Supporting information for:

Synthesis, Structure, Photophysical and Electrochemical Properties of Ru(II) Complexes of Arylene-Vinylene Terpyridyl Conjugates

Amit Sil,^a Sabyasachi Roy Chowdhury,^a Sabyashachi Mishra^{*a} and Sanjib K. Patra^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, INDIA, E-mail: <u>skpatra@chem.iitkgp.ac.in</u>; Tel: +913222283338

1.		Synthesis and Characterization	S2-S35
	1a.	Syntheses	S2-S3
	1b.	NMR Spectra	S4-S17
	1c.	FTIR spectra	S18-S23
	1d.	Mass spectrometry	S24-S31
2.		Crystallographic data and refinement parameters	S 32
3.		Photophysical studies	S33-S36
	3a.	Determination of quantum yield	S 33
	3b.	Determination of Lifetime	S 33
	3c.	Photophysical data of compounds	S34-S36
4.		Electrochemical characterization	S36-S38
5.		Theoretical studies	S39-S61
6.		References	S61

1. Synthesis and Characterization

1a. Syntheses

Synthesis of 4'-(4-{2-[phenyl]-ethenyl}phenyl)-2,2':6',2''-terpyridine (L1): 4-(2,2':6',2''-Terpyridyl-4')-benzyl triphenylphosphonium bromide (1.0 g, 3.10 mmol) and potassium tertbutoxide (2.08 g, 18.60 mmol) were combined using a morter and pestle, and the yellow medium was aggregated until a light orange powder formed. To it benzaldehyde (0.47 mL, 4.65 mmol) was added and the combined mixture was grinded vigorously for about 30 min. After the mixture became sticky, 5 ml of dichloromethane was added and the mixture was continuously grinded for another 10 min. After completion of the reaction (monitored by TLC), the mixture was dispersed in 100 mL of dichloromethane and worked up with brine solution followed by water. The organic part was collected and dried over anhydrous MgSO₄, filtered and concentrated. The solid residue was stirred in distilled methanol for overnight at room temperature. The precipitated solid was isolated by vacuum filtration, washed with water (3×10 mL), methanol (5×10 mL) and diethyl ether (3×10 mL). The solid residue was further purified by column chromatography (ethyl acetate: hexanes, 4:1) on silica gel (60 - 120 mesh) to achieve analytically pure lemon yellow solid product. Yield: 0.71 g, (57%); ¹H NMR (CDCl₃, 400 MHz): δ , 7.20 (d, J = 5.2 Hz, 2H), 7.26 (d, J = 6Hz,1H), 7.27-7.31(m, 1H) 7.36-7.42 (m, 4H) 7.57 (d, J = 7.2 Hz, 2H), 7.67 (d, J = 8 Hz, 2H), 7.88-7.96 (m, 4H), 8.68 (d, J =8Hz, 2H), 8.76 (d, J = 4.8Hz, 2H), 8.79 (s, 2H) ; ¹³C NMR {¹H} (CDCl₃, 100 MHz): δ 118.8, 121.6, 124.1, 126.9, 127.3, 127.8, 128.1, 128.2, 128.9, 129.8, 137.2, 137.4, 137.6, 138.4, 149.3, 149.7 156.2, 156.5. HRMS (ESI⁺): C₂₉H₂₁N₃, Calculated value 412.4808 ([M+H]⁺); experimental 412.1814 ([M+H]⁺); FTIR (KBr, cm⁻¹): 2918 ($\bar{v}_{C-H \text{ stretching}}$), 1585 ($\bar{v}_{C-C \text{ stretching}}$); $\lambda_{max}(\epsilon)$: 333 nm ($\epsilon =$ $5.5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), 287 nm ($\varepsilon = 4.0 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$); λ_{em} : 412 nm (λ_{ex} : 333 nm).

4'-(4-{2-[*p*-tolyl]-ethenyl} phenyl)-2, 2'-6', 2''-terpyridine (L2): L2 was prepared using a similar procedure as that for L1 using 4-methylbenzaldehyde (0.56 mL, 4.65 mmol), 4-(2,2':6',2''-Terpyridyl-4')-benzyl triphenylphosphonium bromide (1.0 g, 3.10 mmol) and potassium *tert*-butoxide (2.08 g, 18.60 mmol). The pure product was isolated as lemon yellow solid product. Yield: 0.71 g (54%). ¹H NMR (CDCl₃, 400 MHz): δ 2.38 (s, 3H, methyl), 7.12 (d, *J* = 16 Hz, vinyl 1H), 7.14-7.21 (m, 3H), 7.35-7.37 (m, 2H), 7.45 (d, *J* = 8Hz, 2H), 7.63 (d, *J* = 8 Hz, 2H), 7.86 - 7.94 (m, 4H, Py), 8.68 (d, *J* = 8 Hz, 2H, Py), 8.76 (d, *J* = 4Hz, 2H, Py), 8.78 (s, 2H, Py) ; ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 21.6 (methyl), 118.8, 121.7, 124.1, 126.8, 127.2, 127.3, 127.8, 129.7, 129.8, 134.7, 137.1, 137.4, 138.1, 138.6, 149.4, 149.9, 156.2, 156.6; HRMS (ESI+): C₃₀H₂₃N₃, Calculated

value 426.1970 ([M+H]+); experimental 426.1973 ([M+H]+); FTIR (KBr, cm-1): 2923 ($\bar{v}_{C-H \text{ stretching}}$), 1585 ($\bar{v}_{C=C \text{ stretching}}$), 1566 ($\bar{v}_{C=N \text{ stretching}}$); $\lambda_{max}(\epsilon)$: 338 nm ($\epsilon = 4.1 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), 288 nm ($\epsilon = 3.2 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$); λ_{em} : 423 nm (λ_{ex} : 338 nm).

4'-(4-{2-[1-Naphthyl]-ethenyl} phenyl)-2, 2'-6', 2''-terpyridine (L3): L3 was prepared analogously to **L1** using 1-naphthaldehyde (0.63 mL, 4.65 mmol), 4-(2,2':6',2"-terpyridyl-4')-benzyl triphenylphosphonium bromide (1.0 g, 3.10 mmol) and potassium *tert*-butoxide (2.08 g, 18.60 mmol). The pure product was isolated as pale yellow solid. Yield: 0.70 g (49%); ¹H NMR (CDCl₃, 400 MHz): δ 7.21 -7.26 (m, 2H), 7.36-7.39 (m, 2H), 7.50-7.58 (m, 2H), 7.74-7.76 (m, 2H, Py), 7.80-7.84 (m, 2H, Py), 7.88-7.92 (m, 3H), 7.98-8.02 (m, 3H), 8.28 (d, J = 8Hz,1H), 8.70 (d, J = 8 Hz, 2H, Py), 8.75-8.76 (m, 2H, Py), 8.8 (s, 2H, Py); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 118.9, 121.7, 124.0, 125.9, 126.5, 126.9, 127.1, 127.6, 127.9, 128.5, 128.9, 129.2, 129.9, 131.3, 131.7, 134.0, 135.1, 137.2, 137.9, 138.7, 149.3, 150.0, 156.2, 156.5; HRMS (ESI⁺): C₃₃H₂₄N₃, Calculated value 462.1970 ([M+H]⁺); experimental 462.1967 ([M+H]⁺); FTIR (KBr, cm⁻¹): 2926 ($\bar{\nu}_{C-H \text{ stretching}}$), 1577 ($\bar{\nu}_{C-C \text{ stretching}}$), 1566 ($\bar{\nu}_{C-N \text{ stretching}}$); $\lambda_{max}(\varepsilon$): 344 nm (ε = 2.7×10⁴ M⁻¹cm⁻¹), 284 nm (ε = 3.3×10⁴ M⁻¹cm⁻¹); λ_{em} : 433 nm (λ_{ex} : 344 nm).

4'-(4-{2-[9-Anthryl]-ethenyl} phenyl)-2, 2'-6', 2''-terpyridine (L4): L4 was prepared using a similar procedure as that for **L1** using 9-anthraldehyde (0.9 g, 4.65 mmol), 4-(2,2':6',2"-terpyridyl-4')-benzyl triphenylphosphonium bromide (1.0 g, 3.10 mmol) and potassium *tert*-butoxide (2.08 g, 18.60 mmol) and 35 ml of dry THF. The pure product was isolated as bright yellow solid. Yield: 0.32 g (51%); ¹H NMR (CDCl₃, 400 MHz): δ 7.04 (d, J = 16.8 Hz, 1H), 7.37-7.40 (m, 2H), 7.47-7.51 (m, 4H), 7.82 (d, J = 8.4 Hz, 2H), 7.89-7.93 (m, 4H), 8.02-8.06 (m, 4H), 8.39-8.43 (m, 3H), 8.68-8.77 (m, 4H, Py), 8.83 (s, 2H, Py); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 118.9, 121.6, 124.0, 124.3, 125.5,126.4, 126.9, 127.4, 127.7, 127.9, 128.4, 128.9, 129.3, 129.9, 131.8, 132.7, 137.1, 138.1, 149.4, 149.9, 156.2, 156.5; LCMS (ESI⁺): C₃₇H₂₈N₃, Calculated value 512.2 ([M+H]⁺); experimental 512.4 ([M+H]⁺); FTIR (KBr, cm⁻¹): 2924 ($\bar{v}_{C-H \text{ stretching}}$), 1584 ($\bar{v}_{C=C \text{ stretching}}$), 1569 ($\bar{v}_{C=N}$ stretching); $\lambda_{max}(\epsilon)$: 391 nm ($\epsilon = 1.5 \times 10^4$ M⁻¹cm⁻¹), 286 nm ($\epsilon = 3.1 \times 10^4$ M⁻¹cm⁻¹); λ_{em} : 498 nm (λ_{ex} : 391 nm).

