Influence of the catalyst structure in the cycloaddition of oxiranes and isocyanates promoted by tetraarylstibonium cations

Mengxi Yang, Nilanjana Pati, Guillaume Bélanger-Chabot, and François P. Gabbaï*
${ }^{\text {a Department of Chemistry, Texas A\&M University, College Station, Texas 77843-3255, United States. }}$
Email: francois@tamu.edu

This PDF file includes:

Figure S1. ${ }^{1} \mathrm{H}$ NMR of $2[\mathrm{OTf}]$ in CDCl_{3} S3
Figure S2. ${ }^{13} \mathrm{C}$ NMR of $2[\mathrm{OTf}]$ in CDCl_{3} S4
Figure S3. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{2}[\mathrm{OTf}]$ in CDCl_{3} S4
Figure S4. Crystal structure of $\mathbf{2}^{+}$in $\mathbf{2}[\mathrm{OTf}]$ S4
Figure S5. ${ }^{1} \mathrm{H}$ NMR of $4[\mathrm{OTf}]$ in CDCl_{3}. S5
Figure S6. ${ }^{13} \mathrm{C}$ NMR of $4[\mathrm{OTf}]$ in CDCl_{3} S5
Figure S7. ${ }^{19} \mathrm{~F}$ NMR of $4[\mathrm{OTf}]$ in CDCl_{3} S5
Figure S8. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5}[\mathrm{OTf}]$ in CDCl_{3} S6
Figure S9. ${ }^{13} \mathrm{C}$ NMR of $5[\mathrm{OTf}]$ in CDCl_{3} S6
Figure S10. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{5}[\mathrm{OTf}]$ in CDCl_{3} S6
Figure S11. ${ }^{1} \mathrm{H}$ NMR of $6[\mathrm{OTf}]$ in CDCl_{3} S7
Figure S12. ${ }^{13} \mathrm{C}$ NMR of $6[\mathrm{OTf}]$ in CDCl_{3} S7
Figure S13. ${ }^{19} \mathrm{~F}$ NMR of $6[\mathrm{OTf}]$ in CDCl_{3} S7
Figure S14. ${ }^{19} \mathrm{~F}$ NMR of $7\left[\mathrm{SbCl}_{6}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$. S8
Figure S15. ${ }^{13} \mathrm{C}$ NMR of $7\left[\mathrm{SbCl}_{6}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$ 8
Figure S16. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 1 S9
Figure S17. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 2..S10
Figure S18. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 3..S10
Figure S19. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 4..S11
Figure S20. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 5..S11
Figure S21. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry $6 . . \mathrm{S} 12$
Figure S22. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 7..S12
Figure S23. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 8..S13
Figure S23. ${ }^{1} \mathrm{H}$ NMR of the stoichiometric reaction of $\mathbf{5}[\mathrm{OTf}]$ and propylene oxide. S13
Figure S23. ${ }^{1} \mathrm{H}$ NMR of the stoichiometric reaction of $\mathbf{6}[\mathrm{OTf}]$ and propylene oxide. S14
Figure S24. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry $1 . . \mathrm{S} 15$
Figure S25. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 2..S15
Figure S26. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 3 ..S16
Figure S27. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry $4 .$. S17
Figure S28. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 5..S18
Figure S29. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry $6 . . \mathrm{S} 18$
Figure S30. ${ }^{1} \mathrm{H}$ NMR of 4-methyl-3-phenyl-2-oxazolidinone (A1) in CDCl_{3} S19
Figure S31. ${ }^{13} \mathrm{C}$ NMR of 4-methyl-3-phenyl-2-oxazolidinone (A1) in CDCl_{3} S20
Figure S32. ${ }^{1} \mathrm{H}$ NMR of 5-methyl-3-phenyl-2-oxazolidinone (B1) in CDCl_{3}. S20
Figure S33. ${ }^{13} \mathrm{C}$ NMR of 5-methyl-3-phenyl-2-oxazolidinone (B1) in CDCl_{3} S21
Figure S34. ${ }^{1} \mathrm{H}$ NMR of 3,4-diphenyl-2-oxazolidinone (A2) in CDCl_{3}. S22

