit of 5a MeNO ₂ .	20
Table S9 Selected bond lengths and angles for 5a MeNO2.	21
Table S10 Metric parameters for intra-chain and inter-chain π π interactions in 5a MeNO ₂	21
Figure S18 Packing diagram of $5a \cdot MeNO_2$, showing the anion π interactions linking the coordination polymer chains.	22
Figure S19 Packing diagram of $5a \cdot MeNO_2$, showing the coordination polymer/anion π layers separated by anions and solvent.	22
Figure S20 View of the full asymmetric unit of 5a MeOH.	23
Table S11 Selected bond lengths and angles for 5a MeOH.	23
Table S12 Hydrogen bond parameters for 5a MeOH.	24
Figure S21 Packing diagram of 5a MeOH, showing well-separated polymer chains.	24
Figure S22 View of the $\{[Ag(bpt)]BF_4\}_n$ coordination polymer chain in 6 .	25
Table S13 Selected bond lengths and angles for 6.	25
Figure S23 Packing diagrams of 6 , showing the coordination polymer chains and anion π . interactions.	26
Figure S24 X-ray powder diffraction data from the tpp and tpym complexes 1-4.	27
Figure S25 X-ray powder diffraction data from the tpt and bpt complexes 5a/5b and 6.	28
Figure S26 Electrospray mass spectra of the complexes from MeNO ₂ solution.	29

Figure S1. 1 H (top) and 13 C (bottom) NMR spectra of the new ligand bpt in CDCl₃.

Figure S2. View of the molecule in the crystal structure of bpt, showing the atom numbering scheme. Atomic displacement ellipsoids are at the 50 % probability level, except for H atoms which have arbitrary radii.

Figure S3. Packing diagrom of bpt, showing the organisation of the molecules into canted stacks by translation along the unit cell *b* direction. The view is parallel to the [100] crystal vector, with *b* vertical. The interplanar distance between the stacked molecules in 3.267(2) Å.

Figure S4. View of the $[Ag_2(tpp)_2(NCMe)_2]^{2+}$ cation in $1 \cdot 2MeCN$ (top) and of $[Ag_2(tpym)_2(NCMe)_2]^{2+}$ in **3** (bottom), showing the full atom numbering schemes. Atomic displacement ellipsoids are at the 50 % probability level, and H atoms are omitted for clarity. Symmetry code: (i) 1-x, 1-y, 1-z.

Colour code: C, white; Ag, green; N, blue.

1.2MeCN		3	
Ag(1)–N(2)	2.445(3)	Ag(1)–N(3)	2.449(7)
Ag(1) - N(9)	2.461(5)	Ag(1) - N(10)	2.557(8)
Ag(1)–N(14)	2.414(4)	Ag(1)–N(15)	2.384(8)
$Ag(1) - N(19^{i})$	2.566(4)	Ag(1) - N(41)	2.497(8)
Ag(1)–N(23)	2.250(5)	Ag(1)–N(45)	2.207(8)
		Ag(2)–N(20)	2.621(9)
		Ag(2)–N(24)	2.428(8)
		Ag(2)–N(31)	2.400(7)
		Ag(2)–N(36)	2.531(7)
		Ag(2)–N(48)	2.194(9)
N(2)-Ag(1)-N(9)	65.74(12)	N(3)-Ag(1)-N(10)	64.6(2)
N(2)-Ag(1)-N(14)	65.92(12)	N(3)-Ag(1)-N(15)	66.1(2)
$N(2)-Ag(1)-N(19^{i})$	113.38(12)	N(3)-Ag(1)-N(41)	106.3(2)
N(2)-Ag(1)-N(23)	153.60(18)	N(3)-Ag(1)-N(45)	143.5(3)
N(9)-Ag(1)-N(14)	131.02(13)	N(10)-Ag(1)-N(15)	130.7(2)
$N(9)-Ag(1)-N(19^{i})$	117.25(14)	N(10)-Ag(1)-N(41)	85.6(3)
N(9)-Ag(1)-N(23)	99.44(19)	N(10)-Ag(1)-N(45)	107.9(3)
$N(14)-Ag(1)-N(19^{i})$	88.88(13)	N(15)-Ag(1)-N(41)	106.9(3)
N(14) - Ag(1) - N(23)	121.21(19)	N(15)-Ag(1)-N(45)	112.2(3)
$N(19^{i})-Ag(1)-N(23)$	92.70(18)	N(41)-Ag(1)-N(45)	108.7(3)
		N(20)-Ag(2)-N(24)	108.2(2)
		N(20)-Ag(2)-N(31)	90.3(3)
		N(20)-Ag(2)-N(36)	105.1(3)
		N(20)-Ag(2)-N(48)	97.8(3)
		N(24)-Ag(2)-N(31)	67.3(3)
		N(24)-Ag(2)-N(36)	64.2(2)
		N(24)-Ag(2)-N(48)	149.1(3)
		N(31)–Ag(2)–N(36)	131.5(3)
		N(31)-Ag(2)-N(48)	130.3(3)
		N(36)-Ag(2)-N(48)	93.5(3)
$Ag(1)Ag(1^{i})$	7.2461(7)	Ag(1)Ag(2)	7.2706(10)
$\tau[\mathrm{Ag}(1)]^{\mathrm{a}}$	0.38	$\tau[\operatorname{Ag}(1)]^{a}$ $\tau[\operatorname{Ag}(2)]^{a}$	0.21

Table S1. Selected bond lengths (Å) and angles (°) for the crystal structures of the dimeric acetonitrile solvates $[Ag_2(tpp)_2(NCMe)_2][BF_4]_2 \cdot 2MeCN$ (1·2MeCN) and $[Ag_2(tpym)_2(NCMe)_2][BF_4]_2$ (3), including intramolecular Ag...Ag distances. See Fig. S4 for the atom numbering schemes employed. Symmetry code: (i) 1–*x*, 1–*y*, 1–*z*.