1b. NMR Spectra

Fig. S1: ¹H NMR (400 MHz, CDCl₃) spectrum of **L1**; proton marked as h and one of the vinyl protons (i) are overlapped.

S4

Fig. S3: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of L1

Fig. S4: ¹H NMR (400 MHz, CDCl₃) spectrum of **L2**; proton marked as q and one of the vinyl protons (m) are overlapped.

Fig. S6: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of L2

Fig. S7: ¹H NMR (400 MHz, CDCl₃) spectrum of **L3**; proton marked as 'h' is one of the vinyl protons, which is overlapped with residual CHCl₃.

Fig. S8: ${}^{13}C{}^{1}H$ }NMR (100 MHz, CDCl₃) spectrum of L3

Fig. S10: ¹H NMR (400 MHz, CDCl₃) spectrum of **L4**; proton marked as f is one of the vinyl proton which is overlapped with other aromatic protons.

Fig. S12: DEPT-135 NMR (100 MHz, CDCl₃) spectrum of L4

Fig. S15: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of **1**

Fig. S16: ¹H NMR (600 MHz, CDCl₃) spectrum of 2

Fig. S18: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of 2

Fig. S21: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of **3**

Fig. S24: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of 4

Fig. S27: ³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of **5**

Fig. S30: ³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of **6**

Fig. S33: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of 7

Fig. S35: ¹³C{¹H }NMR (150 MHz, CDCl₃) spectrum of 8

Fig. S36: ³¹P{¹H }NMR (162 MHz, CDCl₃) spectrum of 8

1c. FTIR data (measured as KBr pellets)

Fig. S40: FTIR spectrum of L4

Fig. S44: FTIR spectrum of 4

1d. Mass spectrometry data

Fig. S50: HRMS (ESI⁺) of L2

Fig. S52: HRMS (ESI⁺) of **L4** (Interestingly, a peak was observed at 514.4276 corresponding to $([M+3H]^+)$ instead of 512.2126 for $([M+H]^+)$. However in LCMS study, the peak for $([M+H]^+)$ was observed as shown below.

Fig. S53: LCMS (ESI⁺) of **L4**; LCMS study was carried out in single quadruple mass analyzer (Agilent Technologies, A6120BW).

Fig. S54: HRMS (ESI⁺) of 1

Fig. S55: HRMS (ESI⁺) of 2

Fig. S56: HRMS (ESI⁺) of 3

Fig. S58: HRMS (ESI⁺) of 5

Fig. S59: HRMS (ESI⁺) of 6

Fig. S60: HRMS (ESI⁺) of 7

Fig. S62: Simulated and isotopic distribution pattern for the molecular ion peaks $([M-PF_6]^+)$ of complex **5-8** obtained from HRMS (ESI+).

2. Crystallographic data and refinement parameters

	Complex 1'	Complex 1	Complex 2	Complex 3'	Complex 3
Empirical	$C_{94}H_{72}Cl_2F_{12}$	C65H49ClF7	$C_{66.50}H_{52}Cl_{1.75}$	$C_{102}H_{76}Cl_2F_{12}$	C ₆₉ H _{0.25} Cl
formula	$N_6P_4Ru_2$	$N_3 P_3 Ru$	F ₆ N ₃ P ₃ Ru	$N_6P_4Ru_2$	$F_7N_3P_3Ru$
Formula	1910.49	1234.50	1263.13	2010.60	1233.40
weight					
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	P21/c
a, Å	13.050(2)	14.204(3)	14.302(3)	13.293(4)	14.489(4)
b, Å	13.456(2)	17.591(3)	17.622(4)	13.425(4)	17.629(5)
c, Å	15.248(2)	22.635(4)	22.401(5)	14.198(4)	23.036(7)
α, deg	70.943(4)	89.925(7)	90	91.251(9)	90
β, deg	68.971(4)	81.885(6)	81.923(8)	95.993(9)	97.774(8)
γ, deg	61.317(4)	89.877(6)	90	115.779(8)	90
V, Å ³	2153.3(6)	5599.1(19)	5590(2)	2262.7(10)	5830(3)
Z	1	4	4	1	4
ρ_{calcd} , g cm ⁻³	1.473	1.464	1.501	1.476	1.405
μ, mm ⁻¹	0.564	0.482	0.517	0.541	0.464
F(000)	968	2516	2579	1296	2417
Collected	25533	71643	66071	26317	47182
independent	8665	21934	19515	7861	6327
Observed [I >	4294	14058	9841	3607	5121
2σ(I)]					
No. of	541	1449	1479	577	761
variables					
Goodness-of-	1.032	1.046	0.988	0.968	1.055
fit					
Final R indices	R1=0.1079	R1=0.0615	0.0763	R1=0.0991	R1=0.0584
$[I > 2\sigma(I)]^a$	wR2= 0.2849	wR2=	0.1797	wR2=0.2395	wR2= 0.1535
		0.1478			
R indices (all	R1=0.2263	R1 = 0.1047	0.1572	R1=0.2014	R1 = 0.0727
data) ^a	wR2=0.3584	wR2=	0.2306	wR2=0.3068	wR2=0.1661
		0.1726			

Table S1. Crystallographic data and refinement parameters for complex 1', 1, 2, 3' and 3.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|$ with $F_{o}{}^{2}>2\sigma (F_{o}{}^{2})$. wR₂ = $[\Sigma w (|F_{o}{}^{2}| - |F_{c}{}^{2}|)^{2}/\Sigma |F_{o}{}^{2}|^{2}]$; Data was collected at 100 K for the single crystals of complex **1**, **1'**, **2**, **3'** whereas for complex **3** data was collected at 293(2) K.

3. Photophysical studies

3a. Determination of Quantum yield

All the UV–Vis absorption and fluorescence emission spectra were collected using a Shimadzu UV–Vis spectrophotometer (model UV 2450 and a Spex Fluorolog-3 spectrofluorimeter (model FL3–11) respectively. Throughout all the measurements, the concentration were maintained at (1×10^{-5} M). Fluorescence quantum yields were measured with respect to a secondary standard quinine sulphate ($\lambda_{abs} = 350$ nm) in 0.1 M H₂SO₄ ($\Phi = 0.54$) at 298 K. The following equation was used to calculate the quantum yields¹:

$$\frac{\Phi_S}{\Phi_R} = \frac{A_S}{A_R} \times \frac{(Abs)_R}{(Abs)_S} \times \frac{\eta_S^2}{\eta_R^2}$$

Here Φ represents the quantum yield, (Abs) represents the absorbance, A represents the area under the fluorescence curve, and η is the refractive index of the medium. The subscript S and R denote the corresponding parameters for the sample and reference respectively.

3b. Determination of time resolved fluorescence spectra

The time-resolved emission decays were recorded using a time correlated single photon counting (TCSPC) picoseconds spectrophotometer. **L1**, **L2** and **L3** were excited using a picosecond diode laser at 340 nm (IBH, UK, Nanoled) whereas **L4** were excited at 400 nm using the same laser, and the signals were recorded at magic angle (54.71) using a Hamamatsu micro channel plate photomultiplier tube (3809U). The typical instrument response function in our setup is 100 ps. The instrument response function of our setup is ~800 ps. Time-resolved fluorescence decays were analyzed using IBH DAS-6 decay analysis software.

3c. Photophysical data of the ligands

Fig. S63: (a) Absorption spectra of L1-L4 in 1×10^{-5} M CHCl₃ solution at ambient temperature.

Fig. S64: (a) Emission spectra of **L1-L4** in 1×10^{-5} M CHCl₃ solution at ambient temperature. (b) Visual appearance of **L1-L4** in CHCl₃ (1×10^{-4} M) under UV illumination at 365 nm.

Fig. S65: Time resolved fluorescence spectra of L1-L4

Fig. S66: Solid state (a) absorption and (b) emission spectra of L1-L4 at ambient temperature.

Table S2. Photophysical data of the arylene-vinylene conjugated terpyridines chloroform thin films at 28 °C.

Ligand	Absorption (nm)	Emission (λ_{ex})	Stokes Shift	Lifetime	Q. Y.*
S	$[\epsilon (M^{-1}.cm^{-1}) \times 10^{4}]$	(nm)	(cm ⁻¹)	(ns)	(%)
L1	333(4.1), 288(3.2)	412(333)	5758.2	1.33	17
L2	334(4.8), 285(3.1)	417(334)	1666.7	1.36	23
L3	341(5.6), 284(5.0)	437(341)	1552.8	1.91	32
L4	390(1.0),258(9.0)	498(390)	1798.6	2.88	36

*Quinine sulphate (0.1 M H₂SO₄; $\Phi = 0.54$) was used as reference for quantum yield calculation; ϵ =Absorption coefficient. Stokes shifts $\Delta \lambda_{st}$, cm⁻¹ = λ_{em} - λ_{abs} .

Table S3: Photophysical data of the arylene-vinylene conjugated terpyridines in thin films at 28 °C.

Ligands	Absorption (nm)	Emission (nm)	^a Stokes Shift (cm ⁻¹)
L1	346, 284	435,415 (sh)	5913
L2	354,285	440	5521
L3	357, 286	470, 448	6177
L4	408, 263	504	4668

^aStokes shifts $\Delta \lambda_{st}$, cm⁻¹ = λ_{em} - λ_{abs} .

Fig. S67: Solid state absorption spectra of complex 1-8 at ambient temperature.

4. Electrochemical Characterization

Cyclic voltammetric analysis was conducted in acetonitrile using n-Bu₄NPF₆ (0.1 M) as supporting electrolytes, Pt wire counter electrode and Ag/AgCl reference electrode.