Figure S35. ${ }^{13} \mathrm{C}$ NMR of 3,4-diphenyl-2-oxazolidinone (A2) in CDCl_{3}. ... S23
Figure S36. ${ }^{1} \mathrm{H}$ NMR of 3,5-diphenyl-2-oxazolidinone (B2) in CDCl_{3}. ... S 23
Figure S37. ${ }^{13} \mathrm{C}$ NMR of 3,5-diphenyl-2-oxazolidinone (B2) in CDCl_{3}. ... S24

Table S1. Crystal data, data collection, and structure refinement for 2[OTf]..S25
Table S2. Crystal data, data collection, and structure refinement for 4[OTf]..S26
Table S3. Crystal data, data collection, and structure refinement for 5[OTf]..S27
Table S4. Crystal data, data collection, and structure refinement for 6[OTf].. S28
Table S5. Crystal data, data collection, and structure refinement for 7[SbCl 6] ... S29
Table S6. XYZ coordinates of the optimized geometry of 5+..S30

1 Experimental Section

1.1 Synthesis of 1-Naphthyltriphenylstibonium triflate (2[OTf])

2[OTf] has been previously described. ${ }^{1}$ As part of the current study, it was prepared as follows. A 100 mL Schlenk flask was charged with 1-bromonaphthalene ($600 \mathrm{mg}, 2.4 \mathrm{mmol}, 1 \mathrm{eq}$) and 15 mL THF. The solution was cooled to $-78^{\circ} \mathrm{C}$ and treated with ${ }^{\mathrm{n}} \mathrm{BuLi}(2.65 \mathrm{M}$ in hexanes, $1.0 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1.1 \mathrm{eq})$ which was added drop-wise. The resulting bright yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Next, the solution was transferred drop wise to a $\mathrm{Ph}_{3} \mathrm{SbBr}_{2}(1.20 \mathrm{~g}, 2.4 \mathrm{mmol}, 1 \mathrm{eq})$ solution in mixed solvents (6 mL THF, $30 \mathrm{mLEt} \mathrm{E}_{2} \mathrm{O}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture, which turned dark yellow, was allowed to warm to room temperature overnight, resulting in a pale-yellow solution. The solvent was removed in vacuo to afford an oily solid, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a short plug of Celite in air. After removing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in vacuo, the solid was extracted with methanol and passed through a second plug of Celite in air. Removal of the solvent in vacuo afforded a pale-yellow solid which was used without further purification. This solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and treated with solid AgOTf ($380 \mathrm{mg}, 1.5 \mathrm{mmol}, 0.6 \mathrm{eq}$) under N_{2} atmosphere. The resulting yellow suspension was allowed to stir at room temperature in the dark for 2 h . The suspension was then filtered over Celite, and the filtrate was reduced and purified by flash chromatography over silica gel (100% ethyl acetate). The second major fraction was collected and washed with hexanes to yield $\mathbf{2}[\mathrm{OTf}]$ as air- and moisture- stable white powder $(551 \mathrm{mg}, 37 \%$ yield based on $\mathrm{Ph}_{3} \mathrm{SbBr}_{2}$).
2[OTf]: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.33-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.55(\mathrm{~m}, 19 \mathrm{H}), 7.55-$ $7.45(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=137.75$ (s, naphthyl), $135.72(\mathrm{~s}, o-\mathrm{Ph}), 134.77$ (s, naphthyl), 133.92 ($\mathrm{s}, p-\mathrm{Ph}$), 131.47 ($\mathrm{s}, m-\mathrm{Ph}$), 130.28 (s, naphthyl), 129.00 (s , naphthyl), 127.80 (s , naphthyl), 126.94 (s, naphthyl), 126.81 (s, naphthyl), 123.17 (s, quaternary, Ph), 120.72 ($\mathrm{q}, J_{C-F}=324.8, \mathrm{OTf}$). ${ }^{9}{ }^{9} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-$ 78.74 (s, OTf). Spectral data are in accord with the previous report. ${ }^{1}$ Single crystals suitable for X-ray diffraction were obtained by slow evaporation of hexanes into a CDCl_{3} solution in air.

