Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2018

# Two Photochromic Iodoargentate Hybrids with Adjustable

## **Photoresponsive Mechanism**

Electronic Supplementary Information

Xia Li, Pengfei Hao,\* Junju Shen and Yunlong Fu\*

Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

### Content

| 1. Chemical analysis for photolytic products                                                       |
|----------------------------------------------------------------------------------------------------|
| 2. Figures                                                                                         |
| Fig. S1 IR spectra of 1 and 22                                                                     |
| Fig. S2 The asymmetric unit of 12                                                                  |
| Fig. S3 The asymmetric unit of 2                                                                   |
| Fig. S4 Thermo-gravimetric and differential scanning calorimetry curves of 1 and 2                 |
| Fig. S5 The calculated UV-vis spectra of [HPBI]+ cation and [HPBI]• radicals                       |
| Fig. S6 Powder X-ray diffraction (PXRD) of 1 and 1P4                                               |
| Fig. S7 Powder X-ray diffraction (PXRD) of 2 and 2P4                                               |
| Fig. S8 The calculated UV-vis spectra of [MPBI]+ cations and [MPBI]• radicals4                     |
| Fig. S9 The absorption changes with repeated ultraviolet irradiation/heat cycles of ${f 1}$ (a) at |
| 430 nm and <b>2</b> (b) at 450 nm5                                                                 |
| 3. Tables                                                                                          |
| Table S1 Crystal data and structure refinement for 1 and 2.                                        |
| Table S2 Selected bond lengths (Å) and angles (°) for 1 and 27                                     |
| Table S3 Theoretical lowest unoccupied molecular orbital (LUMO) energy of specific                 |
| organic cations and photochromic mechanism of their iodoargentates.                                |
| Reference                                                                                          |

### 1. Chemical analysis for photolytic products

Dissolve compounds **1** (0.534 g, 0.5 mmol), **1P** (0.534 g, 0.5 mmol), **2** (0.255 g, 0.5 mmol), **2P** (0.255 g, 0.5 mmol) in 5 mL dimethyl sulfoxide containing 0.15 g Nal respectively. The resultant solution are colorless for **1** and **2**, while the solution for **1P** and **2P** are yellowish and decolored after addition of excess  $Na_2S_2O_3$  (0.158 g, 1 mmol), implying existence of  $I_3$ <sup>-</sup>. Several minutes later, the black precipitated particles are observed in the solution of **1P** and **2P**, and further verified as metal silver through a classical procedure. The whole process is carried out in the dark at room temperature.



2. Figures

Fig. S1 IR spectra of 1 and 2.



Fig. S2 The asymmetric unit of 1.



Fig. S3 The asymmetric unit of 2.



**Fig. S4** Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of **1** (left) and **2** (right).



**Fig. S5** The calculated UV-vis spectra of [HPBI]<sup>+</sup> cation (left) and [HPBI]<sup>+</sup> radicals (right) through density functional theory (DFT) computations using the Gaussian 09 suite of programs<sup>[S1]</sup>. A hybrid functional B3LYP was used for all calculations.



**Fig. S6** Powder X-ray diffraction (PXRD) of **1** (before irradiation) and **1P** (after irradiation) at room temperature (RT). The inset shows some diffraction peaks of **1P** slightly shift to high angles compared with **1**.



**Fig. S7** Powder X-ray diffraction (PXRD) of **2** (before irradiation) and **2P** (after irradiation) at room temperature (RT). The inset shows some diffraction peaks of **2P** slightly shift to high angles compared with **2**.



**Fig. S8** The calculated UV-vis spectra of [MPBI]<sup>+</sup> cations (left) and [MPBI]<sup>•</sup> radicals (right) through density functional theory (DFT) computations using the Gaussian 09 suite of programs<sup>[S1]</sup>. A hybrid functional B3LYP was used for all calculations.



**Fig. S9** The absorption changes with repeated ultraviolet irradiation/heat cycles of **1** (a) at 430 nm and **2** (b) at 450 nm.