Fig. S68: Cyclic voltammogram of acetonitrile using TBAPF₆ as supporting electrolyte (Blank run), Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100mV/s.

Fig. S69: Cyclic voltammogram of the free ligands (**L1-L4**) in acetonitrile using TBAPF₆ as supporting electrolyte, Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100 mV/s.

Fig. S70: Cyclic voltammograms (CV) and differential pulse voltammograms (DPV) of ruthenium(II) complexes (1-4) in acetonotrile solution using TBAPF₆ as supporting electrolyte, Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100 mV/s.

complex	anodic		cathodic
	${}^{b}E_{pa}\left(V ight)$	${}^{c}E_{1/2}(V)$	^b E _{pc} (V)
1	1.65	0.93 (65)	-1.38, -1.54
2	1.52	0.93(60)	-1.32, -1.51
3	1.68, 1.46	0.94(84)	-1.38, 1.53
4	1.54, 1.17	0.94(62)	-1.33, -1.55

Table S4. Electrochemical data for complexes 1-4 in acetonitrile.

^acondition: Pt-disc working electrode, Ag/AgCl reference electrode, Pt wire counter electrode, 0.1 M TBAPF₆ in acetonitrile, scan rate 100 mV s⁻¹ at 25 °C. ^birreversible redox waves. ^creversible redox waves and corresponding E_{pa} - E_{pc} values in parenthesis.

Fig. S71: Cyclic voltammogram of complex 1-4 in DCM solution using TBAPF₆ as supporting electrolyte, Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100 mV/s.

Fig. S72: Cyclic voltammogram of complex **5-8** in DCM solution using TBAPF₆ as supporting electrolyte, Pt disc working electrode, and Ag/AgCl reference electrode. Scan rate at 100 mV/s.

5. Theoretical studies for the complexes 1-8.

The DFT study of all the Ru(II) complexes were analyzed using CAM-B3LYP/ DEF2-TZVP basis set in conjunction of polarization continium model (PCM) together with dichloromethane as solvent.

Fig. S73: Frontier molecular orbitals of the Ru(II) complexes (1-4) estimated by DFT calculations using CAM-B3LYP functional and def2-TZVP basis set.

Table S5: The HOMO-LUMO gap in the complexes 1-8 together with the Ru d-orbital
ontributions (in %) in the HOMO, HOMO-1 and LUMO, LUMO+1.

Complex	E _{HOMO} /E _{LUMO} (eV)	Bandgap (eV)	Ru d-orbital contribution in HOMO (%)	Ru d-orbital contribution in HOMO-1 (%)	Ru d-orbital contribution in LUMO (%)	Ru d-orbital contribution in LUMO+1 (%)
1	-7.32/-1.83	5.49	23.7	72.3	4.8	0.8
2	-7.23/-1.82	5.41	14.2	72.4	4.8	0.8
3	-7.22/-1.83	5.38	10.8	72.1	5.0	0.7
4	-6.84/-1.83	5.01	0.7	57.9	4.7	0.7
5	-6.73/-1.75	4.97	37.9	45.9	4.4	0.8
6	-6.72/-1.74	4.97	37.9	40.2	4.4	0.8
7	-6.73/-1.75	4.97	37.8	41.4	4.4	0.8
8	-6.74/-1.76	4.98	37.4	2.6	3.9	0.8

Atoms			
	X	Y	Z
Ru	-0.01107	0.11129	0.02347
Cl	0.1379	0.5309	2.50909
Р	2.46431	0.04766	0.06579
Р	-2.47848	0.1258	0.14294
Ν	-0.11913	-2.02328	-0.24736
С	0.02738	2.32014	-1.90129
С	0.67767	0.59378	-6.99182
Н	-1.22643	1.40835	-6.52988
С	0.0239	0.9989	-4.08516
Н	0.12106	1.89622	-4.68208
Ν	-0.06431	-0.0482	-1.96362
С	0.02358	-0.55736	-9.00839
Ν	0.01359	2.15159	-0.55134
С	-3.30323	-2.35181	3.33347
Н	-2.7592	-2.75385	4.18215
С	-0.06032	-0.24655	-4.71459
С	3.27354	1.50962	0.83499
С	0.00321	1.07471	-2.70106
С	-0.20737	-2.37596	-1.55876
С	-0.03572	-0.35626	-6.18854
С	-0.14126	-2.98848	0.67723
Н	-0.06383	-2.66192	1.7046
С	0.00646	3.22705	0.24016
Н	0.02152	3.02157	1.30293
С	3.7191	3.8949	0.84814
Н	3.5994	4.86841	0.384
С	0.0933	-0.71489	-10.46534
Н	0.67918	-1.56921	-10.79558
С	-2.64087	-1.54274	2.41302
Н	-1.60052	-1.28576	2.56701
С	-3.3233	-1.01358	1.3181
С	0.03759	3.58924	-2.46511
Н	0.04965	3.71122	-3.54058
С	0.00344	4.52124	-0.2622
Н	-0.00585	5.36121	0.42159
С	-0.32193	-3.70586	-1.94332
Н	-0.39332	-3.96699	-2.99109
С	3.25532	-0.10657	-1.59565
С	-5.10623	3.32608	0.38422
Н	-6.0084	3.66656	-0.11368
С	3.22967	-1.36433	0.96764
С	-0.16575	-1.3858	-3.91271
Н	-0.26257	-2.35886	-4.37578
С	0.63633	-1.40832	-6.81574
Н	1.1672	-2.14405	-6.22008
С	-3.92953	-2.07337	-3.02678
Н	-4.1915	-3.10985	-3.21279
С	4.59679	2.50851	2.60203

Table S6: Computational result of optimized structure of complex	1
--	---

Н	5.16676	2.3934	3.51815
С	4.44611	-1.9192	0.55449
Н	4.94418	-1.54588	-0.3323
С	-0.41585	-0.07676	-12.83901
С	-0.65045	0.49503	-8.37206
Н	-1.16502	1.24772	-8.95878
С	-1.15199	0.68938	-15.02444
Н	-1.75067	1.36895	-15.62244
С	4.01495	1.39057	2.01331
Н	4.1422	0.42229	2.48126
С	-0.36308	-0.27486	-15.64124
С	-4.58602	4.04359	1.45551
Н	-5.07771	4.94969	1.79453
С	5.03233	-2.9532	1.27489
Н	5.97454	-3.37346	0.93846
С	-3.43939	3.58762	2.09684
Н	-3.03406	4.13319	2.94298
С	-0.1539	-1.26119	-2.53147
С	-3.17873	-0.35796	-1.48591
С	-3.51195	-1.68901	-1.75655
Н	-3.45618	-2.4347	-0.97149
С	0.02307	4.70457	-1.63576
Н	0.02681	5.70059	-2.06363
С	0.66543	-1.50232	-8.19825
Н	1.2037	-2.32151	-8.6652
С	4.45339	3.76277	2.02161
Н	4.91099	4.63318	2.48025
С	3.12856	2.78018	0.26523
Н	2.56474	2.90907	-0.6508
С	-1.17524	0.78612	-13.63854
Н	-1.79359	1.5414	-13.16193
С	4.34775	-0.48145	-4.15542
Н	4.76991	-0.62506	-5.14456
С	4.41804	-3.44326	2.4226
Н	4.87707	-4.25071	2.98392
С	4.04646	0.8808	-2.18584
Н	4.26928	1.79667	-1.6545
С	-0.25534	-4.33408	0.35996
Н	-0.26938	-5.07177	1.15287
С	-5.34692	-2.09679	2.09086
Н	-6.40458	-2.30352	1.96384
С	-0.48749	0.07328	-11.37996
Н	-1.08742	0.91723	-11.0468
С	3.03681	-1.2945	-2.30561
Н	2.4643	-2.09774	-1.85424
С	4.58419	0.69517	-3.45705
Н	5.19859	1.47519	-3.89474
С	-0.34876	-4.69892	-0.97404
Н	-0.44013	-5.74023	-1.26114
С	-4.68968	-1.28746	1.17489
Н	-5.2461	-0.86967	0.34266
С	-2.80692	2.42931	1.65988

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-1.92371	2.06698	2.17587
H 3.40105 -2.41415 -4.09758 C -3.31412 1.71003 0.57264 C -3.67097 0.18801 -3.79757 H -3.72919 0.92669 -4.59047 C -3.25112 0.57237 -2.53 H -2.98958 1.6106 -2.35406 C 0.40241 -1.13795 -14.85976 H 1.02494 -1.89035 -15.33346 C -4.65258 -2.63605 3.17127 H -5.16776 -3.26751 3.88795 C -4.0137 -1.13667 -4.04967 H -4.34363 -1.43569 -5.03909 C 3.21862 -2.88673 2.85149 H 2.73889 -3.25314 3.75345 C -4.48006 2.16291 -0.05164 H -4.91228 1.61191 -0.87831 C 0.37853 -1.04048 -13.47633 H 0.98964 -1.71748 -12.88907 C 2.62729 -1.85437 2.13013 H 1.70958 -1.40006 2.48501 H -0.3406 -0.35359 -16.72324	С	3.5773	-1.48204	-3.57037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	3.40105	-2.41415	-4.09758
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-3.31412	1.71003	0.57264
H-3.729190.92669-4.59047C-3.251120.57237-2.53H-2.989581.6106-2.35406C0.40241-1.13795-14.85976H1.02494-1.89035-15.33346C-4.65258-2.636053.17127H-5.16776-3.267513.88795C-4.0137-1.13667-4.04967H-4.34363-1.43569-5.03909C3.21862-2.886732.85149H2.73889-3.253143.75345C-4.480062.16291-0.05164H-4.912281.61191-0.87831C0.37853-1.04048-13.47633H0.98964-1.71748-12.88907C2.62729-1.854372.13013H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	С	-3.67097	0.18801	-3.79757
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-3.72919	0.92669	-4.59047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С	-3.25112	0.57237	-2.53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-2.98958	1.6106	-2.35406
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С	0.40241	-1.13795	-14.85976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	1.02494	-1.89035	-15.33346
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-4.65258	-2.63605	3.17127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-5.16776	-3.26751	3.88795
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-4.0137	-1.13667	-4.04967
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-4.34363	-1.43569	-5.03909
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	3.21862	-2.88673	2.85149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	2.73889	-3.25314	3.75345
H-4.912281.61191-0.87831C0.37853-1.04048-13.47633H0.98964-1.71748-12.88907C2.62729-1.854372.13013H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	С	-4.48006	2.16291	-0.05164
C0.37853-1.04048-13.47633H0.98964-1.71748-12.88907C2.62729-1.854372.13013H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	Н	-4.91228	1.61191	-0.87831
H0.98964-1.71748-12.88907C2.62729-1.854372.13013H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	С	0.37853	-1.04048	-13.47633
C2.62729-1.854372.13013H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	Н	0.98964	-1.71748	-12.88907
H1.70958-1.400062.48501H-0.3406-0.35359-16.72324	С	2.62729	-1.85437	2.13013
Н -0.3406 -0.35359 -16.72324	Н	1.70958	-1.40006	2.48501
	Н	-0.3406	-0.35359	-16.72324