^aSee ref. [1] for the definition of τ . An ideal square pyramidal geometry gives $\tau = 0$, while an ideal trigonal bipyramidal geometry yields $\tau = 1$.

[1] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349.

Figure S5. Comparison of centrosymmetric $[Ag_2(tpp)_2(NCMe)_2]^{2+}$ in **1**·2MeCN (top) and *C*₁-symmetric $[Ag_2(tpym)_2(NCMe)_2]^{2+}$ in **3** (bottom). The views are perpendicular to the least squares planes of the tridentate ligand domains. Other details as for Figure S4. Colour code: C, white; Ag, green; N, blue.

The compounds differ in the relative dispositions of the monodentate pyrazolyl groups on each ligand, which are *transoid* to each other in 1.2MeCN and *cisoid* in 3.

Figure S6. Packing diagrams of 1.2MeCN (top) and 3 (bottom), showing the canted stacks of dimeric cations parallel to the unit cell *b* direction. The views are both along the [100] crystal vector, with *b* vertical. Only one orientation of the disordered residues is shown, and all atoms have arbitrary radii. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; lattice MeCN, yellow.

Table S2. Metric parameters for π π interactions in 1.2MeCN and 3 (Å, °). See Fig. S4 for the atom numbering
scheme employed. Symmetry codes: (i) $1-x$, $1-y$, $1-z$; (ii) $1-x$, $-y$, $1-z$; (iii) x , $1+y$, z .

	Dihedral angle	Interplanar distance	Horizontal offset
1.2MeCN			
Intramolecular			
$[N(2)-C(7)][N(2^{i})C(7^{i})]$	0	3.338(3)	1.92
Intermolecular			
$[N(2), C(7)]$ $[N(13^{ii}), C(17^{ii})]$	4 35(14)	3 305(17)	1.80
$[\Pi(2) - \mathbb{C}(7)] \dots [\Pi(15) \dots \mathbb{C}(17)]$	4.33(14)	3.333(17)	1.09
3			
Intramolecular			
[N(3)–C(8)][N(24)C(29)]	1.7(3)	3.28(3)	0.59
Intermolecular			
$[N(3)-C(8)][N(24^{iii})C(24^{iii})]$	1.7(3)	3.19(3)	2.92

Figure S7. View of the $[Ag_2(tpp)_2]^{2+}$ moiety in the asymmetric unit of α -**2**·MeNO₂, showing the full atom numbering scheme. Details as for Figure S4. Symmetry codes: (i) 1–*x*, 1–*y*, 1–*z*; (iv) 1–*x*, 1–*y*, –*z*.

Figure S8. View of the unique { $[Ag_2(tpp)_2]_2$ }⁴⁺ moiety in the asymmetric unit of β -2·*y*MeNO₂, showing the full atom numbering scheme. Details as for Figure S4. Symmetry codes: (iii) *x*, 1+*y*, *z*; (v) *x*, -1+*y*, *z*.