Figure S1. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S3. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{2}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S4. Crystal structure of $\mathbf{2}^{+}$in $\mathbf{2}$ [OTf].
Ellipsoids are drawn at a 50% probability level. The triflate counteranion and the hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Sb} 1-\mathrm{C} 1=2.086(4), \mathrm{Sb} 1-\mathrm{C} 11=2.085(4), \mathrm{Sb} 1-\mathrm{C} 17=2.098(4), \mathrm{Sb} 1-\mathrm{C} 23=2.091(4), \angle \mathrm{C} 1-\mathrm{Sb} 1-\mathrm{C} 11=107.0(2)$, $\angle \mathrm{C} 1-\mathrm{Sb} 1-\mathrm{C} 17=112.1(2), \angle \mathrm{C} 1-\mathrm{Sb} 1-\mathrm{C} 23=104.2(2), \angle \mathrm{C} 11-\mathrm{Sb} 1-\mathrm{C} 17=108.1(2), \angle \mathrm{C} 11-\mathrm{Sb} 1-\mathrm{C} 23=114.1(2), \angle \mathrm{C} 17-\mathrm{Sb} 1-\mathrm{C} 23=111.3(2)$.

1.2 NMR spectra of 4-6[OTf], $7\left[\mathrm{SbCl}_{6}\right]$

Figure S5. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR of $4[\mathrm{OTf}]$ in CDCl_{3}.

Figure S7. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{4}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S9. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S10. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{5}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{6}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S12. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{6}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S13. ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{6}[\mathrm{OTf}]$ in CDCl_{3}.

Figure S14. ${ }^{19} \mathrm{~F}$ NMR of $7\left[\mathrm{SbCl}_{6}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR of $7\left[\mathrm{SbCl}_{6}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

1.3 Catalytic cycloaddition of oxiranes and isocyanates in NMR scale.

For each entry in Table s 1-2, the yield and selectivity are reported as the average result across multiple data points, only one representative ${ }^{1} \mathrm{H}$ NMR spectrum for each entry is shown below.
1.3.1 In situ NMR spectra collected during the experiments presented in Table 1.

The formation of the products was monitored by ${ }^{1} \mathrm{H}$ NMR in situ. The integration of the resonance at 3.0 ppm (m , 12 H) of the tetrabutylammonium cation was used as a standard. The yield of the major isomer A was calculated based on the integration of two resonances: $4.4 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H})$ and $3.8 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$. The yield of the minor isomer B was calculated based on the integration of three resonances: $4.6 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 4.0 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $3.5 \mathrm{ppm}(\mathrm{dd}$, 1 H). An impurity in the reaction mixture gives three resonances in the $2.5-5.0 \mathrm{ppm}$ region, two of which overlap with isomer A: $4.7 \mathrm{ppm}(1 \mathrm{H}), 4.4 \mathrm{ppm}(1 \mathrm{H})$ and $3.8 \mathrm{ppm}(1 \mathrm{H})$.

Additionally, no reaction took place when catalysts $\mathbf{5}[\mathrm{OTf}]$ and $\mathbf{6}[\mathrm{OTf}]$ were mixed with a stoichiometric amount of propylene oxide in CDCl_{3} over the course of 12 hours at $40^{\circ} \mathrm{C}$. Spectra of these two stoichiometric experiments are provided below as well.

Figure S16. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 1.

Figure S17. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 2.

Figure S18. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 3

Figure S19. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 4.

Figure S20. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 5.

Figure S21. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 6.

Figure S22. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 7.

Figure S23. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 1, Entry 8.

Figure S24. ${ }^{1} \mathrm{H}$ NMR of the stoichiometric reaction of $\mathbf{5}[\mathrm{OTf}]$ and propylene oxide.

Figure S25. ${ }^{1} \mathrm{H}$ NMR of the stoichiometric reaction of $\mathbf{6}[\mathrm{OTf}]$ and propylene oxide.
1.3.2 In situ NMR spectra collected during the experiments presented in Table 1.
1.3.2.1 In situ NMR spectrum of Table 2, Entries 1-2

The formation of the products was monitored by ${ }^{1} \mathrm{H}$ NMR in situ. The integration of the resonance at $1.5 \mathrm{ppm}(\mathrm{m}$, 12 H) of the tetrabutylammonium cation was used as a standard. The yield of the major isomer A was calculated based on the integration of three resonances: $5.4 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H}), 4.7 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $4.2 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$. The yield of the minor isomer B was calculated based on the integration of three resonances: $5.6 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H}), 4.7 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $4.3 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$.