Table S7: Computational result of optimized structure of complex 2

Atoms	С		
	Χ	Y	Z
Ru	-0.01027	0.11982	0.03058
Cl	0.14462	0.58175	2.50858
Р	2.46541	0.06787	0.06522
Р	-2.47696	0.12296	0.15779
Ν	-0.10756	-2.01933	-0.20735
С	0.01015	2.29874	-1.92822
С	-0.70934	0.48278	-6.98983
Н	-1.26492	1.299	-6.53901
С	0.00633	0.94425	-4.09175
Н	0.095	1.833	-4.7028
Ν	-0.06827	-0.07072	-1.95399
С	-0.00946	-0.69813	-8.99014
Ν	0.00157	2.15088	-0.57577
С	-3.27759	-2.30575	3.39163
Н	-2.72843	-2.69127	4.24466
С	-0.07135	-0.31137	-4.7016
С	3.27304	1.54661	0.80369
С	-0.00995	1.0411	-2.70884
С	-0.19659	-2.39278	-1.51294
С	-0.05172	-0.44508	-6.17345
С	-0.12232	-2.97024	0.73212
Н	-0.04468	-2.62757	1.75419
С	-0.00814	3.23825	0.19929
Н	0.01087	3.04891	1.26499

С	3.70933	3.93349	0.77358
Н	3.58234	4.89857	0.29405
С	0.04994	-0.88391	-10.44394
Н	0.62637	-1.74941	-10.76149
С	-2.62265	-1.50882	2.45542
Н	-1.58303	-1.24414	2.60093
С	-3.3119	-1.00084	1.35479
С	0.01333	3.55916	-2.51119
Н	0.02205	3.66488	-3.58837
С	-0.01845	4.5246	-0.32271
Н	-0.02944	5.37491	0.34813
С	-0.30433	-3.72918	-1.8766
Н	-0.37629	-4.00735	-2.91997
С	3.24933	-0.11556	-1.59679
С	-5.12183	3.31212	0.3503
Н	-6.02699	3.63871	-0.15146
С	3.24	-1.3242	0.98996
Č	-0.16662	-1.43874	-3.88182
Н	-0.25825	-2.41929	-4.32979
C	0.62839	-1.50067	-6.78596
Н	1.1715	-2.2193	-6.18048
C	-3.9277	-2.13628	-2.96971
H	-4.18585	-3.17685	-3.13727
C	4.60535	2.58026	2.5439
Ĥ	5.18247	2.48268	3.45758
Ċ	4.45987	-1.87798	0.58534
Н	4.95487	-1.51635	-0.30801
C	-0.46877	-0.28306	-12.82563
Č	-0.69144	0.35797	-8.36813
Н	-1.2218	1.0917	-8.96474
С	-1.08714	0.53449	-15.02893
Н	-1.59369	1.27836	-15.63713
С	4.02359	1.4504	1.97835
Н	4.15838	0.4906	2.46138
С	-0.42161	-0.52093	-15.6491
C	-4.60313	4.05144	1.40738
Н	-5.099	4.96073	1.73143
С	5.05332	-2.89573	1.3227
Н	5.99808	-3.31542	0.99278
С	-3.4525	3.61327	2.05398
Н	-3.04832	4.17607	2.88932
С	-0.15191	-1.29282	-2.50276
C	-3.1798	-0.39168	-1.46057
Č	-3.50821	-1.72852	-1.70741
Н	-3.4473	-2.46042	-0.90982
C	-0.00357	4.68697	-1.69893
H	-0.00526	5.67636	-2.14196
C	0.64915	-1.62	-8.16659
Н	1.19376	-2.44154	-8.62194
С	4.45288	3.824	1.94353
Η	4.91053	4.70374	2.38394
C	3.11872	2.80692	0.21397

Н	2.54743	2.91879	-0.6996
С	-1.11141	0.65062	-13.64447
Н	-1.63679	1.48421	-13.18674
С	4.32817	-0.53452	-4.15542
Н	4.74514	-0.69521	-5.14414
С	4.44295	-3.3703	2.47903
Н	4.90765	-4.16509	3.05359
С	4.02395	0.86792	-2.21469
Н	4.23933	1.7981	-1.70559
С	-0.22945	-4.3212	0.43604
Н	-0.2377	-5.04657	1.24031
С	-5.32737	-2.08049	2.15321
Н	-6.38456	-2.29409	2.03389
С	-0.52456	-0.10449	-11.37053
Н	-1.0993	0.76166	-11.04982
С	3.0402	-1.32163	-2.27842
Н	2.48055	-2.12119	-1.80485
С	4.55501	0.66031	-3.48528
Н	5.1567	1.43768	-3.94481
С	-0.32344	-4.70717	-0.89195
Н	-0.40937	-5.75334	-1.16257
С	-4.67752	-1.28325	1.2215
Н	-5.2391	-0.88149	0.38485
С	-2.81452	2.45088	1.63624
Н	-1.92811	2.10264	2.15644
С	3.57423	-1.53102	-3.54253
Н	3.40565	-2.47686	-4.04736
С	-3.32018	1.7097	0.56306
С	-3.68102	0.1127	-3.7797
Н	-3.74462	0.83745	-4.58494
С	-3.25914	0.5204	-2.52014
Н	-3.00153	1.56256	-2.36264
С	0.22274	-1.45646	-14.83179
Н	0.75176	-2.28756	-15.29016
С	-4.62623	-2.59879	3.23948
Н	-5.13564	-3.22072	3.9685
С	-4.01874	-1.21755	-4.00819
Н	4.35017	1.53482	4.9914
С	3.24024	2.81441	2.89939
Н	2.76357	3.16855	3.80784
С	4.49003	2.14497	0.06629
Н	4.92072	1.57699	0.88216
С	0.20128	1.34449	13.4519
Н	0.71407	2.0929	12.85687
С	2.64176	1.79824	2.16109
Н	1.72161	1.34364	2.50908
С	0.40467	0.66676	17.14714
Н	0.6023	0.88477	17.51378
Н	1.04974	1.49097	17.46945
Н	0.75719	0.24199	17.63965

Atoms	Coordinates (Angstroms)		
	Χ	Y	Z
Ru	-0.03501	0.14382	0.04155
Cl	0.06301	0.87742	2.45259
Р	2.44549	0.14343	0.09281
Р	-2.49881	0.15057	0.29677
Ν	-0.03412	-2.01065	-0.01852
С	-0.13195	2.15125	-2.08214
С	-1.01543	-0.12306	-6.93472
Н	-1.62458	0.66959	-6.51221
С	-0.19783	0.6257	-4.12801
Н	-0.21084	1.46575	-4.8102
Ν	-0.10876	-0.21676	-1.91714
С	-0.30729	-1.38595	-8.88007
Ν	-0.06884	2.11332	-0.72301
С	-3.02394	-2.36644	3.5098
Н	-2.47971	-2.59807	4.41983
С	-0.1944	-0.67763	-4.63583
С	3.21823	1.71679	0.64968
С	-0.15275	0.83382	-2.75823
С	-0.07003	-2.49731	-1.28962
С	-0.23377	-0.92365	-6.0934
С	-0.0036	-2.87748	0.9975
Н	0.02257	-2.44398	1.98677
С	-0.03645	3.25741	-0.03514
Н	0.01524	3.14756	1.04143
С	3.62393	4.08653	0.32088
Н	3.49286	4.98045	-0.28008
С	-0.29766	-1.66473	-10.32105
Н	0.22829	-2.57255	-10.60873
С	-2.49838	-1.44266	2.61224
Н	-1.56387	-0.94007	2.83537
С	-3.18494	-1.12506	1.4359
С	-0.16804	3.36157	-2.76158
Н	-0.2199	3.38213	-3.84247
С	-0.06692	4.4983	-0.65787
Н	-0.03815	5.39906	-0.0571
С	-0.07305	-3.86357	-1.54016
Н	-0.10027	-4.2335	-2.55676
С	3.25992	-0.22931	-1.52331
С	-3.63356	4.09017	0.70148
Н	-3.55401	4.9933	0.10519
С	3.22897	-1.10857	1.19437
С	-0.14961	-1.73921	-3.72921
Н	-0.17051	-2.75696	-4.09593
С	0.50627	-1.96193	-6.66455
Н	1.14134	-2.58238	-6.04036
С	-3.95357	-1.74914	-3.03231
Н	-3.81079	-2.72678	-3.48112
С	4.50327	2.98516	2.26573