α -2·MeNO ₂		β -2·yMeNO ₂	
Ag(1)–N(3)	2.487(2)	Ag(1)–N(5)	2.845(5)
Ag(1)–N(10)	2.590(2)	Ag(1)–N(12)	2.154(6)
Ag(1)–N(15)	2.389(2)	Ag(1)–N(26)	2.759(5)
$Ag(1) - N(20^{i})$	2.272(2)	Ag(1)–N(33)	2.153(5)
Ag(1) - N(36)	2.520(2)	Ag(2)-N(5)	2.605(5)
Ag(2) - N(10)	2.610(2)	Ag(2) - N(17)	2.175(5)
Ag(2) - N(24)	2.484(2)	Ag(2) - N(26)	2.547(5)
Ag(2) - N(31)	2.356(2)	Ag(2) - N(38)	2.200(5)
Ag(2) - N(36)	2.636(2)	Ag(3) - N(47)	2.658(5)
$Ag(2) - N(41^{iv})$	2.000(2) 2.292(2)	Ag(3) - N(54)	2.176(5)
	2.2,2(2)	Ag(3) - N(68)	2.170(5) 2.712(5)
		$\Delta g(3) = N(75)$	2.712(5) 2.147(5)
		Ag(3) = N(73) Ag(4) = N(73)	2.147(5) 2.755(5)
		Ag(4) = N(47) Ag(4) = N(50)	2.755(5) 2.150(5)
		Ag(4) = N(59) Ag(4) = N(68)	2.139(3) 2.787(5)
		Ag(4) - N(00)	2.767(3)
		Ag(4) - N(80)	2.162(5)
N(3)-Ag(1)-N(9)	63.39(7)	N(5)–Ag(1)–N(12)	66.16(17)
N(3) - Ag(1) - N(15)	67.08(7)	N(5)-Ag(1)-N(26)	106.82(14)
$N(3) - Ag(1) - N(20^{i})$	126.47(7)	N(5) - Ag(1) - N(33)	109.47(17)
N(3) - Ag(1) - N(36)	106.23(7)	N(12) - Ag(1) - N(26)	105.42(17)
N(10) - Ag(1) - N(15)	130.36(7)	N(12) - Ag(1) - N(33)	169.90(19)
$N(10) - Ag(1) - N(20^{i})$	94.94(8)	N(26) - Ag(1) - N(33)	66.48(17)
N(10) - Ag(1) - N(36)	103.95(7)	N(5) - Ag(2) - N(17)	68.89(17)
$N(15) - Ag(1) - N(20^{i})$	117 44(8)	N(5) - Ag(2) - N(26)	121 70(15)
N(15) - Ag(1) - N(36)	86 31(8)	N(5) - Ag(2) - N(38)	107.88(17)
$N(20^{i}) - Ag(1) - N(36)$	126 92(8)	N(17) - Ag(2) - N(26)	11845(17)
N(10) = A g(2) = N(24)	10171(7)	N(17) - Ag(2) - N(38)	171.60(18)
N(10) - Ag(2) - N(21)	83 61(7)	N(26) - Ag(2) - N(38)	69 93(17)
N(10) = Ag(2) = N(36)	103.95(7)	N(20) - Ag(2) - N(50) N(47) - Ag(3) - N(54)	68.55(17)
$N(10) = A g(2) = N(41^{iv})$	131.09(8)	N(47) - Ag(3) - N(68)	11829(14)
N(24) A g(2) N(31)	67 32(8)	N(47) - Ag(3) - N(00) N(47) - Ag(3) - N(75)	110.25(14) 115.86(17)
N(24) - Ag(2) - N(31) N(24) - Ag(2) - N(36)	67.32(8)	N(47) - Ag(3) - N(73) N(54) - Ag(3) - N(68)	113.00(17) 103.77(17)
N(24) - Ag(2) - N(30) $N(24) - Ag(2) - N(41^{iv})$	02.93(7) 125 51(7)	N(54) - Ag(5) - N(00) N(54) - Ag(3) - N(75)	103.77(17) 171.07(10)
N(24) - Ag(2) - N(41) N(21) - Ag(2) - N(26)	123.31(7) 120.86(8)	N(54) - Ag(5) - N(75) N(68) - Ag(2) - N(75)	1/1.9/(19)
N(31) - Ag(2) - N(30)	129.00(0)	N(00) - Ag(3) - N(73) N(47) - Ag(4) - N(50)	06.51(17)
$N(31) - Ag(2) - N(41^{10})$	123.23(8)	N(47) - Ag(4) - N(59)	00.11(17)
$N(36) - Ag(2) - N(41^{-1})$	91.57(7)	N(47) - Ag(4) - N(68)	112.59(14)
		N(4/) - Ag(4) - N(80)	112.82(17)
		N(59) - Ag(4) - N(68)	114./0(1/)
		N(59) - Ag(4) - N(80)	178.51(18)
		N(68)–Ag(4)–N(80)	66.59(16)
$Ag(1) \dots Ag(2)$	3.2497(4)	Ag(1), Ag(2)	2,9089(6)
$A\sigma(1) A\sigma(1^{i})$	6 8167(7)	$A\sigma(1) A\sigma(4^{v})$	3,0660(6)
$A\sigma(2) A\sigma(2^{iv})$	6 8762(7)	$A\sigma(2)$ $A\sigma(3)$	3 0415(6)
1.5(2)1.5(2)	0.0702(7)	Ag(3)Ag(4)	2.9108(6)
			~ /
$\tau[\mathrm{Ag}(1)]^{\mathrm{a}}$	0.06		
τ [Ag(2)]"	0.02		

Table S3. Selected bond lengths (Å) and angles (°) for the solvatomorphs $[Ag_2(tpp)_2][BF_4]_2 \cdot MeNO_2$ (α -2·MeNO_2) and $[Ag_2(tpp)_2][BF_4]_2 \cdot yMeNO_2$ (β -2· $yMeNO_2$), including intramolecular Ag...Ag distances. See Figs. S7 and S8 for the atom numbering schemes employed. Symmetry codes: (i) 1–x, 1–y, 1–z; (iv) 1–x, 1–y, –z; (v) x, –1+y, z.

^aSee ref. [1] for the definition of τ (page 4). An ideal square pyramidal geometry gives $\tau = 0$, while an ideal trigonal bipyramidal geometry yields $\tau = 1$.

Table S4. Metric parameters for intra-dimer π ... π interactions in α -2·MeNO₂ (Å, °). See Fig. S7 for the atom numbering scheme employed. Symmetry codes: (i) 1–*x*, 1–*y*, 1–*z*; (ii) 1–*x*, 1–*y*, –*z*; (v) 1–*x*, –*y*, 1–*z*.

	Dihedral angle	Interplanar distance	Horizontal offset
$[N(3)-C(8)][N(3^{i})C(8^{i})]$	0	3.255(6)	2.00
$[N(24)-C(29)][N(24^{ii})C(29^{ii})]$	0	3.221(9)	2.11

Figure S9. Packing diagram of α -2·MeNO₂, showing the well-separated coordination polymer chains in the lattice. The view is along the [001] crystal vector, with the *b* axis horizontal. Only one orientation of the disordered solvent molecule is shown, and all atoms have arbitrary radii. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; MeNO₂, yellow.

Figure S10. An extended helical chain in β -2·*y*MeNO₂, plotted with 50 % displacement ellipsoids (left) and space-filling view (right). Only one orientation of the disordered pyrazolyl groups is shown; other details as for Figure S4. Symmetry codes: (iii) *x*, 1+*y*, *z*; (v) *x*, -1+*y*, *z*.