Figure S26. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 1.

Figure S27. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 2.

1.3.2.2 In situ NMR spectrum of Table 2, Entries 3-4

The formation of the products was monitored by ${ }^{1} \mathrm{H}$ NMR in situ. The integration of the resonance at 3.0 ppm (m, 12 H) of the tetrabutylammonium cation was used as a standard. The yield of the major isomer A was calculated based on the integration of three resonances: $4.5 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H}), 4.4 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$, and $3.9 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$. The yield of the minor isomer B was calculated based on the integration of three resonances: $4.7 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 4.0 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $3.5 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$. An impurity in the reaction mixture gives three resonances in the $2.5-5.0 \mathrm{ppm}$ region, one of which overlaps with isomer A: $4.8 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 4.5 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$ and $3.9 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$.

Figure S28. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 3.

Figure S29. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 4.
1.3.2.3 In situ NMR spectrum of Table 2, Entries 5-6

The formation of the products was monitored by ${ }^{1} \mathrm{H}$ NMR in situ. The integration of the resonance at 3.0 ppm (m, 12 H) of the tetrabutylammonium cation was used as a standard. The yield of the major isomer A was calculated based on the integration of three resonances: $4.4 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 4.3 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $3.8 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$. The yield of the minor isomer B was calculated based on the integration of three resonances: $4.6 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}), 4.0 \mathrm{ppm}(\mathrm{t}, 1 \mathrm{H})$, and $3.4 \mathrm{ppm}(\mathrm{dd}, 1 \mathrm{H})$.

Figure S30. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 5.

Figure S31. Representative ${ }^{1} \mathrm{H}$ NMR spectrum collected during the experiment presented in Table 2, Entry 6.

1.4 Catalytic cycloaddition of propylene oxide and phenyl isocyanate

To a stirred solution containing [MesSbPh ${ }_{3}$][OTf] ($150 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.1 \mathrm{eq}$) and TBABrr ($77 \mathrm{mg}, 0.24 \mathrm{mmol}$, 0.1 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$), was added propylene oxide ($2.5 \mathrm{~mL}, 36 \mathrm{mmol}, 15 \mathrm{eq}$) and phenyl isocyanate (286 mg , $2.4 \mathrm{mmol}, 1 \mathrm{eq})$. The reaction was stirred in a $40^{\circ} \mathrm{C}$ bath for 18 h under N_{2}. An aliquot was taken from the reaction mixture and the yield of the two regioisomeric oxazolidinones was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The crude reaction mixture was subjected to flash chromatography over silica gel (3% ethyl acetate in hexanes). The third major fraction (very close to the second one) was collected washed with diethyl ether to afford product 5-methyl-3-phenyl-2-oxazolidinone (B1) as white powder ($16 \mathrm{mg}, 4 \%$), and the fourth major fraction was collected to afford product 4-methyl-3-phenyl-2-oxazolidinone (A1) as colorless oil ($170 \mathrm{mg}, 40 \%$).

4-methyl-3-phenyl-2-oxazolidinone (A1): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15$ (m, $1 \mathrm{H}), 4.59-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=7.8,5.3,1 \mathrm{H}), 1.30(\mathrm{~d}, J=5.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.82$ (s), $136.60(\mathrm{~s}), 129.27(\mathrm{~s}), 125.32(\mathrm{~s}), 122.04(\mathrm{~s}), 68.76(\mathrm{~s}), 52.42(\mathrm{~s}), 18.54$ (s). Spectral data are in accord with the previous report. ${ }^{2}$

Figure S32. ${ }^{1} \mathrm{H}$ NMR of 4-methyl-3-phenyl-2-oxazolidinone (A1) in CDCl_{3}.

Figure S33. ${ }^{13} \mathrm{C}$ NMR of 4-methyl-3-phenyl-2-oxazolidinone (A1) in CDCl_{3}.