 Table S8: Computational result of optimized structure of complex 3

Н	5.0641	3.0144	3.19417
С	4.46446	-1.68549	0.87872
Н	4.96751	-1.42875	-0.04589
С	-1.05721	-0.35385	-8.29894
Н	-1.69544	0.26919	-8.91567
С	3.94738	1.78338	1.83993
Н	4.08651	0.89543	2.444
С	-4.24165	4.12605	1.9515
Н	-4.64102	5.05807	2.33775
С	5.06325	-2.59211	1.74547
Н	6.02008	-3.03179	1.48338
С	-4.33427	2.96011	2.70173
Н	-4.8065	2.9762	3.67852
С	-0.10765	-1.48132	-2.3666
С	-3.45332	-0.17697	-1.25004
С	-3.2852	-1.42731	-1.85903
Н	-2.6518	-2.17473	-1.39491
С	-0.13526	4.55053	-2.04083
Н	-0.16224	5.5015	-2.56057
С	0.46859	-2.18539	-8.03212
Н	1.06134	-2.98937	-8.45761
C	4.34657	4.1391	1.50772
Н	4.78457	5.07486	1.83918
C	3.05789	2.88878	-0.09916
Н	2.49967	2.87419	-1.02791
C	4.39472	-0.94089	-3.99311
Н	4.83384	-1.21423	-4.94688
С	4.44289	-2.93	2.94382
Н	4.91209	-3.63782	3.61956
С	4.02672	0.68569	-2.24744
Н	4.21625	1.67636	-1.85603
С	-0.00534	-4.25338	0.81565
Н	0.02033	-4.90741	1.67858
С	-4.93516	-2.66962	2.08401
Н	-5.88983	-3.14067	1.87357
С	-0.83724	-0.90368	-11.28276
Н	-1.31113	0.03497	-11.00992
С	3.08921	-1.51539	-2.05226
Н	2.54219	-2.26429	-1.49055
С	4.58469	0.3329	-3.47371
Н	5.17971	1.05999	-4.01665
С	-0.04	-4.75482	-0.47546
Н	-0.04193	-5.82329	-0.65828
С	-4.4155	-1.74265	1.1876
Н	-4.97743	-1.50281	0.29295
С	-3.8267	1.76325	2.20704
Н	-3.91337	0.86603	2.80722
С	3.65033	-1.86934	-3.27181
Н	3.51065	-2.87503	-3.65528
С	-3.2114	1.71389	0.95352
С	-4.99527	0.41435	-3.02404
Н	-5.67268	1.13779	-3.46598

С	-4.32871	0.73448	-1.84389
Н	-4.51513	1.69636	-1.38483
С	-4.23945	-2.98725	3.24552
Н	-4.64702	-3.71039	3.94461
С	-4.80658	-0.8231	-3.62521
Н	-5.3293	-1.07123	-4.54307
С	3.22449	-2.34882	3.27486
Н	2.73963	-2.59576	4.21394
С	-3.11721	2.8969	0.21094
Н	-2.65217	2.89363	-0.76787
С	2.62026	-1.44434	2.4072
Н	1.68613	-0.96849	2.6826
С	-0.84092	-1.24877	-12.71292
С	-0.749	-0.22329	-13.71397
С	-0.95715	-2.56387	-13.11275
С	-0.60339	1.15315	-13.39607
С	-0.78372	-0.59366	-15.0887
С	-0.97555	-2.92531	-14.47519
Н	-1.06639	-3.3378	-12.36042
С	-0.52285	2.1043	-14.37974
Н	-0.54155	1.46009	-12.35857
С	-0.69699	0.41421	-16.08365
С	-0.89591	-1.96212	-15.44355
Н	-1.07022	-3.97129	-14.74777
С	-0.57354	1.73371	-15.74167
Н	-0.72791	0.11506	-17.12727
Н	-0.92159	-2.22906	-16.49581
Н	-0.50834	2.49573	-16.51139
Н	-0.41326	3.15019	-14.11178

Table S9: Computational result of optimized structure of comp	lex 4
--	-------

Atoms	Coordinates (Angstroms)		
	X	Y	Z
Ru	-1.55185	-0.2132	-0.43112
Cl	0.87774	-0.25903	0.25638
Р	-1.55768	2.25613	-0.31402
Р	-1.36605	-2.67674	-0.58477
Ν	-1.61154	-0.02924	-2.57661
С	-3.6824	-0.43618	1.56684
С	-8.52551	-1.16916	-0.79797
Н	-8.09958	-1.86787	-0.08509
С	-5.72311	-0.42939	0.03367
Н	-6.4057	-0.53274	0.86715
Ν	-3.51239	-0.24103	-0.79114
С	-10.47448	-0.3124	-1.95716
Ν	-2.32475	-0.35448	1.53781
С	1.7558	-3.14519	-3.22649
Н	2.66934	-2.60899	-3.46291
С	-6.22929	-0.28806	-1.26175
С	-1.34012	3.04698	1.33528
C	-4.35422	-0.38669	0.24812

С	-2.88357	0.01805	-3.05825
С	-7.68716	-0.30329	-1.50945
С	-0.59637	0.05989	-3.44144
Н	0.39494	0.01405	-3.01347
С	-1.64571	-0.35972	2.68738
Н	-0.56835	-0.31618	2.5898
С	-1.78205	4.76884	2.97797
Н	-2.35403	5.63632	3.29105
С	-11.92131	-0.26089	-2.20919
Н	-12.21622	0.26488	-3.11466
С	0.90004	-2.64612	-2.24975
Н	1.16034	-1.74248	-1.71068
С	-0.28004	-3.32261	-1.92604
С	-4.36858	-0.53185	2.77026
Н	-5.44854	-0.60212	2.78115
С	-2.27453	-0.43681	3.92273
Н	-1.67926	-0.4332	4.82759
С	-3.13686	0.15281	-4.41742
Н	-4.15492	0.18451	-4.78298
С	-3.15563	2.90938	-0.9472
С	-0.91261	-4.05409	3.27125
Н	-1.48293	-4.00548	4.19313
С	-0.30777	3.19597	-1.28776
С	-5.32257	-0.1154	-2.31035
Н	-5.68843	-0.01838	-3.32392
С	-8.26009	0.54785	-2.45809
Н	-7.63508	1.24393	-3.00799
С	-4.77428	-3.89922	-2.50421
Н	-5.2312	-3.68748	-3.46543
С	-0.03358	3.16618	3.37059
Н	0.76656	2.77655	3.99177
С	-0.47974	4.56738	-1.51623
Н	-1.37216	5.07214	-1.16194
С	-9.89184	-1.17861	-1.02249
Н	-10.50978	-1.88404	-0.47789
С	-0.31476	2.55888	2.15202
Н	0.27613	1.7117	1.81936
С	0.31256	-4.71123	3.2382
Н	0.70535	-5.17901	4.13501
С	0.48409	5.29541	-2.19948
Н	0.33431	6.3561	-2.37265
С	1.0289	-4.76551	2.04881
Н	1.98572	-5.27585	2.01116
С	-3.96028	-0.10455	-2.04918
С	-2.95155	-3.55442	-0.93758
С	-3.57034	-3.2961	-2.16759
Н	-3.09087	-2.64132	-2.88704
С	-3.65667	-0.52879	3.96401
Н	-4.18106	-0.59784	4.91026
С	-9.62904	0.53975	-2.67694
Н	-10.05711	1.2181	-3.40866
С	-0.77127	4.26778	3.7905

Н	-0.55385	4.73956	4.74333
С	-2.06169	4.16807	1.755
Н	-2.84314	4.58519	1.13144
С	-5.65065	3.69589	-1.96382
Н	-6.61334	4.01125	-2.35285
C	1.64078	4.66759	-2.65575
Ĥ	2.3948	5.23798	-3.18855
C	-4 29622	2.90027	-0 13484
н	-4 22422	2.59411	0.90365
C	-0.78116	0 19986	-4 80919
н	0.08062	0.26744	-5 46174
C	0.28038	-5 01164	-3 56983
н	0.03468	-5 93893	-4 07712
C II	-12 87639	-0.75685	-1.41328
н	-12.57055	-1 22082	-0.47248
n C	3 29/01	3 2965	2 28300
С Ц	2 / 21 21	3.2905	-2.20399
	5 52008	3.3040	-2.94033
С	-3.32336	3.2908	-0.03023
П	-0.39913	0.2471	5 20564
U U	-2.07443	0.24/1	-3.30304
H C	-2.25919	0.5538	-0.30843
C U	-0.37443	-4.31792	-2.3911
Н	-1.4/322	-5.0/1/6	-2.54/79
C	0.52517	-4.17019	0.8969
H	1.09797	-4.22752	-0.02035
C	-4.53055	3.68931	-2.78649
H	-4.61315	3.99577	-3.82416
C	-0.70294	-3.50455	0.91738
C	-4.77741	-5.05317	-0.39783
Н	-5.23637	-5.74955	0.29642
C	-3.5668	-4.45156	-0.06262
H	-3.10176	-4.70559	0.88083
C	1.44555	-4.32465	-3.89357
Н	2.11196	-4.71169	-4.65768
С	-5.38792	-4.77557	-1.61379
Н	-6.32963	-5.24767	-1.87379
С	1.82974	3.31334	-2.41487
Н	2.73608	2.8206	-2.75197
С	-1.41177	-3.45044	2.12346
Н	-2.37151	-2.94996	2.17327
С	0.86168	2.58005	-1.73239
Н	1.03276	1.53534	-1.50593
Н	-14.10739	-2.71324	-5.81849
С	-14.71232	-2.22803	-5.05919
С	-14.12959	-1.78791	-3.90932
С	-16.11081	-2.07089	-5.27554
С	-14.89545	-1.15108	-2.87859
Н	-13.06823	-1.93305	-3.75683
С	-16.88329	-1.49947	-4.31344
Н	-16.55438	-2.42135	-6.2017
С	-14.32902	-0.67745	-1.67399
С	-16.31306	-1.03586	-3.08584