Table S5. Metric parameters for intramolecular $\pi ... \pi$ contacts in β -2·*y*MeNO₂ (Å, °). See Fig. S8 for the atom numbering scheme employed.

	Dihedral angle	Interplanar distance	Horizontal offset
[N(11)–C(15)][N(37)C(41)]	12.7(3)	3.60(2)	1.45
[N(16)–C(20)][N(32)C(36)]	16.6(3)	3.54(2)	2.23
[N(16)–C(20)][N(53)C(57)]	14.7(3)	3.20(2)	2.07
[N(26)–C(31)][N(74)C(78)]	9.9(3)	3.54(2)	1.65
[N(37)–C(41)][N(68)C(73)]	12.3(3)	3.62(2)	1.04

Figure S11. Packing diagram of β -2·*y*MeNO₂, showing the alternating stripes of Λ (dark colouration) and Δ (pale colouration) helical chains in the lattice. The view shows the (010) crystal plane, with the *c* axis horizontal. Only one orientation of the disordered pyrazolyl groups is shown, and all atoms have arbitrary radii. Colour code: C, dark grey or white; H, pale grey; Ag, dark or pale green; B, pink; F, cyan; N, dark or pale blue; MeNO₂, yellow.

Figure S12. View of the pentanuclear $[Ag_5(tpym)_4(BF_4)_2]^{3+}$ assembly in 4·2MeNO₂, showing the full atom numbering scheme. Only one orientation of the disordered BF₄⁻ ion is shown. Other details as for Figure S4. Symmetry code: (vi) 1–*x*, *y*, ³/₂–*z*. Colour code: C, white; Ag, green; B, pink; F, cyan; N, blue.

Table S6. Selected bond lengths (Å) and angles (°) for 4·2MeNO₂, including intramolecular Ag...Ag distances. See Fig. S12 for the atom numbering scheme employed. Symmetry code: (vi) 1-x, y, $\frac{3}{2}-z$.

1 ig. 6 i z ioi die dtolli lidi	isering seneme employee.		
Ag(1)–N(22)	2.374(11)	Ag(3)–N(33)	2.240(10)
Ag(1)–N(43)	2.366(10)	Ag(3)–F(51A/B/C)	2.771(13)/2.902(17)/2.98(2)
Ag(2)–N(6)	2.491(10)	Ag(4)–N(10)	2.578(11)
Ag(2)–N(12)	2.238(10)	Ag(4)–N(17)	2.282(13)
Ag(3)–N(27)	2.498(10)	Ag(4)–N(31)	2.563(11)
		Ag(4)–N(38)	2.216(14)
N(22)-Ag(1)-N(22xviii)	128.6(5)	N(27)-Ag(3)-F(51A/B/Cxviii)	76.7(4)/70.7(4)/79.6(4)
N(22)-Ag(1)-N(43)	97.7(3)	N(33)–Ag(3)–N(33 ^{xviii})	176.1(4)
N(22)-Ag(1)-N(43 ^{xviii})	104.2(4)	N(33)–Ag(3)–F(51A/B/C)	84.4(6)/97.3(5)/73.8(5)
N(43)-Ag(1)-N(43 ^{xviii})	128.1(5)	N(33)-Ag(3)-F(51A/B/Cxviii)	93.1(6)/80.4(5)/103.9(5)
$N(6)-Ag(2)-N(6^{xviii})$	114.4(5)	F(51A/B/C)-Ag(3)-F(51A/B/C ^{xviii})	103.2(5)-109.6(7)
N(6)-Ag(2)-N(12)	68.2(4)	N(10)-Ag(4)-N(17)	66.2(4)
$N(6)-Ag(2)-N(12^{xviii})$	113.7(3)	N(10)-Ag(4)-N(31)	89.0(4)
$N(12)-Ag(2)-N(12^{xviii})$	176.8(4)	N(10)-Ag(4)-N(38)	133.6(4)
$N(27)-Ag(3)-N(27^{xviii})$	115.0(5)	N(17)–Ag(4)–N(31)	130.3(4)
N(27)-Ag(3)-N(33)	69.3(4)	N(17)-Ag(4)-N(38)	157.1(4)
N(27)-Ag(3)-N(33 ^{xviii})	113.0(3)	N(31)-Ag(4)-N(38)	68.4(4)
N(27)–Ag(3)–F(51A/B/C)	153.6(6)/166.5(5)/143.1(5)		
Ag(1)Ag(2)	3.7443(16)	Ag(2)Ag(3)	7.4758(16)
Ag(1)Ag(3)	3.7315(16)	Ag(2)Ag(4)	6.9279(11)
Ag(1)Ag(4)	5.8354(9)	Ag(3)Ag(4)	6.9319(11)

Table S7. Metric parameters for intramolecular and intermolecular $\pi ...\pi$ interactions in 4·2MeNO₂ (Å, °). See Fig. S12 for the atom numbering scheme employed. Symmetry code: (vi) 1–*x*, *y*, ³/₂–*z*; (vii) 1–*x*, -1+*y*, ³/₂–*z*; (viii) ¹/₂–*x*, ¹/₂–*y*, 1–*z*.