## 3. Tables

 Table S1 Crystal data and structure refinement for 1 and 2.

| Compound                                                                                                                                    | 1                        | 2                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--|--|
| CCDC code                                                                                                                                   | 1820806                  | 1820807                  |  |  |
| Empirical formula                                                                                                                           | $C_{15}H_{14}N_3Ag_3I_4$ | $C_{15}H_{15}N_2Ag_3I_4$ |  |  |
| Temperature                                                                                                                                 | 273(2) K                 | 273(2) K                 |  |  |
| Formula weight                                                                                                                              | 1067.50                  | 1054.50                  |  |  |
| Crystal size                                                                                                                                | 0.424 x 0.058 x 0.047    | 0.032×0.13×0.423         |  |  |
| Crystal system                                                                                                                              | Monoclinic               | Orthorhombic             |  |  |
| Space group                                                                                                                                 | C2/m                     | Pnna                     |  |  |
| a (Å)                                                                                                                                       | 26.757(7)                | 7.5462(4)                |  |  |
| b (Å)                                                                                                                                       | 6.7094(17)               | 22.2417(12)              |  |  |
| <i>c</i> (Å)                                                                                                                                | 13.283(3)                | 13.1833(7)               |  |  |
| α (°)                                                                                                                                       | 90                       | 90                       |  |  |
| β (°)                                                                                                                                       | 98.927(6)                | 90                       |  |  |
| γ (°)                                                                                                                                       | 90                       | 90                       |  |  |
| V (ų)                                                                                                                                       | 2355.8(10)               | 2212.7(2)                |  |  |
| Ζ                                                                                                                                           | 4                        | 4                        |  |  |
| D <sub>c</sub> (g/cm <sup>3</sup> )                                                                                                         | 3.010                    | 3.165                    |  |  |
| F (000)                                                                                                                                     | 1912.0                   | 1888.0                   |  |  |
| $\mu$ (mm <sup>-1</sup> )                                                                                                                   | 7.716                    | 8.211                    |  |  |
| Reflections collected                                                                                                                       | 36335                    | 37421                    |  |  |
| Unique reflections                                                                                                                          | 3129                     | 2715                     |  |  |
| R <sub>int</sub>                                                                                                                            | 0.0240                   | 0.0305                   |  |  |
| F <sup>2</sup>                                                                                                                              | 1.084                    | 1.093                    |  |  |
| $R_1/wR_2[l\geq 2\sigma(l)]$                                                                                                                | 0.0488, 0.1377           | 0.0364, 0.0929           |  |  |
| $R_1/wR_2$ (all date)                                                                                                                       | 0.0582, 0.1512           | 0.0386, 0.0944           |  |  |
| $\Delta ho_{max}/\Delta ho_{min}$ (e Å <sup>-3</sup> )                                                                                      | 1.818, -1.822            | 1.499, -1.923            |  |  |
| ${}^{a}R_{1} = \sum   F_{o}  -  F_{c}   / \sum  F_{o} , \ {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$ |                          |                          |  |  |