Н	-17.95449	-1.38881	-4.45366
С	-15.16263	-0.13407	-0.6703
С	-17.11594	-0.48765	-2.08975
С	-14.64513	0.36801	0.5664
С	-16.5769	-0.04541	-0.88367
Н	-18.18699	-0.40775	-2.25473
С	-15.46842	0.88591	1.52133
Н	-13.57566	0.34784	0.73922
С	-17.40697	0.5075	0.14047
С	-16.87408	0.95506	1.30999
Н	-15.05058	1.25803	2.45124
Н	-18.47647	0.56295	-0.03983
Н	-17.51288	1.37247	2.08133

Table S10: Computational result of optimized structure of complex 5

Atoms		Coordinates (Angstroms)	
	Χ	Y	Z
Ru	-0.00505	0.15598	-0.04181
Р	-0.07115	0.25695	2.40224
Р	0.30391	0.32194	-2.46888
Ν	-1.5608	1.67081	-0.11207
С	-0.21242	-2.7759	-0.12266
С	-5.29964	-4.46144	-1.09608
Н	-4.43738	-4.76967	-1.67874
С	-2.74687	-3.0766	-0.25595
Н	-2.66926	-4.15607	-0.25014
Ν	-1.71811	-0.9469	-0.1707
С	-7.60025	-4.84555	-0.42972
Ν	0.75149	-1.81759	-0.02728
С	1.07733	4.33938	-2.92291
Н	1.55943	5.11572	-2.33731
С	-4.00902	-2.4731	-0.28413
С	1.25236	-0.66717	3.29017
С	-1.6093	-2.28504	-0.19583
С	-2.81615	1.14566	-0.18086
С	-5.24131	-3.28969	-0.3324
С	-1.42769	3.0014	-0.09186
Н	-0.41527	3.37356	-0.03617
С	2.03244	-2.18547	0.06872
Н	2.74253	-1.37074	0.14487
С	2.38451	-2.75345	3.79997
Н	2.45502	-3.82929	3.67749
С	-8.85434	-5.607	-0.44725
Н	-9.61524	-5.23571	0.23496
С	0.9762	3.05168	-2.40571
Н	1.3986	2.82063	-1.43422
С	0.36337	2.03517	-3.14481
С	0.12174	-4.12418	-0.13245
Н	-0.6511	-4.87784	-0.21277
С	2.42643	-3.51653	0.06941

Н	3.47815	-3.76271	0.15017
С	-3.93848	1.96307	-0.23445
Н	-4.92726	1.52701	-0.29168
С	-1.65839	-0.36011	3.12559
С	3.24141	-2.37997	-3.50453
Η	3.38442	-3.4523	-3.41984
С	0.03388	1.92859	3.17139
Č	-4.07813	-1.07774	-0.25814
H	-5.04344	-0.59032	-0.30037
С	-6.37701	-2.91149	0.38798
Ĥ	-6.34976	-2.02549	1.01414
C	-3 38878	-0 39057	-4 10148
H	-4 3692	0.06504	-4 00712
C	3 20057	-0 69793	4 73426
н	3 91327	-0 15749	5 34858
C	-0.48863	2 15603	4 45093
н	-0.99609	1 3585	4 98165
C II	-10 38275	-7 4319	-1 24169
C	-10.30273	5 22280	1 14472
с и	-0.45458	-5.22209	-1.14472
C II	-0.40095	0.12319	-1.74094
С и	-11./1304	-9.10708	-2.2913
п	-11.02002	-9.92322	-5.00733
	2.10323	0.0000	4.08934
п	2.12537	1.0/410	4.21030
C	-12.74452	-8.94709	-1.388/1
U U	4.22008	-1.38431	-4.07909
Н	5.14552	-2.03189	-4.4483
C	-0.3038	3.39981	5.05652
Н	-0.77591	3.55///	6.04784
C	4.02500	-0.21282	-4.18045
H	4./8556	0.41/98	-4.63025
C	-2.90739	-0.3339	-0.20231
C	-1.03///	-0.43061	-3.49245
C	-2.31807	0.12881	-3.38698
H	-2.4//3/	1.00246	-2.76507
C	1.45666	-4.50066	-0.03573
H	1.72715	-5.55049	-0.0412
C	-7.53056	-3.67859	0.34124
H	-8.39832	-3.3/144	0.91707
C	3.300/1	-2.07/04	4.59731
Н	4.09009	-2.62162	5.1049
С	1.37818	-2.05409	3.14436
Η	0.68796	-2.6061	2.51807
С	-10.54792	-8.41851	-2.2214
Η	-9.74727	-8.59534	-2.93402
С	-4.17248	-1.22149	4.04118
Η	-5.14159	-1.5545	4.39808
С	0.28927	4.43665	4.3965
Η	0.38552	5.40843	4.86998
С	-1.81133	-1.61241	3.72419
Η	-0.958	-2.26173	3.86905
С	-2.50722	3.87148	-0.13893

Н	-2.33459	4.94058	-0.11891
С	-0.03558	3.62407	-4.93004
Н	-0.42859	3.83905	-5.91844
С	-9.12941	-6.66698	-1.21909
Н	-8.37849	-7.01735	-1.92374
С	-2.78964	0.45833	3.0061
Н	-2.69861	1.45135	2.58013
С	-3.05765	-2.03904	4.17532
Н	-3.14955	-3.01377	4.64346
С	-3.7862	3.34242	-0.21276
Н	-4.6555	3.98888	-0.25304
С	-0.13298	2.33531	-4.41816
Н	-0.59797	1.56302	-5.01938
С	2.84784	0.36184	-3.71271
Н	2.71069	1.43208	-3.80562
С	-4.032	0.03475	3.45979
Н	-4.89043	0.69186	3.36347
С	1.85095	-0.42591	-3.13053
С	-1.93626	-2.04189	-5.06487
Н	-1.77397	-2.8848	-5.72884
С	-0.86112	-1.5165	-4.35189
Н	0.119	-1.95371	-4.49045
С	-12.59249	-7.97371	-0.40334
Н	-13.38813	-7.79937	0.31403
С	0.56656	4.63069	-4.18264
Н	0.64255	5.63622	-4.58384
С	-3.20268	-1.48662	-4.93885
Н	-4.0381	-1.89589	-5.49733
С	0.82398	4.2179	3.13294
Н	1.34512	5.01697	2.61529
С	2.06899	-1.8049	-3.02824
Н	1.3158	-2.44746	-2.58745
С	-11.42635	-7.2263	-0.32823
Н	-11.32611	-6.48176	0.45447
С	0.69893	2.97186	2.52376
Н	1.15033	2.79331	1.55573
С	1.83632	1.05926	0.1092
С	2.98511	1.47321	0.21515
С	4.31869	1.98166	0.34496
С	5.27805	1.75906	-0.65605
С	4.70107	2.71754	1.4784
С	6.56908	2.25385	-0.52539
Н	4.99581	1.19254	-1.53776
С	5.9931	3.21079	1.60367
Н	3.96922	2.89837	2.25926
C	6.93417	2.98169	0.60373
H	7.29576	2.0699	-1.31095
H	6.26769	3.77736	2.48828
H	7.94373	3.36717	0.70366
Н	-13.6575	-9.53068	-1.4433

_

Atoms		Coordinates (Angstroms)	
	Х	Ÿ	Z
Ru	-0.0005	0.16763	-0.03833
Р	-0.0608	0.26432	2.40598
Р	0.30726	0.3332	-2.46593
Ν	-1.53191	1.70758	-0.10513
С	-0.25567	-2.76048	-0.12138
С	-5.36676	-4.36491	-1.10334
Н	-4.50425	-4.69453	-1.67379
С	-2.79493	-3.0198	-0.25834
Н	-2.73507	-4.10045	-0.25325
Ν	-1.73115	-0.90727	-0.16822
С	-7.68445	-4.69626	-0.46659
Ν	0.72387	-1.81794	-0.02715
С	1.14259	4.33905	-2.91253
Н	1.63485	5.10728	-2.32469
С	-4.047	-2.39558	-0.2905
С	1.25497	-0.67557	3.28881
С	-1.64457	-2.24702	-0.19475
С	-2.79538	1.20293	-0.17701
С	-5.29347	-3.18942	-0.34657
С	-1.3774	3.03576	-0.08008
Н	-0.35917	3.39126	-0.02117
С	1.99886	-2.20669	0.06614
Н	2.72224	-1.40372	0.14162
С	2.36433	-2.7754	3.7929
Н	2.4218	-3.85189	3.66929
С	-8.95523	-5.42846	-0.49739
Н	-9.72942	-5.01034	0.14137
С	1.02061	3.05237	-2.39723
Н	1.43706	2.81348	-1.42512
С	0.39426	2.04628	-3.1391
С	0.05666	-4.11395	-0.13203
Н	-0.72857	-4.85475	-0.21132
С	2.3713	-3.54395	0.06523
Н	3.41908	-3.80717	0.1436
С	-3.9045	2.03839	-0.22929
H	-4.90012	1.61838	-0.28876
C	-1.65195	-0.33741	3.13329
C	3.19841	-2.41488	-3.5114
H	3.32473	-3.48934	-3.42729
C	0.06527	1.93347	3.17/61
C	-4.09249	-0.99921	-0.263
H	-5.04918	-0.49563	-0.30858
C	-6.43099	-2.78285	0.35537
H	-6.39422	-1.89299	0.97556
C	-3.39914	-0.30/22	-4.09694
H	-4.36989	0.16892	-4.00392
C	3.20/43	-0./303/	4.72633
Н	3.9284	-0.19893	5.33884