	Dihedral angle	Interplanar distance	Horizontal offset
Intramolecular			
$[N(11)-C(15)][N(21^{vi})C(25^{vi})]$	6.7(7)	3.28(4)	1.82
[N(21)–C(25)][C(26)N(31)]	4.6(6)	3.34(4)	0.84
$[N(32)-C(36)][N(42^{vi})C(46^{vi})]$	5.1(7)	3.23(5)	1.80
[N(42)–C(46)][C(5)N(10)]	5.0(6)	3.35(4)	0.80
Intermolecular			
$[N(11)-C(15)][N(32^{vii})-C(36^{vii})]$	9.2(8)	3.37(4)	1.23
$[N(16)-C(21)][N(16^{viii})-C(21^{viii})]$	0	3.37(12)	1.13

Figure S13. Packing diagram of $4 \cdot 2$ MeNO₂, showing the anion- and solvent-filled voids in the lattice. The view shows the (010) crystal plane, with the *c* axis vertical. All atoms have arbitrary radii.

Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue.

Figure S14. Space-filling packing diagram of **4**·2MeNO₂, showing the anion- and solvent-filled voids in the lattice. The view is the same as in Figure S13.

Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue.

Figure S15. Views of the full asymmetric unit of isostructural [Ag(tpt)]BF₄ (**5a**, top) and [Ag(tpt)]ClO₄ (**5b**, bottom), showing the full atom numbering scheme. Only one orientation of the disordered anions is shown; other details as for Figure S4. Symmetry codes: (v) x, -1+y, z; (ix) 1-x, -y, $\frac{1}{2}+z$; (x) 1-x, -y, $-\frac{1}{2}+z$; (xi) 1-x, 1-y, $\frac{1}{2}+z$; (xii) 1-x, 1-y, $-\frac{1}{2}+z$. Colour code: C, white; Ag, green; B, pink; Cl, yellow; F, cyan; N, blue; O, red.

