Supporting information for: Redox Behaviour of ([fc(NPⁱPr₂)₂]Fe)₂, Formation of an Iron-Iron Bond and Cleavage of Azobenzene

Fraser S. Pick[#], Daniel B. Leznoff^{Θ},^{*} and Michael D. Fryzuk^{#*}

E-mail: dleznoff@sfu.ca; fryzuk@chem.ubc.ca

 $^{\#}$ Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1

 $^{\Theta}$ Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A1S6

Contents

1	X-ray Crystallographic Analyses	S3
2	Cyclic Voltammetry	$\mathbf{S5}$
3	¹ H NMR Spectra	$\mathbf{S6}$
4	Isomerization of Azobenzene	S 8
5	Mössbauer Spectra for 3	$\mathbf{S9}$
6	References	S10
References		S10

1 X-ray Crystallographic Analyses

Suitable single crystals were selected in a glovebox, coated in STP motor oil and mounted on a glass loop. X-ray data were collected on a Bruker DUO Apex II diffractometer with a graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at a temperature of 90 K. Data were collected and integrated using the Bruker SAINT software package.^{S1} Absorption corrections were performed using the multiscan technique (SADABS).^{S2} The structures were solved by direct methods and refined using all reflections with the SHELX-2013^{S3} program package. All non-hydrogen atoms were refined anisotropically. All structures were solved and refined using the Olex2 (version 1.2.5)^{S4} software package.

Compound	2	3	4
empirical formula	$C_{22}H_{36}Fe_2I_4N_2P_2$	$C_{68}H_{120}Fe_4N_4P_4O_6K$	$C_{34}H_{46}Fe_2N_4P_2$
formula weight	1009.72	1475.24	684.35
crystal size [mm]	$0.06 \ge 0.06 \ge 0.02$	$0.23 \ge 0.05 \ge 0.05$	$0.12 \ge 0.11 \ge 0.08$
crystal system	monoclinic	monoclinic	monoclinic
space group	Cc (No. 9)	$P2_1/c$ (No.14)	$P2_1/n$ (No. 14)
a [Å]	14.8284(13)	14.292(3)	13.6777(7)
b [Å]	17.0000(15)	21.153(5)	13.5134(6)
c [Å]	14.5439(13)	24.731(6)	17.7979(8)
α [°]	90.0	90.0	90.0
β [°]	90.654(2)	91.213(5)	94.0140(10)
γ [°]	90.0	90.0	90.0
V [Å ³]	3666.0(6).1(3)	7475(3)	3281.6(3)
$\rho \ [{ m g} \ cm^3]$	1.996	1.311	1.385
Z	8	4	2
F(000)	2104	3145	1440
$\mu \; [\mathrm{mm}^{-1}]$	4.268 (Mo-K α)	$0.951 \text{ (Mo-K}\alpha)$	1.011 (Mo-K α)
T_{min}/T_{max}	0.6248/0.7453	0.6530/0.7456	0.6760/0.7456
hkl range	$-18 - 10, \pm 20, \pm 17$	$-18 - 17, -26 - 27, \pm 32$	$\pm 17, \pm 17, -23 - 15$
θ range [°]	1.82 - 26.10	1.72 - 27.548	1.818 - 27.503
meassured refl.	26127	68997	30760
unique refl.	6304	17128	7523
refined parameters	302	792	563
completeness to θ [%]	99.8	99.5	99.9
goodness-of-fit	1.136	0.985	1.022
$R1, wR2 (I > 2\sigma(I))$	0.0243, 0.0572	0.482, 0.0958	0.0279, 0.0638
R1, wR2 (all data)	0.0252, 0.0575	0.0917, 0.1123	0.0372, 0.0675
res. el. dens. [e- $Å^3$]	0.564/-0.507	-1.005/0.980	-0.236/0.421

Table S1: Crystal data and refinement details for ${\bf 2},\,{\bf 3}$ and ${\bf 4}$

2 Cyclic Voltammetry

Figure S1: Cyclic voltammograms of complex **1** in 0.1 M $[^{n}Bu_{4}N][PF_{6}]$ in THF; scan rate = 100 mv s⁻¹

3 ¹H NMR Spectra

Figure S2: ¹H NMR spectrum (400 MHz, 298K) of $\mathbf{2}$ in C₆D₆

Figure S3: ¹H NMR spectrum (400 MHz, 298K) of **3** in C₆D₆. *Residual C₆D₆ #THF needed for solubility.

А А В В С С 7.6 7.4 7.2 7.0 6.8 6.6 8.4 8.4 8.2 8.0 7.8 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6

4 Isomerization of Azobenzene

Figure S5: ¹H NMR spectra (400 MHz, 298K) of **A** (left and right) Initial solution of *trans*-PhNNPh; **B** (left) Solution after irradiation at 350 nm for 25 min (right) Solution after irradiation at 350 nm for 60 min; **C** 30 minutes after Mixing with (left) and without (right) compound **1**. Green: *trans*-PhNNPh and red:*cis*-PhNNPh

5 Mössbauer Spectra for 3

Figure S6: Zero Field Mössbauer Spectra of **3** collected at 298K. Fit 1 (blue) $\delta = 0.458$ mm/s, $\Delta Eq = 2.225$ mm/s; Fit 2 (red) $\delta = 0.208$ mm/s; $\Delta Eq = 0.772$ mm/s; Fit 3 (green) overall fit.

6 References

References

- (S1) SAINT, Version 7.03A. Bruker AXS Inc., Madison, Wisconsin USA, (1997-2003).
- (S2) SADABS Bruker Nonius: area detector scaling and absorption correction. Version 2.10.Bruker AXS Inc., Madison, Wisconsin, USA, (2003).
- (S3) Sheldrick, G. M. Acta Cryst. A 2008, A64, 112.
- (S4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.