 Table S11: Computational result of optimized structure of complex 6

С	-0.45849	2.16741	4.45538
H	-0.97979	1.37712	4.98345
С	-10.49913	-7.25006	-1.27187
С	-6.53698	-5.10175	-1.16357
H	-6.55489	-6.00301	-1.76614
С	-11.81088	-9.04908	-2.24563
H	-11.87951	-9.87728	-2.94509
С	2.19804	-0.01944	4.08585
H	2.14904	1.05462	4.21408
С	-12.90834	-8.73203	-1.4479
С	4.19374	-1.63494	-4.08943
H	5.10269	-2.09661	-4.46092
C	-0.31723	3.40858	5.06285
H	-0.73071	3.57166	6.05277
C	4.01467	-0.26022	-4.18924
Ĥ	4 78306	0.35862	-4 64125
C	-2.91015	-0.27486	-0.202
Č	-1 0494	-0 39407	-3 48805
Ċ	-2 31784	0 19193	-3 38396
н	-2 45881	1 07043	-2 76442
C	1 38544	-4 51218	-0.038
н	1 63874	-5 56627	-0.0443
C	-7.6	-3 5251	0.0449
н	-8 46912	-3.19486	0.25005
C	3 29119	-2 11041	4 58751
н	4 07602	-2 6646	5 09176
C	1 36388	-2.0040	3 14156
с н	0.66442	-2.60689	2 51781
C II	-10 62938	-8 32279	-2 15928
ч	-9 78892	-8 59165	-2.13720
C II	-4 17086	-1 17314	4 05892
с н	-5 1/192	-1 / 19628	4.03072
C II	0 354	4 43609	4.41754
с ц	0.46314	5 4058	4.40050
C II	-1 8135	-1 58465	3 74006
ч	-0.96/91	-2 23959	3 88738
C II	-0.90491	3 9232	-0 12575
с ц	2.44275	1 08031	0.12575
C II	0.02435	3 6431	-4 92354
ч	-0.36267	3 86519	-5.01273
C II	-0.30207	-6 51662	-5.71275
с ц	8 45815	6 02221	-1.23011
C II	-0.45015	9 50013	-1.00171
с н	-14.19917	-9.50015	-1.54590
и Ц	14.07458	10 /1563	-0.55570
н	-14.07430	-10.41505	-2.1201
C	-14.27742	-0.20122 0 /8028	-2.05007
с н	-2.77000	1 17806	2.01003 2.57877
C	-2.0700	-1 00866	2.JTOTT A 10605
с н	-3.16107	-1.22000	4.17003
C	-3.10107	-2.20274 3 41504	-0 20211
с н	-3.12770	1 07550	0.20311
11		т.07557	-0.24240

С	-0.09402	2.35542	-4.41347
Н	-0.56913	1.59095	-5.01681
С	2.84753	0.33282	-3.71774
Н	2.72707	1.40511	-3.81007
С	-4.0216	0.0784	3.46955
Н	-4.87504	0.74164	3.37091
С	1.84008	-0.4392	-3.13258
С	-1.98127	-1.99132	-5.05527
Н	-1.8366	-2.83949	-5.71661
С	-0.8954	-1.48624	-4.34387
Н	0.07546	-1.94406	-4.48111
С	-12.77832	-7.66291	-0.55425
Н	-13.61655	-7.39961	0.08511
С	0.63967	4.63958	-4.17323
Н	0.732	5.64432	-4.57298
С	-3.23585	-1.40934	-4.93108
Η	-4.07959	-1.80278	-5.48841
С	0.89036	4.21055	3.14488
Н	1.4257	5.00215	2.63025
С	2.03672	-1.82147	-3.03127
Н	1.27511	-2.45218	-2.58793
С	-11.60293	-0.46489	-6.93652
Н	-11.54389	-6.11958	0.24674
С	0.74876	2.96727	2.53376
Н	1.2012	2.78311	1.5672
С	1.85486	1.0424	0.11141
С	3.00993	1.43903	0.21559
С	4.35137	1.92684	0.34343
С	5.30241	1.7001	-0.66458
С	4.75005	2.64606	1.48194
С	6.60109	2.17495	-0.53581
Н	5.00767	1.14606	-1.55011
С	6.04967	3.11944	1.60529
Н	4.02485	2.82962	2.26835
С	6.98228	2.88657	0.59832
Н	7.32112	1.98813	-1.32679
Н	6.33689	3.67335	2.49392
Η	7.9978	3.2565	0.69673

Table S12: Computational result of optimized structure of complex	7
---	---

Atoms		Coordinates (Angst	troms)
	X	Y	Z
Ru	-0.02573	0.17243	-0.12117
Р	-0.14745	0.11332	2.32396
Р	0.34827	0.48621	- 2.52093
Ν	-1.54681	1.72332	-0.11911
С	-0.29448	-2.7429	-0.40052
С	-5.40738	-4.25403	-1.51214
Н	-4.55297	-4.5345	-2.1198
С	-2.83298	-2.97809	-0.57897
Н	-2.77923	-4.05745	-0.6398

Ν	-1.75902	-0.88127	-0.34989
С	-7.71143	-4.64182	-0.86256
Ν	0.68745	-1.81545	-0.22142
С	1.1816	4.51313	-2.69865
Н	1.66928	5.24125	-2.05828
С	-4.08137	-2.3463	-0.57606
С	1.12794	-0.91225	3.17026
С	-1.67918	-2.21708	-0.46004
С	-2.81199	1.232	-0.23931
С	-5.32985	-3.13329	-0.67744
С	-1.38542	3.04655	-0.01288
Η	-0.36611	3.39132	0.08179
С	1.95785	-2.21842	-0.12626
Η	2.68415	-1.42753	0.01778
С	2.18392	-3.06393	3.55715
Н	2.22213	-4.13102	3.36403
С	-8.96767	-5.39985	-0.91009
Н	-9.82337	-4.90374	-0.45706
С	1.05857	3.19512	-2.27058
Н	1.46851	2.89331	-1.31314
С	0.43829	2.23948	-3.08159
С	0.01086	-4.09443	-0.49872
Н	-0.77645	-4.82235	-0.6467
С	2.32305	-3.55513	-0.20947
Н	3.36734	-3.83022	-0.12523
С	-3.91542	2.07637	-0.26116
Н	-4.9123	1.6673	-0.36264
С	-1.76984	-0.49705	2.9717
С	3.28235	-2.17408	-3.6607
Н	3.40715	-3.25197	-3.65456
С	-0.00872	1.72272	3.21065
С	-4.1203	-0.95417	-0.46319
Н	-5.07397	-0.44324	-0.47814
С	-6.4627	-2.7728	0.05698
Н	-6.42268	-1.92331	0.73121
С	-3.30584	-0.11678	-4.27705
Н	-4.29425	0.31454	-4.15567
С	3.04982	-1.10263	4.63743
H	3.7692	-0.62765	5.29645
С	-0.53435	1.8689	4.50088
Н	-1.06083	1.04585	4.97076
С	-6.57687	-4.98913	-1.60856
Н	-6.61256	-5.83193	-2.29015
С	2.06844	-0.32989	4.02574
Н	2.03949	0.73443	4.22273
С	4.29802	-1.35341	-4.13844
H	5.2214	-1.78655	-4.50872
С	-0.38813	3.06344	5.19415
H	-0.80259	3.15881	6.19244
С	4.12048	0.02516	-4.14064
H	4.90455	0.67559	-4.51465
С	-2.93444	-0.24123	-0.35299

С	-0.96534	-0.18851	-3.63138
Č	-2.25483	0.34148	-3.49464
H	-2.43623	1.14631	-2.79158
C	1.33505	-4.50721	-0.40293
Ĥ	1.58305	-5.55998	-0.47682
C	-7.63019	-3.51409	-0.03697
H	-8.49531	-3.22414	0.5516
C	3.10753	-2.47239	4.41132
H	3.8701	-3.07514	4.89351
C	1.21236	-2.28979	2.93384
Ĥ	0 51806	-2.77574	2 25909
C	-4 32984	-1 33098	3 7787
H	-5 31683	-1 6537	4 09355
C	0 28913	4 1313	4 61225
н	0.40184	5 06478	5 1542
C	-1 97813	-1 78336	3 47364
н	-1 15077	-2 47182	3 58468
C II	-2 44506	3 94201	-0 02224
ч	-2.24971	5.04201	0.02224
C II	0.07561	3 95107	-4 7577
н	-0.30658	1 23789	-5 73202
C II	0 13133	6 6302	-5.75202
с u	9.15155	-0.0502	-1.41452
П С	-8.20010	-7.10044	-1.80558
с и	-2.80892	1 38683	2.09441
II C	2.75520	2 10628	2.54505
С u	-3.24713	-2.19020	1 26409
п	-5.56255	-3.19871	4.20408
С ц	-5.75502	5.44780 4 11529	-0.15005
п	-4.38770	4.11320	-0.10319
	-0.04340	2.03194	-4.55502
п	-0.31322	1.90857	-4.99037
	2.93490	0.36211	-5.07089
п	2.01307	1.03643	-5.0804
	-4.15597	-0.04138	3.29434
п	-4.90074	0.03197	5.25507 2.19522
C	1.90704	-0.23119	-3.10333
	-1.8133	-1.04300	-5.5/554
П	-1.02//1	-2.4154	-0.11505
	-0.75809	-1.18037	-4.59189
П	0.23013	-1.39054	-4./5404
U U	0.08520	4.89015	-3.93902
H	0.77822	5.92533	-4.2/121
C	-3.08952	-1.12109	-5.21609
H	-3.90927	-1.48306	-5.82789
C	0.82642	3.99248	3.3386
H	1.36602	4.815/5	2.88134
C	2.10195	-1.61/39	-3.18239
Н	1.32272	-2.2/812	-2.8205
C	0.68049	2.79544	2.64193
H	1.13422	2.6/6	1.66613
C	-10.42162	-/.33431	-1.48402
C	-10.49002	-8.75798	-1.31107