5-methyl-3-phenyl-2-oxazolidinone (B1): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=8.4,1 \mathrm{H}), 3.63(\mathrm{dd}, J=8.6,7.1,1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.3$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.01$ (s), 138.51 (s), 129.18 (s), 124.09 (s), 118.31 (s), 69.66 (s), 52.03 (s), 20.87 (s). Spectral data are in accord with the previous report. ${ }^{2}$

Figure S34. ${ }^{1} \mathrm{H}$ NMR of 5-methyl-3-phenyl-2-oxazolidinone (B1) in CDCl_{3}.

Figure S35. ${ }^{13} \mathrm{C}$ NMR of 5-methyl-3-phenyl-2-oxazolidinone (B1) in CDCl_{3}.

1.5 Catalytic cycloaddition of styrene oxide and phenyl isocyanate

To a stirred solution of catalyst $\left[\mathrm{MesSbPh}_{3}\right][\mathrm{OTf}](125 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.1 \mathrm{eq})$, co-catalyst $\mathrm{TBABr}(65 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 0.1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) was added styrene oxide ($3.5 \mathrm{~mL}, 30 \mathrm{mmol}, 15 \mathrm{eq}$) and phenyl isocyanate (243 $\mathrm{mg}, 2.0 \mathrm{mmol}, 1 \mathrm{eq})$. The reaction was stirred in a $40^{\circ} \mathrm{C}$ bath for 18 h under N_{2}. An aliquot was taken from the reaction mixture and the yield of two regioisomeric oxazolidinones was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was treated to flash chromatography over silica gel (gradient $0-50 \%$ ethyl acetate in hexanes) and the third major fraction was collected and treated again to flash chromatography over silica gel (gradient 5-20\% ethyl acetate in hexanes). The third major fraction was collected and recrystallized with diethyl ether to afford product 3,5-diphenyl-2-oxazolidinone (B2) as white powder ($16 \mathrm{mg}, 3 \%$), and the fourth major fraction was collected and washed with hexanes to afford product 3,4-diphenyl-2-oxazolidinone (A2) as white powder (210 mg , 43\%).

3,4-diphenyl-2-oxazolidinone (A2): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30$ $-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=8.7,6.0,1 \mathrm{H}), 4.80(\mathrm{t}, J=8.7,1 \mathrm{H}), 4.22(\mathrm{dd}, J=8.7,6.0,1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.08$ (s), 138.37 (s), 137.13 (s), 129.52 (s), 129.04 (s), 128.97 (s), 126.37 (s), $124.83(\mathrm{~s}), 120.98(\mathrm{~s}), 69.95(\mathrm{~s}), 60.85(\mathrm{~s})$. Spectral data are in accord with the previous report. ${ }^{2}$

Figure S36. ${ }^{1} \mathrm{H}$ NMR of 3,4-diphenyl-2-oxazolidinone (A2) in CDCl_{3}.

Figure S37. ${ }^{13} \mathrm{C}$ NMR of 3,4-diphenyl-2-oxazolidinone (A2) in CDCl_{3}.

3,5-diphenyl-2-oxazolidinone (B2): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.19$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=8.8,7.5,1 \mathrm{H}), 4.39(\mathrm{t}, J=8.8,1 \mathrm{H}), 3.98(\mathrm{dd}, J=8.8,7.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=154.85(\mathrm{~s}), 138.27(\mathrm{~s}), 138.24(\mathrm{~s}), 129.28(\mathrm{~s}), 129.27(\mathrm{~s}), 129.20(\mathrm{~s}), 125.83$ (s), $124.35(\mathrm{~s}), 118.45(\mathrm{~s})$, 74.19 (s), 52.88 (s). Spectral data are in accord with the previous report. ${ }^{2}$

Figure S38. ${ }^{1} \mathrm{H}$ NMR of 3,5-diphenyl-2-oxazolidinone (B2) in CDCl_{3}.

Figure S39. ${ }^{13} \mathrm{C}$ NMR of 3,5-diphenyl-2-oxazolidinone (B2) in CDCl_{3}.

