Supporting Information

Selective Chiral Symmetry Breaking and Luminescent Sensing of

Zn(II) Metal-Organic Framework

Zheng Cui, Lei Zhou, Bowen Qin, Baolei Zhou, Xiaoying Zhang,* Wenliang Li* and Jingping Zhang*

Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

*E-mail: jpzhang@nenu.edu.cn, zhangxy218@nenu.edu.cn, liwl926@nenu.edu.cn

Compound	1P	1M	
Formula	$C_{54}H_{24}Zn_{4.5}N_{12}O_{25}$	$C_{54}H_{24}Zn_{4.5}N_{12}O_{25}$	
	[(CH ₃) ₂ NH ₂] ₅ [(CH ₃) ₂ NCHO] ₉ (H ₂ O) _{15.5} *	[(CH ₃) ₂ NH ₂] ₅ [(CH ₃) ₂ NCHO] ₁₀ (H ₂ O) _{17.5} *	
Formula mass	2702.65	2811.78	
Crystal system	Cubic	Cubic	
Space group	F4 ₁ 32	F4 ₁ 32	
<i>a</i> , Å	45.1476(7)	45.1207(6)	
<i>V</i> , Å ³	92025(4)	91860(4)	
Temperature, K	173(2)	173(2)	
θ range, degree	2.210 to 25.024	2.211 to 25.021	
Reflections collected	42855	40964	
Unique reflections	6790	6782	
$R_{ m int}$	0.0425	0.0451	
GOF on F^2	1.138	0.972	
$R_1/wR_2^{\rm a} (I > 2\sigma(I))$	0.0842/0.2704	0.0754/0.2305	
R_1/wR_2^a (all data)	0.1165/0.3152	0.1323/0.2974	
Flack parameter	0.23(4)	0.17(4)	

Table S1. Crystallographic data for compounds 1P and 1M.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

*The disordered guest molecules were calculated by the PLATON/SQUEEZE program combined with the charge conservation, elemental analyses and thermogravimetric analyses.

Bond lengths (Å)					
1P		1M			
Zn(1)-O(3)#1	1.951(8)	Zn(1)-O(3)	1.970(9)		
Zn(1)-O(3)	1.951(8)	Zn(1)-O(3)#1	1.970(9)		
Zn(1)-O(6)#2	1.991(9)	Zn(1)-O(6)#2	2.026(11)		
Zn(1)-O(6)#3	1.991(9)	Zn(1)-O(6)#3	2.026(11)		
Zn(2)-O(2)#4	1.953(9)	Zn(2)-O(2)#4	1.931(9)		
Zn(2)-O(9)	1.979(4)	Zn(2)-O(9)	1.991(4)		
Zn(2)-O(7)	1.997(10)	Zn(2)-O(1)	2.011(7)		
Zn(2)-O(1)	2.007(7)	Zn(2)-O(7)	2.018(9)		
	Bond an	ngles (°)			
1P		1M			
O(3)#1-Zn(1)-O(3)	107.4(5)	O(3)-Zn(1)-O(3)#1	110.5(5)		
O(3)#1-Zn(1)-O(6)#2	104.4(5)	O(3)-Zn(1)-O(6)#2	102.3(5)		
O(3) -Zn(1)-O(6)#2	120.0(4)	O(3)#1-Zn(1)-O(6)#2	119.1(4)		
O(3)#1-Zn(1)-O(6)#3	120.0(4)	O(3)-Zn(1)-O(6)#3	119.1(4)		
O(3)-Zn(1)-O(6)#3	104.4(5)	O(3)#1-Zn(1)-O(6)#3	102.3(5)		
O(6)#2-Zn(1)-O(6)#3	101.6(6)	O(6)#2-Zn(1)-O(6)#3	104.4(7)		
O(2)#4-Zn(2)-O(9)	110.7(3)	O(2)#4-Zn(2)-O(9)	109.5(3)		
O(2)#4-Zn(2)-O(7)	118.5(4)	O(2)#4-Zn(2)-O(1)	97.5(4)		
O(9)-Zn(2)-O(7)	123.2(3)	O(9)-Zn(2)-O(1)	106.5(4)		
O(2)#4-Zn(2)-O(1)	96.2(4)	O(2)#4-Zn(2)-O(7)	118.5(4)		
O(9)-Zn(2)-O(1)	105.1(4)	O(9)-Zn(2)-O(7)	123.5(3)		
O(7)-Zn(2)-O(1)	96.3(4)	O(1)-Zn(2)-O(7)	95.4(4)		
Symmetry transformations used to generate equivalent atoms:		Symmetry transformations used to generate equivalent atoms:			
#1 -x+1,-y+1,z+0		#1 -x+2,-y+0,z+0			
#2 -z+3/4,-y+5/4,-x+3/4		#2 x+1/4,-z+1/4,y+1/4			
#3 z+1/4,y-1/4,-x+3/4		#3 -x+7/4,z-1/4,y+1/4			
#4 -y+1,z+1/2,-x+1/2		#4 -z+1,-x+1,y+0)		

Table S2. Selected bond lengths (Å) and angles (°) for compounds 1P and 1M.