С	-11.58293	-6.63591	-1.7408
С	-9.35068	-9.55286	-1.01697
С	-11.75296	-9.40772	-1.41542
С	-12.83268	-7.28286	-1.82728
Н	-11.5298	-5.5655	-1.90931
С	-9.45386	-10.91078	-0.86144
Н	-8.38332	-9.07879	-0.89902
С	-11.82716	-10.81489	-1.2492
С	-12.91697	-8.63971	-1.674
Н	-13.72273	-6.69723	-2.0328
С	-10.70588	-11.55322	-0.9824
Н	-12.79704	-11.2961	-1.33529
Н	-13.87305	-9.14874	-1.75093
Н	-10.77495	-12.62883	-0.85697
Н	-8.56876	-11.49765	-0.63795
С	1.82924	1.02579	0.13036
С	2.98184	1.40991	0.2923
С	4.31977	1.8839	0.49078
С	5.30808	1.69135	-0.48807
С	4.67737	2.55545	1.67132
С	6.60282	2.15343	-0.291
Η	5.04544	1.17464	-1.40567
С	5.97324	3.01629	1.86288
Η	3.92336	2.71205	2.43618
С	6.943	2.81796	0.88397
Н	7.35197	1.9938	-1.06061
Н	6.22827	3.53327	2.78301
Н	7.95542	3.17819	1.03572

Table S13: Computational result of optimized structure of complex 8

Atoms		Coordinates (Angstroms)	
	Х	Y	Z
Ru	-1.64146	0.19396	-0.37032
Р	-1.81859	0.1011	2.0655
Р	-1.22995	0.41586	-2.77647
Ν	-2.47089	2.19799	-0.26642
С	-2.998	-2.39864	-0.72874
С	-8.24452	-1.76942	-2.04686
Н	-7.53108	-2.29654	-2.67211
С	-5.42587	-1.63969	-0.97733
Н	-5.78135	-2.65126	-1.1244
Ν	-3.64801	-0.12477	-0.5986
С	-10.55112	-1.31981	-1.45195
Ν	-1.73982	-1.92132	-0.51907
С	0.9199	3.92134	-2.9423
Н	1.65189	4.42102	-2.31573
С	-6.34284	-0.58525	-0.93114
С	-1.1422	-1.38083	2.92858
С	-4.07541	-1.38197	-0.79055
С	-3.8304	2.21953	-0.3469
С	-7.79003	-0.83402	-1.1102
	C	-0	

~			
С	-1.82415	3.35732	-0.10657
Н	-0.74728	3.29286	-0.05292
С	-0.72581	-2.78532	-0.41471
Η	0.24997	-2.34023	-0.26919
С	-1.18103	-3.09259	4.63977
Η	-1.70235	-3.58983	5.45144
С	-11.99782	-1.54351	-1.58013
Н	-12.624	-0.81857	-1.06468
С	0.37136	2.71241	-2.5267
Н	0.69174	2.26309	-1.59333
С	-0.56968	2.04836	-3.32041
C	-3.23496	-3.7626	-0.84419
Ĥ	-4.2384	-4.13066	-1.01454
C	-0 90164	-4 15889	-0 50648
н	-0.04557	-4 81569	-0.41134
C	-4 5393	3 41183	-0 26487
н	-5 61952	3 40851	-0.20407
C	3 58241	0.18504	-0.55015
C	-5.58241	2 0584	2.37924
с u	0.02339	-5.0384	-3.20437
II C	1.024	-4.11/13	-3.97342
C	-1.024	1.43023	5.00345
U U	-5.86029	0.70595	-0.7018
Н	-6.55162	1.53/95	-0.67649
C	-8./35/8	-0.13891	-0.35241
Н	-8.40943	0.57522	0.39701
C	-4.91433	1.08551	-4.44132
H	-5.70264	1.81576	-4.289/9
C	0.7574	-2.85117	3.23885
H	1.75787	-3.1587	2.95161
C	-1.36136	1.59305	4.41507
Н	-2.12813	0.97076	4.86431
С	-9.59822	-2.00288	-2.21943
Η	-9.91586	-2.71263	-2.9754
С	0.14543	-1.7961	2.57219
Н	0.67428	-1.27586	1.78016
С	1.83912	-2.61785	-4.50124
Η	2.55559	-3.3307	-4.89602
С	-0.72336	2.54944	5.19308
Η	-0.99976	2.66586	6.23595
С	2.12543	-1.25787	-4.51163
Η	3.06697	-0.90174	-4.91716
С	-4.49622	0.90984	-0.54629
С	-2.71541	0.23522	-3.85846
С	-3.7543	1.1583	-3.68267
Η	-3.64507	1.96451	-2.96587
С	-2.1762	-4.655	-0.72964
Н	-2.35168	-5.72154	-0.81313
С	-10.09068	-0.37949	-0.52303
Н	-10.80977	0.16263	0.08352
С	0.09294	-3.50764	4.26946
Н	0.56918	-4.33367	4.78775
С	-1.79352	-2.03195	3.97968

Н	-2.77989	-1.71559	4.29664
С	-6.33499	0.33698	3.11057
Н	-7.39718	0.39288	3.32564
С	0.27127	3.35118	4.63857
H	0.77086	4.0975	5.24783
С	-4.39714	-0.94978	2.4778
Н	-3.9676	-1.90511	2,19428
C	-2.47264	4.58017	-0.01597
H	-1.89254	5.48561	0.1139
C	-0.39265	3.82935	-4.95382
H	-0.69263	4.2572	-5.90493
C	-12 58703	-2 55436	-2.23035
н	-11 96337	-3 31686	-2.69244
C	-4 17777	1 40069	2 92956
н	-3 57643	2 29946	3 00656
C II	-5.570+5	-0.87656	2 74829
н	-6 36856	-1 77031	2.7402)
C II	-3.85605	4 60765	_0.09545
с ц	4 30073	5 5/312	0.02842
п С	-4.39975	2.61766	-0.02842
С u	-0.53751	2.01700	-4.34409
п	-1.05255	2.1170	-3.10/03
U U	1.20022	-0.34182	-4.00913
П	1.44834	0.71554	-4.03004
U U	-5.54187	1.4/4/8	5.19552
Н	-5.98135	2.42721	3.4/30
C	-0.0148	-0.//1/8	-3.4834
C	-4.03492	-0.83228	-5.58859
H	-4.13108	-1.60895	-6.3404
C	-2.86835	-0.75419	-4.83147
H	-2.0/4/1	-1.46526	-5.02092
C	0.53514	4.48634	-4.15306
H	0.96083	5.43144	-4.47462
С	-5.0624	0.0813	-5.39377
Н	-5.96906	0.02006	-5.9867
С	0.62812	3.18246	3.30706
Н	1.41361	3.79166	2.87121
С	-0.28943	-2.14433	-3.47547
Н	-1.23192	-2.51134	-3.08642
С	-0.01443	2.22586	2.52386
Η	0.29879	2.06392	1.50037
Η	-14.93482	1.40879	-4.11262
С	-15.31557	0.45796	-3.75359
С	-14.44881	-0.4885	-3.29702
С	-16.71786	0.21287	-3.77836
С	-14.91049	-1.76026	-2.82359
Η	-13.38547	-0.2886	-3.30419
С	-17.20034	-0.99057	-3.36877
Η	-17.3922	0.98306	-4.1381
С	-14.04558	-2.76632	-2.3372
С	-16.32295	-2.01668	-2.89502
Н	-18.2651	-1.2022	-3.39884
С	-14.56977	-4.02567	-1.96663

С	-16.82085	-3.25997	-2.5161
С	-13.74434	-5.07998	-1.46013
С	-15.97765	-4.27355	-2.06622
Н	-17.88982	-3.44521	-2.57735
С	-14.27103	-6.28837	-1.11319
Η	-12.68167	-4.90724	-1.33782
С	-16.49246	-5.55284	-1.68956
С	-15.66768	-6.53412	-1.23256
Η	-13.6228	-7.07175	-0.73388
Η	-17.56176	-5.72159	-1.7763
Η	-16.06843	-7.50207	-0.9501
С	0.39955	0.33911	-0.18
С	1.62027	0.32641	-0.06749
С	3.044	0.33335	0.09975
С	3.89961	-0.07372	-0.93639
С	3.61973	0.74874	1.31187
С	5.27775	-0.06411	-0.7643
Η	3.46823	-0.39874	-1.8776
С	4.99833	0.75625	1.47845
Н	2.96979	1.06656	2.12102
С	5.83476	0.35033	0.44226
Η	5.92188	-0.38286	-1.57823
Η	5.42269	1.0808	2.42369
Η	6.91195	0.35662	0.57424

6. References

1. (a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy; Plenum: New York, 1999; Vol. (b) A. Chakraborty, D. Chakrabarty, P. Hazra, D. Seth and N. Sarkar, Chem. Phys. Lett., 2003, **382**, 508.