5a	$y, 12+2, (A) = \lambda, y, 12+2$	5b	
$\Delta q(1) N(3)$	2 308(6)	$\Lambda_{\alpha}(1)$ N(3)	2 395(10)
$A_{g}(1) = N(3)$	2.356(6)	$A_{\alpha}(1) = N(10)$	2.355(10)
Ag(1) = N(10) Ag(1) = N(15)	2.280(0) 2.051(7)	Ag(1) = N(10) $Ag(1) = N(15)$	2.265(10) 2.964(12)
Ag(1) = N(13) Ag(1) = N(24)	2.931(7) 2.573(6)	Ag(1) - IN(13) $Ag(1) = N(24)$	2.904(12)
Ag(1) - N(24)	2.373(0)	Ag(1) = IN(24) Ag(1) = N(21)	2.380(9)
Ag(1) = N(51)	2.195(0) 2.071(0)/2.122(1(c))	Ag(1) = IN(51)	2.210(10)
Ag(1) - F(49A/B)	2.9/1(9)/3.133(16)	Ag(1) = O(49A/B)	2.897(13)/2.95(3)
Ag(2) = N(5)	2.466(6)	Ag(2) - IN(5)	2.469(9)
Ag(2)-N(20)	2.245(5)	Ag(2)-N(20)	2.218(9)
$Ag(2)-N(28^{ix})$	2.400(6)	$Ag(2)-N(28^{ix})$	2.423(8)
$Ag(2)-N(36^{ix})$	2.286(6)	$Ag(2)-N(36^{1X})$	2.300(9)
$Ag(2) - N(41^{1X})$	2.906(8)	$Ag(2) - N(41^{1X})$	2.950(13)
Ag(2)–F(51A/B)	2.795(15)/2.904(13)	Ag(2)–O(51A/B/C)	2.91(3)/2.892(19)/2.70(2)
N(3)-Ag(1)-N(10)	70.0(2)	N(3)-Ag(1)-N(10)	70.2(3)
N(3)–Ag(1)–N(15)	58.84(19)	N(3)–Ag(1)–N(15)	58.9(3)
N(3)-Ag(1)-N(24)	132.64(19)	N(3)–Ag(1)–N(24)	130.4(3)
N(3)-Ag(1)-N(31)	131.8(2)	N(3)-Ag(1)-N(31)	131.9(4)
N(3)-Ag(1)-F(49A/B)	79.1(2)/84.5(3)	N(3)-Ag(1)-O(49A/B)	81.6(4)/81.5(10)
N(10)-Ag(1)-N(15)	126.2(2)	N(10)-Ag(1)-N(15)	126.1(3)
N(10)-Ag(1)-N(24)	109.8(2)	N(10)-Ag(1)-N(24)	109.5(3)
N(10)-Ag(1)-N(31)	153.5(3)	N(10) - Ag(1) - N(31)	154.0(4)
N(10)-Ag(1)-F(49A/B)	93.4(2)/99.3(4)	N(10)-Ag(1)-O(49A/B)	94.9(6) 97.6(13)
N(15)-Ag(1)-N(24)	94.13(19)	N(15)-Ag(1)-N(24)	91.7(3)
N(15)-Ag(1)-N(31)	79.8(2)	N(15)-Ag(1)-N(31)	79.7(4)
N(15) - Ag(1) - F(49A/B)	92.4(2)/91.7(3)	N(15) - Ag(1) - O(49A/B)	94.4(5)/91.8(12)
N(24) - Ag(1) - N(31)	68.5(2)	N(24) - Ag(1) - N(31)	68.5(3)
N(24) - Ag(1) - F(49A/B)	145.2(2)/138.5(3)	N(24)-Ag(1)-O(49A/B)	144.4(5)/143.2(11)
N(31) - Ag(1) - F(49A/B)	79.1(2)/72.2(4)	N(31)-Ag(1)-O(49A/B)	78.1(5)/76.2(12)
N(5) - Ag(2) - N(20)	69.8(2)	N(5) - Ag(2) - N(20)	/0.2(4)
$N(5) - Ag(2) - N(28^{ix})$	124.35(19)	$N(5) - Ag(2) - N(28^{v1})$	121.4(3)
$N(5) - Ag(2) - N(30^{11})$	113.7(2)	$N(5) - Ag(2) - N(30^{11})$	113.0(3)
$N(5) - Ag(2) - N(41^{-1})$	81.5(2) 147.2(4)/140.7(2)	$N(5) - Ag(2) - N(41^{**})$ $N(5) - A_{\pi}(2) - O(51A/D(C))$	80.9(4)
N(3) - Ag(2) - F(3)A/B	147.3(4)/140.7(3)	N(3) - Ag(2) - O(31A/B/C)	147.3(0)/141.0(4)/143.9(0)
$N(20) - Ag(2) - N(28^{-1})$ $N(20) - Ag(2) - N(26^{ix})$	141.1(2) 144.0(2)	$N(20) - Ag(2) - N(28^{2})$ $N(20) - Ag(2) - N(26^{2})$	140.7(3) 145.7(4)
N(20) - Ag(2) - N(30)	144.0(2)	N(20) - Ag(2) - N(30)	143.7(4)
N(20) - Ag(2) - N(41) N(20) - Ag(2) - E(51A/B)	91.0(2) 77 7(4)/72 0(3)	N(20) - Ag(2) - N(41) N(20) - Ag(2) - O(51A/B/C)	90.0(4) 78 5(7)/80 8(4)/76 8(6)
N(20) - Ag(2) - P(3TA/D) $N(28^{ix}) - Ag(2) - N(36^{ix})$	(1,1)(4)(12,3)(3)	N(20) - Ag(2) - O(3TA/B/C) $N(28^{vi}) Ag(2) N(36^{vi})$	60 0(3)
$N(28^{ix}) - Ag(2) - N(30^{ix})$ $N(28^{ix}) - Ag(2) - N(41^{ix})$	59 6(2)	$N(2\delta) - Ag(2) - N(3\delta)$ $N(28^{vi}) - Ag(2) - N(41^{vi})$	58 9(3)
$N(28^{ix}) = Ag(2) = N(41^{-1})$	$\frac{59.0(2)}{84.0(4)/92.8(3)}$	$N(28^{vi}) = Ag(2) = N(41^{-1})$ $N(28^{vi}) = Ag(2) = O(51A/B/C)$	78 3(7)/68 3(4)/89 6(6)
$N(26^{ix}) - Ag(2) - N(41^{ix})$	124 1(2)	$N(26^{vi}) - Ag(2) - N(41^{vi})$	124 2(3)
$N(36^{ix}) - Ag(2) - F(51A/B)$	90 4(4)/89 8(3)	$N(36^{vi}) = Ag(2) = N(41^{-1})$ $N(36^{vi}) = Ag(2) = O(51A/B/C)$	98.0(7)/105.7(4)/89.8(7)
$N(41^{ix}) - Ag(2) - F(51A/B)$	103 8(4)/111 9(3)	$N(30^{\circ}) - Ag(2) - O(51A/B/C)$ $N(41^{vi}) - Ag(2) - O(51A/B/C)$	90.3(8)/73.4(4)/107.7(7)
$\Pi(\Pi) \Pi G(2) \Pi(\Pi \Pi D)$	103.0(4)/111.9(3)	$\Pi(1)$ $\Pi_{\mathcal{G}}(2)$ $\Pi(\Pi, \mathcal{G}, \mathcal{C})$	90.5(0)//5.4(4)/10/./(/)
Ag(1)Ag(2)	6.2119(9)	Ag(1)Ag(2)	6.2276(15)
$Ag(1)Ag(2^x)$	6.5299(8)	$Ag(1)Ag(2^{x})$	6.5019(14)
C(6) = F(A6A/P)	2 860(11)/2 055(17)	C(6) = O(A6A/B)	2.880(14)/(3.01(4))
C(0)F(40A/D) $C(27) = E(A7Axii)/E(A8Dxii)$	2.009(11)/2.933(17) 2.802(10)/2.068(12)	C(0)O(40A/D) C(27) = O(47A/Pxii)	2.007(14)/3.01(4) 3.01(2)/2.00(5)
$C(24) \dots C(4/A) / C(40D^{m})$	2.072(17)/2.700(12) 2.008(11)/2.860(11)	$C(24) \dots O(4/A/B^{-1})$ $C(29) = O(5/A/B/C^{X})$	3.01(2)/2.97(3) 3.10(3)/3.07(3)/2.07(3)
C(27)T(J+A/D)	2.770(14)/2.000(14)	C(29)O(3+A/D/C)	5.10(5)(5)(2.77(5)

Table S8. Selected bond lengths (Å) and angles (°) for the isostructural complexes **5a** and **5b**, including intramolecular Ag...Ag distances and anion... π contacts. See Fig. S15 for the atom numbering schemes employed. Symmetry codes: (ix) 1–*x*, –*y*, ¹/₂+*z*; (x) 1–*x*, –*y*, –¹/₂+*z*; (xii) 1–*x*, 1–*y*, –¹/₂+*z*.