| Compound 1                                                                   |               |                     |             |  |  |
|------------------------------------------------------------------------------|---------------|---------------------|-------------|--|--|
| Ag(1)-I(3)                                                                   | 2.7801(6)     | Ag(1)-I(2)          | 2.8076(6)   |  |  |
| Ag(1)-I(4)                                                                   | 2.9610(6)     | Ag(1)-I(1)          | 2.9656(7)   |  |  |
| Ag(2)-I(4)#2                                                                 | 2.8709(6)     | Ag(2)-I(4)#3        | 2.8709(6)   |  |  |
| Ag(2)-I(1)#2                                                                 | 2.8756(6)     | Ag(2)-I(1)          | 2.8756(6)   |  |  |
|                                                                              |               |                     |             |  |  |
| Ag(1)-Ag(1)#1                                                                | 3.1512(10)    | Ag(1)-Ag(2)#2       | 3.2034(7)   |  |  |
| Ag(2)-Ag(1)#1                                                                | 3.2034(7)     | Ag(2)-Ag(1)#2       | 3.2034(7)   |  |  |
| Ag(2)-Ag(2)#4                                                                | 3.2747(12)    |                     |             |  |  |
|                                                                              |               |                     |             |  |  |
| I(3)-Ag(1)-I(2)                                                              | 110.064(17)   | I(3)-Ag(1)-I(4)     | 113.236(16) |  |  |
| I(2)-Ag(1)-I(4)                                                              | 103.69(2)     | I(3)-Ag(1)-I(1)     | 113.00(2)   |  |  |
| I(2)-Ag(1)-I(1)                                                              | 105.420(16)   | I(4)-Ag(1)-I(1)     | 110.729(15) |  |  |
| I(4)#2-Ag(2)-I(4)#3                                                          | 110.45(2)     | I(4)#2-Ag(2)-I(1)#2 | 116.112(12) |  |  |
| I(4)#3-Ag(2)-I(1)#2                                                          | 103.950(13)   | I(4)#2-Ag(2)-I(1)   | 103.950(13) |  |  |
| I(4)#3-Ag(2)-I(1)                                                            | 116.112(12)   | l(1)#2-Ag(2)-l(1)   | 106.66(2)   |  |  |
| Symmetry code: #1 x,-y+2,z                                                   |               |                     |             |  |  |
| #5 x,-y+1                                                                    | ,z #6 x,y-1,z |                     |             |  |  |
|                                                                              | Compo         | ound <b>2</b>       |             |  |  |
| Ag(2)-I(2)#1                                                                 | 2.8204(7)     | Ag(2)-I(2)          | 2.8233(7)   |  |  |
| Ag(2)-I(1)#2                                                                 | 2.8853(6)     | Ag(2)-I(1)          | 2.9128(6)   |  |  |
| Ag(1)-I(2)#3                                                                 | 2.8239(5)     | Ag(1)-I(2)#4        | 2.8239(6)   |  |  |
| Ag(1)-I(1)                                                                   | 2.8879(6)     | Ag(1)-I(1)#2        | 2.8879(6)   |  |  |
|                                                                              |               |                     |             |  |  |
| I(2)#1-Ag(2)-I(2)                                                            | 101.312(17)   | I(2)#1-Ag(2)-I(1)#2 | 118.08(2)   |  |  |
| I(2)-Ag(2)-I(1)#2                                                            | 116.86(2)     | I(2)#1-Ag(2)-I(1)   | 113.85(2)   |  |  |
| I(2)-Ag(2)-I(1)                                                              | 116.02(2)     | I(1)#2-Ag(2)-I(1)   | 91.650(18)  |  |  |
| I(2)#3-Ag(1)-I(2)#4                                                          | 102.92(3)     | I(2)#3-Ag(1)-I(1)   | 113.957(11) |  |  |
| I(2)#4-Ag(1)-I(1)                                                            | 117.304(10)   | I(2)#3-Ag(1)-I(1)#2 | 117.304(10) |  |  |
| I(2)#4-Ag(1)-I(1)#2                                                          | 113.957(11)   | I(1)-Ag(1)-I(1)#2   | 92.11(2)    |  |  |
| Symmetry code: #1 x-1/2,y,-z+2 #2 x,-y+3/2,-z+3/2 #3 x+1/2,y,-z+2 #4 x+1/2,- |               |                     |             |  |  |
| y+3/2,z-1/2 #5 -x+3/2,-y+1,z                                                 |               |                     |             |  |  |

Table S2 Selected bond lengths (Å) and angles (°) for 1 and 2.

| Organic cations                                  | LUMO (eV)ª | Photochromic mechanism       |
|--------------------------------------------------|------------|------------------------------|
| <i>N,N</i> -dimethyl-2-<br>phenylbenzimidazolium | -5.1713    | Photolysis + Photoinduced ET |
| N-proton-2-phenylbenzimidazolium                 | -5.7419    | Photolysis                   |
| Monoprotonated pyrazinium                        | -8.0968    | Photoinduced ET              |
| N-methyl-4-carbomethoxypyridinium                | -9.7126    | Photoinduced ET              |
| N-methyl-nicotinohydrazide                       | -10.1181   | Photoinduced ET              |

**Table S3** Theoretical lowest unoccupied molecular orbital (LUMO) energy of specific organic

 cations and photochromic mechanism of their iodoargentates.

<sup>a</sup> The theoretical values of organic cations through density functional theory (DFT) computations using the Gaussian 09 suite of programs<sup>S1</sup>. A hybrid functional, B3LYP, was used for all calculations. Geometry was optimized using the 6-31G basis set.

#### Reference

S1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford, CT, 2013