New Ru(II) Complex for Dual Photochemotherapy: Release of Cathepsin K Inhibitor and ¹O₂ Production

Thomas N. Rohrabaugh Jr.,[†] Kelsey A. Collins, [†] Congcong Xue, [†] Jessica K. White,[§]* Jeremy J. Kodanko,[‡]* and Claudia Turro[†]*

[†]Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210

§ Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701

[‡]Department of Chemistry, Wayne State University, Detroit, MI 48202

Contents	Pages
Figure S1. ¹ H NMR spectra of $1-4$ in d_{a} -acetone	S2
Figure S2. The ESI-MS spectra of $1 - 4$.	S2
Figure S3. Electronic absorption spectra of $1 - 4$ in CH3CN.	S 3
Figure S4. Photolysis of 3 and 4.	S 3
Figure S5. Absorption spectra of 4 in water kept for 120 min in the dark.	S4
Figure S6. Absorption spectra of 2 in water kept for 30 min in the dark.	S 4
Figure S7. Absorption spectra of 3 in water kept for 90 min in the dark.	S 5
Figure S8. Absorption spectra of 1 in water kept for 30 min in the dark.	S 5
Figure S9. Ethidium bromide-imaged agarose gel of 2, 4, 6.	S 6
Equation S1. Equation used to calculate the ligand exchange quantum yield (Φ_L) .	S 6
Equation S2. Equation used to calculate the mean fraction of light absorbed.	S 6

Figure S2. The ESI-MS spectra experimental (—) and calculated (—) of $[Ru(tpy)(dppn)(Cbz-Leu-NHCH_2CN)](PF_6)_2$ (a), $[Ru(tpy)(bpy)(Cbz-Leu-NHCH_2CN)](PF_6)_2$ (b), $[Ru(tpy)(dppn)(CH_3CN)](PF_6)_2$ (c), and $[Ru(tpy)(bpy)(CH_3CN)](PF_6)_2$ (d)

Wavelength (nm) **Figure S3.** Electronic absorption spectra of $[Ru(tpy)(dppn)(Cbz-Leu-NHCH_2CN)]^{2+}$ (—), $[Ru(tpy)(bpy)(Cbz-Leu-NHCH_2CN)]^{2+}$ (—), $[Ru(tpy)(dppn)(CH_3CN)]^{2+}$ (—), $[Ru(tpy)(bpy)(CH_3CN)]^{2+}$ ((—), $[Ru(tpy)(bpy)(CH_3C$

Figure S4. Electronic absorption spectra of $[Ru(tpy)(bpy)(CH_3CN)]^{2*}$ (a) and $[Ru(tpy)(dppn)(CH_3CN)]^{2*}$ (b) in aqueous solution (< 5% acetone; sparged with N₂ for 10 min) irradiated with $\lambda_{in} \ge 395$ nm for 0-50 min and 0-140 min, respectively.

Figure S5. Electronic absorption spectra of $[Ru(tpy)(bpy)(CH_3CN)]^{2+}$ in water (<5% acetone) (—) and after 2 hours in the dark (---).

Figure S6. Electronic absorption spectra of [Ru(tpy)(bpy)(Cbz-Leu-NHCH₂CN)]²⁺ in water (<5% acetone) (—) and after 30 mins in the dark (---).

Figure S7. Electronic absorption spectra of $[Ru(tpy)(dppn)(CH_3CN)]^{2+}$ in water (<5% acetone) (—) and after 1.5 hours in the dark (---).

Figure S8. Electronic absorption spectra of $[Ru(tpy)(dppn)(Cbz-Leu-NHCH_2CN)]^{2+}$ in water (<5% acetone) (—) and after 30 mins in the dark (---).

Figure S9. Ethidium bromide-imaged agarose gel (1%) of 100 μ M pUC19 (5 μ M Tris buffer, pH = 7.5, 50 μ M NaCl) and 10 μ M of complexes **2**, **4**, **6** in air ($\lambda_{\alpha} \ge 395$ nm, 5 min). Where lanes 1, 2, 4, 6 are dark controls and lanes 3, 5, and 7 are irradiated: lane 1, plasmid only; lanes 2 and 3, **2**; lanes 4 and 5, **4**; lanes 6 and 7, **6**.

$$\Phi_L = \left(\frac{\text{rate of consumption of reactant}}{\text{photon flux}}\right) \left(\frac{1}{f_m}\right)$$

Equation S1. Equation used to calculate the ligand exchange quantum yield (Φ_L) , where f_{π} is the mean fraction of light absorbed by the sample.^{s1}

$$f_m = \frac{(1 - 10^{-A_0}) + (1 - 10^{-A_f})}{2}$$

Equation S2. Equation used to calculate the mean fraction of light absorbed by the sample, where A_0 is the initial absorbance at the irradiation wavelength (450 nm) before irradiation and A_1 is the final absorbance at the irradiation wavelength at the end of the experiment.¹

REFERENCES

(S1) V. Balzani, P. Ceroni and A. Juris, *Photochemistry and Photophysics Concepts, Research, Applications*, Wiley-VCH, Weinheim, Bergstr, 2014.