Figure S16. Packing diagrams of **5a**, showing the coparallel helical chains in the lattice. Only one orientation of the disordered anions is shown, and all atoms have arbitrary radii. Left: view shows the (010) crystal plane, with the *c* axis vertical. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue. Right: view shows the (001) crystal plane with the *b* axis vertical. Each polymer chain is plotted with a different colour scheme, for clarity.

Figure S17. Views of the $[{Ag(tpt)}_2(BF_4)]^+$ coordination polymer asymmetric unit of **5a** · MeNO₂, showing the full atom numbering schemes. The other BF₄⁻ ion and solvent, which do not take part in anion... π interactions, are omitted for clarity. Other details as for Figure S4.

Symmetry codes: (xiii) 2-x, $\frac{1}{2}+y$, 1-z; (xiv) 2-x, $-\frac{1}{2}+y$, 1-z; (xv) 1-x, $-\frac{1}{2}+y$, 1-z; (xvi) 1-x, $\frac{1}{2}+y$, 1-z; (xvii) 1+x, *y*, *z*; (xviii) -1+x, *y*, *z*. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; O, red.

$\frac{2-x, -72+y, 1-2, (xy) 1-x, -}{4}$	72+y, 1-z, (XVI) 1-x, 7	12+y, 1-z, (XVII) 1+x, y, z.	2 0 2 1 (1 0)
$Ag(1) - N(2)_{}$	2.388(11)	$Ag(23) - N(24^{*v})$	2.821(10)
$Ag(1)-N(6^{XIII})$	2.849(10)	Ag(23)–N(28)	2.376(10)
Ag(1) - N(9)	2.372(11)	$Ag(23) - N(31^{xv})$	2.223(12)
Ag(1) - N(14)	2.832(11)	Ag(23)–N(36)	2.877(12)
$Ag(1)-N(19^{xiii})$	2.226(12)	Ag(23)–N(41)	2.416(11)
N(2)–Ag(1)–N(6 ^{xiii})	128.8(3)	N(24 ^{xv})-Ag(23)-N(28)	127.9(3)
N(2)-Ag(1)-N(9)	68.8(4)	$N(24^{xv})$ -Ag(23)-N(31 ^{xv})	64.8(4)
N(2)-Ag(1)-N(14)	61.9(4)	$N(24^{xv})$ -Ag(23)-N(36)	139.3(3)
$N(2)-Ag(1)-N(19^{xiii})$	144.6(5)	$N(24^{xv})$ -Ag(23)-N(41)	83.1(3)
$N(6^{xiii})-Ag(1)-N(9)$	85.1(3)	$N(28) - Ag(23) - N(31^{xv})$	140.4(4)
$N(6^{xiii})-Ag(1)-N(14)$	139.2(3)	N(28)-Ag(23)-N(36)	62.4(3)
$N(6^{xiii})$ - $Ag(1)$ - $N(19^{xiii})$	63.3(4)	N(28)–Ag(23)–N(41)	67.9(4)
N(9) - Ag(1) - N(14)	128.1(4)	$N(31^{xv})$ -Ag(23)-N(36)	84.7(4)
$N(9) - Ag(1) - N(19^{xiii})$	144.0(4)	$N(31^{xv})$ -Ag(23)-N(41)	146.4(4)
$N(14) - Ag(1) - N(19^{xiii})$	87.8(4)	N(36)-Ag(23)-N(41)	128.5(4)
$Ag(1)Ag(1^{xiv})$	6.9609(9)	Ag(23)Ag(23 ^{xvi})	6.9518(8)
$\tau[Ag(1)]^a$	0.09	$\tau[Ag(23)]^a$	0.02
C(3)F(47 ^{xvii})	3.016(13)	C(25)F(49)	2.897(15)
$C(5)\ldots F(48^{xvii})$	2.929(15)	C(27)F(46)	3.092(14)
$C(7)F(47^{xvii})$	2.995(15)	C(29)F(46)	2.980(14)

Table S9. Selected bond lengths (Å) and angles (°) for **5a** MeNO₂, including intramolecular Ag...Ag distances and anion... π contacts. See Fig. S17 for the atom numbering scheme employed. Symmetry codes: (xiii) 2–x, $^{1/2}+y$, 1–z; (xiv) 2–x, $^{-1/2}+y$, 1–z; (xvi) 1–x, $^{-1/2}+y$, 1–z; (xvi) 1–x, $^{-1/2}+y$, 1–z; (xvi) 1+x, v, z.

^aSee ref. [1] for the definition of τ (page 4). An ideal square pyramidal geometry gives $\tau = 0$, while an ideal trigonal bipyramidal geometry yields $\tau = 1$.

Table S10. Metric parameters for intra-chain and inter-chain $\pi...\pi$ interactions in **5a** MeNO₂ (Å, °). See Fig. S17 for the atom numbering scheme employed. Symmetry code: (xiii) 2-x, $\frac{1}{2}+y$, 1-z; (xvi) 1-x, $\frac{1}{2}+y$, 1-z.

	Dihedral angle	Interplanar distance	Horizontal offset
Intra-chain			
$[N(8)-C(12)][N(13^{xiii})C(17^{xiii})]$	11.2(4)	3.27(4)	1.02
$[N(35)-C(39)][N(40^{xvi})C(44^{xvi})]$	11.91(4)	3.38(3)	0.71
Inter-chain			
[N(2)–C(12)][N(24)C(34)]	2.5(2)	3.25(5)	1.32

Figure S18. Packing diagram of **5a**·MeNO₂, showing the anion... π interactions linking the zig-zag coordination polymer chains. The view is parallel to the [105] crystal vector, with the *b* axis horizontal. All atoms have arbitrary radii. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue.