2 Crystallographic measurements.

2.1 1-Naphthyltriphenylstibonium triflate (2[OTf])

Table S1. Crystal data, data collection, and structure refinement for $\mathbf{2}$ [OTf]

$2.2 \quad\left[\mathrm{MesSbPh}_{3}\right][\mathrm{OTf}](4[\mathrm{OTf}])$

Table S2. Crystal data, data collection, and structure refinement for 4[OTf]

$2.3 \quad\left[\left(o-\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SbPh}_{3}\right][\mathrm{OTf}](5[\mathrm{OTf}])$

Table S3. Crystal data, data collection, and structure refinement for $\mathbf{5}[\mathrm{OTf}]$

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S} \mathrm{Sb}$
Formula weight	622.29
Temperature	110.0 K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$\mathrm{a}=18.642(2) \AA$
	$\mathrm{b}=14.0067(18) \AA$
	$\mathrm{c}=19.752(2) \AA$
	$\alpha=90^{\circ}$.
	$\beta=90^{\circ}$.
	$\gamma=90^{\circ}$.
Volume	5157.5(10) \AA^{3}
Z	8
Density (calculated)	$1.603 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.202 \mathrm{~mm}^{-1}$
F(ooo)	2496
Crystal size	$0.45 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$
Theta range for data collection	2.062 to 27.974°.
Index ranges	$-24<=h<=24,-18<=k<=18,-25<=1<=25$
Reflections collected	114700
Independent reflections	$6139[\mathrm{R}(\mathrm{int})=0.1617]$
Completeness to theta $=25.24{ }^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5849
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6139 / o / 328
Goodness-of-fit on F^{2}	1.049
Final R indices [I >2sigma(I)]	$\mathrm{Rl}^{\mathrm{a}}=0.0448, \mathrm{wR2}^{\mathrm{b}}=0.1024$
R indices (all data)	$\mathrm{R}_{1}=0.0722, \mathrm{wR}_{2}=0.1220$
Extinction coefficient	0.00058(14)
Largest diff. peak and hole	1.445 and -1.334 e. \AA^{-3}

$2.4 \quad\left[\left(O-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SbPh}_{3}\right][\mathrm{OTf}](6[\mathrm{OTf}])$

Table S4. Crystal data, data collection, and structure refinement for $\mathbf{6}$ [OTf]

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S} \mathrm{Sb}$
Formula weight	636.31
Temperature	110.0 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P_{12} \mathrm{~L}_{1} \mathrm{c} 1$
Unit cell dimensions	$\mathrm{a}=9.9453(7) \AA$
	$\mathrm{b}=11.0052(8) \AA$
	$\mathrm{c}=25.4792(17) \AA$
	$\alpha=90^{\circ}$.
	$\beta=101.217(4)^{\circ}$.
	$\gamma=90^{\circ}$.
Volume	2735.4(3) \AA^{3}
Z	4
Density (calculated)	$1.545 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.135 \mathrm{~mm}^{-1}$
F(ooo)	1280
Crystal size	$0.55 \times 0.1 \times 0.1 \mathrm{~mm}^{3}$
Theta range for data collection	1.630 to 27.696°.
Index ranges	$-12<=\mathrm{h}<=12,-14<=\mathrm{k}<=14,-33<=\mathrm{l}<=33$
Reflections collected	87657
Independent reflections	$6349[R($ int $)=0.1112]$
Completeness to theta $=25.242^{\circ}$	10.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7455 and 0.5519
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6349 / 205 / 392
Goodness-of-fit on F2	1.171
Final R indices [I 2 $2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{Rr}^{\mathrm{a}}=0.0991, \mathrm{wR2}^{\mathrm{b}}=0.1890$
R indices (all data)	$\mathrm{R}_{1}=0.1296, \mathrm{wR}_{2}=0.2027$
Extinction coefficient	0.0014(3)
Largest diff. peak and hole	1.332 and -1.787 e. \AA^{-3}
$\begin{aligned} & \bar{a} R 1=\Sigma\| \| F_{\mathrm{o}}-\left\|F_{\mathrm{c}}\right\| / / \Sigma\left\|F_{\mathrm{o}}\right\| \cdot{ }^{b} w R \\ & =0.0001 \text { and } b=35.9234 . \end{aligned}$	$)^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a p)^{2}+b p\right] ; p=(F$