Figure S19. Packing diagram of **5**a·MeNO₂, showing the coordination polymer/anion... π layers separated by the remaining anions and solvent. The view shows the (010) crystal plane, with the *a* axis vertical. All atoms have arbitrary radii. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; MeNO₂, yellow.

Figure S20. View of the full [Ag(tpt)(MeOH)]BF₄ asymmetric unit of **5a**·MeOH, showing the full atom numbering schemes. Details as for Figure S4. Symmetry codes: (xix) $\frac{1}{2}+x$, *y*, $\frac{3}{2}-z$; (xx) $-\frac{1}{2}+x$, *y*, $\frac{3}{2}-z$. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; O, red.

Table S11. Selected bond lengths (Å) and angles (°) for **5a** MeOH, including intramolecular Ag...Ag distances. See Fig. S20 for the atom numbering schemes employed. Symmetry codes: (xix) $\frac{1}{2}+x$, y, $\frac{3}{2}-z$; (xx) $-\frac{1}{2}+x$, y, $\frac{3}{2}-z$.

	ameening senemes emproje		, /2 ., (III) /2/00, <i>J</i> , /2
Ag(1)–N(2)	2.458(2)	$Ag(1)-N(19^{xix})$	2.217(2)
Ag(1)–N(9)	2.381(2)	Ag(1)–O(23)	2.387(2)
Ag(1)–N(14)	2.797(2)	-	
N(2)-Ag(1)-N(9)	68.10(7)	$N(9)-Ag(1)-N(19^{xix})$	122.93(8)
N(2)-Ag(1)-N(14)	60.61(7)	N(9)–Ag(1)–O(23)	96.60(7)
$N(2)-Ag(1)-N(19^{xix})$	124.21(7)	$N(14) - Ag(1) - N(19^{xix})$	88.93(7)
N(2)–Ag(1)–O(23)	96.43(7)	N(14) - Ag(1) - O(23)	87.78(7)
N(9) - Ag(1) - N(14)	128.68(7)	$N(19^{xix}) - Ag(1) - O(23)$	130.25(7)
$Ag(1)Ag(1^{xx})$	7.7359(2)	$ au^{\mathrm{a}}$	0.03

^aSee ref. [1] for the definition of τ (page 4). An ideal square pyramidal geometry gives $\tau = 0$, while an ideal trigonal bipyramidal geometry yields $\tau = 1$.

Table S12. Hydrogen bond parameters (Å, °) for 5a MeOH. See Fig. S20 for the atom numbering scheme.

	O–H	HF	OF	O–HF
O(23)–H(23)F(28)	0.80(4)	1.94(4)	2.727(3)	166(4)

Figure S21. Packing diagram of **5a** MeOH, showing well-separated polymer chains in the lattice. The view shows the (100) crystal plane, with the unit cell c axis horizontal. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue; O, red.

Figure S22. View of the { $[Ag(bpt)]BF_4$ }^{*n*} coordination polymer chain in **6**, showing the full atom numbering scheme. Details as for Figure S4. Symmetry codes: (xxi) 2–*x*, 1–*y*, –*z*; (xxii) *x*, ³/₂–*y*, *z*; (xxiii) 2–*x*, ¹/₂+*y*, –*z*; (xxiv) 2–*x*, –¹/₂+*y*, –*z*. Colour code: C, white; Ag, green; B, pink; F, cyan; N, blue.

Table S13. Selected bond lengths (Å) and angles (°) for **6**, including intramolecular Ag...Ag distances and anion... π contacts. See Fig. S22 for the atom numbering scheme employed. Symmetry codes: (xxi) 2–*x*, 1–*y*, –*z*; (xxiii) 2–*x*, ¹/₂+*y*, –*z*.

Ag(1)–N(4)	2.523(2)
Ag(1) - N(7)	2.289(4)
N(4)-Ag(1)-N(4 ^{xxi})	180
N(4)-Ag(1)-N(7)	68.71(7)
$N(4)-Ag(1)-N(7^{xxi})$	111.29(7)
$N(7)-Ag(1)-N(7^{xxi})$	180
$Ag(1)Ag(1^{xxiii})$	7.1038(2)
C(0) $F(10)$	2 022(2)
C(3)F(12)	2.823(3)

Figure S23. Two packing diagrams of **6**, showing the planar coordination polymer chains and anion... π . interactions. Top: view parallel to the [100] crystal vector, with the *b* axis horiozontal. Bottom: view shows the (010) crystal plane with the *c* axis horizontal. All atoms have arbitrary radii. Colour code: C, white; H, pale grey; Ag, green; B, pink; F, cyan; N, blue.

Figure S24. Measured (black) and simulated (red, blue) powder diffraction data from the tpp and tpym complexes.

Bulk samples of $2 \cdot \text{MeNO}_2$, which retains its lattice solvent, predominantly contain the α -form of the compound. Discrepancies between the measured and simulated data for 1 and 4 may reflect desolvation of the samples (their crystals contain lattice solvent, but the dried materials are solvent-free by microanalysis).

Figure S25. Measured (black) and simulated (red) powder diffraction data from the tpt and bpt complexes.

Peak assignments are listed in the Experimental Section of the main article.

29