$2.5 \quad\left[\mathbf{S b}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]\left[\mathbf{S b C l}_{6}\right]\left(7\left[\mathrm{SbCl}_{6}\right]\right)$

Table S5. Crystal data, data collection, and structure refinement for $7\left[\mathrm{SbCl}_{6}\right]$

Empirical formula	$\mathrm{C}_{24} \mathrm{Cl}_{6} \mathrm{~F}_{20} \mathrm{Sb}_{2}$
Formula weight	1124.44
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 1211
Unit cell dimensions	$\mathrm{a}=17.482(4) \AA$
	$\mathrm{b}=21.716(5) \AA$
	$\mathrm{c}=19.115(4) \AA$
	$a=90^{\circ}$.
	$\mathrm{b}=116.456(6)^{\circ}$.
	$\mathrm{g}=90^{\circ}$.
Volume	6497(3) Å ${ }^{3}$
Z	8
Density (calculated)	$2.299 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.292 \mathrm{~mm}^{-1}$
F(ooo)	4224
Crystal size	$0.426 \times 0.186 \times 0.092 \mathrm{~mm}^{3}$
Theta range for data collection	1.19 to 30.66°.
Index ranges	$-25<=\mathrm{h}<=24,-30<=\mathrm{k}<=31,-27<=\mathrm{l}<=27$
Reflections collected	159165
Independent reflections	$39702[\mathrm{R}$ (int) $=0.1041]$
Completeness to theta $=30.66^{\circ}$	99.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.82 and 0.66
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	39702 / 1 / 1874
Goodness-of-fit on F2	1.005
Final R indices [I>2sigma(I)]	$\mathrm{Rr}^{a}=0.0472, \mathrm{wR2}^{b}=0.0922$
R indices (all data)	$\mathrm{RI}=0.0823, \mathrm{wR} 2=0.1167$
Absolute structure parameter	0.143(16)
Largest diff. peak and hole	1.079 and -1.346 e. ${ }^{\text {- }}$-3

3 Computational Details

$3.1 \quad\left[\left(\boldsymbol{o -}\left(\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SbPh}_{3}\right]^{+}\left(\mathbf{5}^{+}\right)$

Table S6. XYZ coordinates of the optimized geometry of $\mathbf{5}^{+}$

Sb	0.254890	-0.029084	-0.006581
N	-2.547314	0.205567	-0.761231
C	2.219894	-0.780900	-0.026817
C	0.379618	1.889671	-0.844290
C	-0.880363	-1.524261	-0.933158
C	-0.355350	0.137937	1.987810
C	2.972294	-0.826269	1.152339
H	2.545561	-0.490193	2.096662
C	4.279939	-1.312685	1.121446
H	4.863959	-1.349192	2.037216
C	4.834473	-1.750590	-0.080989
H	5.853303	-2.128646	-0.101513
C	4.086165	-1.707094	-1.259013
H	4.518493	-2.051205	-2.195025
C	2.778997	-1.223376	-1.234223
H	2.202089	-1.200253	-2.159649
C	-0.432736	-2.810753	-1.242615
H	0.604368	-3.097398	-1.077313
C	-1.344568	-3.731314	-1.758952
H	-1.017089	-4.737079	-2.007404
C	-2.678106	-3.362043	-1.952562
H	-3.383193	-4.084754	-2.354946
C	-3.118399	-2.076603	-1.634983
H	-4.159781	-1.801130	-1.789629
C	-2.211609	-1.149427	-1.119073
C	-0.603618	2.841870	-0.552243
H	-1.457812	2.576882	0.069296

C	-0.483066	4.133824	-1.060417
H	-1.241479	4.878500	-0.832194
C	0.610896	4.469802	-1.861306
H	0.700165	5.476862	-2.260300
C	1.593822	3.522298	-2.143528
H	2.449785	3.788554	-2.757650
C	1.487490	2.229875	-1.627788
H	2.273501	1.504385	-1.830839
C	-0.959341	-0.960008	2.612355
H	-1.134413	-1.886417	2.065078
C	-1.348834	-0.862689	3.947840
H	-1.818982	-1.711677	4.437111
C	-1.135159	0.323286	4.652427
H	-1.441428	0.395698	5.692839
C	-0.530032	1.415131	4.029120
H	-0.362471	2.336525	4.580594
C	-0.136152	1.326155	2.693366
H	0.335900	2.181797	2.211904
C	-2.905316	0.993952	-1.949132
H	-2.078465	0.977696	-2.667131
H	-3.087885	2.031558	-1.651146
H	-3.812516	0.607205	-2.439633
C	-3.604797	0.278086	0.255097
H	-4.578732	-0.066211	-0.127153
H	-3.710701	1.319416	0.579329
H	-3.327226	-0.329859	1.121517

$3.2\left[\left(\boldsymbol{o}-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right) \mathrm{SbPh}_{3}\right]^{+}\left(\mathbf{6}^{+}\right)$

Table S7. XYZ coordinates of the optimized geometry of $\mathbf{6}^{+}$

Sb	0.191784	0.031428	0.031696
C	-0.317577	-0.808203	1.885290
C	-0.830813	-2.109822	1.919697
H	-0.965639	-2.679765	1.000225
N	-2.511747	0.321955	-0.176014
C	-1.158943	-2.693852	3.143546
H	-1.554611	-3.705877	3.170654
C	-0.971701	-1.981721	4.328650
H	-1.231182	-2.436859	5.280941
C	-0.434041	-0.694809	4.296391
H	-0.266937	-0.149728	5.221731
C	-0.098919	-0.107262	3.076325
H	0.346188	0.886558	3.069391
C	0.033282	2.117201	-0.135574
C	-0.460847	2.904060	0.909299
H	-0.757744	2.457508	1.856487
C	-0.591398	4.282425	0.735067
H	-0.971601	4.895627	1.548090
C	-0.236658	4.870360	-0.479682
H	-0.343998	5.943560	-0.614143
C	0.257833	4.084987	-1.521564
H	0.534705	4.542680	-2.467793
C	0.397897	2.707327	-1.350686
H	0.781913	2.102831	-2.173289
C	2.789026	-1.567904	0.106972
H	2.109286	-2.412202	0.230353
C	2.291179	-0.265455	-0.042406
C	3.180904	0.804379	-0.186049

H	2.812543	1.823920	-0.286460
C	-0.481837	-1.152035	-1.576870
C	0.453505	-1.608879	-2.512308
H	1.506646	-1.351349	-2.412967
C	0.038213	-2.404677	-3.580466
H	0.764056	-2.755299	-4.309007
C	-1.307516	-2.742479	-3.706797
H	-1.637578	-3.359500	-4.538492
C	-2.238355	-2.282264	-2.774352
H	-3.290091	-2.540585	-2.884933
C	-1.839652	-1.485225	-1.701147
C	-2.852135	-1.011580	-0.681049
H	-3.864584	-1.020675	-1.119279
H	-2.872111	-1.701395	0.173243
C	-3.253192	0.608786	1.057005
H	-3.001758	1.615841	1.405480
H	-2.983186	-0.114243	1.834221
H	-4.341256	0.563594	0.887351
C	-2.828939	1.333490	-1.195091
H	-2.589318	2.331040	-0.815721
H	-3.898596	1.299161	-1.457313
H	-2.240221	1.152108	-2.101355
C	4.558041	0.571103	-0.191111
H	5.246893	1.404604	-0.301755
C	5.046918	-0.726347	-0.049179
H	6.119049	-0.905435	-0.051708
C	4.163247	-1.797342	0.101645
H	4.545235	-2.808216	0.218298

4 References

1. Arias Ugarte, R.; Devarajan, D.; Mushinski, R. M.; Hudnall, T. W., Antimony(v) cations for the selective catalytic transformation of aldehydes into symmetric ethers, α, β-unsaturated aldehydes, and 1,3,5-trioxanes. Dalton Transactions 2016, 45 (27), 11150-11161.
2. Fujiwara, M.; Baba, A.; Matsuda, H., Selective α-cleavage cycloaddition of oxiranes with heterocumulenes catalyzed by tetraphenylstibonium iodide. J. Heterocycl. Chem. 1988, 25 (5), 1351-1357.