SN	a	R_1	wR_2	Flack parameter	Helicity
1	45.1476(7)	0.1165	0.3152	0.23(4)	1P
2	45.1661(6)	0.1221	0.3208	0.24(4)	1P
3	45.0262(9)	0.1932	0.3593	0.21(5)	1P
4	45.0572(13)	0.1687	0.3316	0.26(5)	1P
5	45.082(2)	0.1572	0.3106	0.30(4)	1P
6	45.1207(6)	0.1323	0.2974	0.17(4)	1M

 Table S3. A summary of structure determinations of six crystals randomly selected from six different reactors.

Table S4. The ICP data.

Metalion	The concentration of metal ion in the original	The concentration of metal ion in the DMF	
Wietai Ioli	DMF solution, mmol L ⁻¹	solution after adsorption, mmol L ⁻¹	
Zn ²⁺	1.0500	0.9902	
Ni ²⁺	1.0610	1.0204	
Cd^{2+}	1.0394	1.0179	
Na ⁺	0.9840	0.9187	
Cu^{2+}	0.9749	0.9213	
Cr ³⁺	0.9720	0.9153	
Co ²⁺	0.9905	0.9248	
Mg^{2+}	1.0338	0.9753	
Mn^{2+}	1.0104	0.9428	
Pb ²⁺	1.0158	0.9683	
Fe ³⁺	0.9815	0.9468	

Figure S1. PXRD patterns of 1: simulated, as-synthesized, soaked by DMF containing 50 mmol L⁻¹ nitro explosives (3-NP, 2,4-DNT, *p*-DNB, *m*-DNB, or NB), and soaked by DMF containing 1 mmol L⁻¹ Fe³⁺.

Figure S2. The location of one of the $[(CH_3)_2NH_2]^+$ cations in compound **1P**. *A*' and *C* are the conformations taken by the ligand. C gray, H white, N blue, O red, and Zn turquoise.

Figure S3. Coordination environments of TATAT⁶⁻ (a), Zn1 (b) and (Zn₃O) unit (c). C gray, N blue, O red Zn turquoise.

Figure S4. TGA curve of 1.

Figure S5. The dihedral angles formed by the C-NH-C plane with the benzene ring and the triazine ring in TATAT⁶⁻ ligand with conformation C of **1P**.

Figure S6. The dihedral angles formed by the C-NH-C plane with the benzene ring and the triazine ring in TATAT⁶⁻ ligand with conformation A' of **1P**.

Figure S7. The arrangement of two non-mirrored conformations (A' and C) in helical channels 1P-D and 1P-L of 1P. Conformations C blue, Conformations A' pink, O red and Zn turquoise.

Figure S8. Two kinds of cages in 1P. Conformations C blue, Conformations A' pink, O red and Zn turquoise.

Figure S9. Distorted quadrilateral pores of 1P, viewed along [1-10] direction. C gray, N blue, O red and Zn turquoise.

Figure S10. The N_2 sorption isotherm at 77 K (Filled symbols: adsorption, open symbols: desorption) for 1.

Figure S11. PXRD patterns of compound 1 after N_2 adsorption.

Figure S12. The UV-vis diffuse reflectance spectra of compound 1 in BaSO₄ plate.

Figure S13. The hydrogen bond interactions between the TATAT⁶⁻ ligands and the water molecules in compound **1P**. C gray, N blue, O red and Zn turquoise.

Figure S14. Excitation and emission spectra of compound 1 at room temperature.

Figure S15. The solid photoluminescence spectra of compound 1 and H₆TATAT ligand excited at 373 nm.

Figure S16. Luminescence spectra of 1 in DMF solutions with different cations (1 mmol L⁻¹).

Figure S17. The luminescent spectra of 1 in DMF solutions with different concentrations of Fe³⁺.

Figure S18. The antijamming experimental spectra of compound 1 on Fe^{3+} sensing (red bars, luminescent intensity of compound 1 with an ion; blue bars, luminescent intensity of compound 1 with an ion and Fe^{3+}).

Figure S19. The solid fluorescent spectra of compound 1 after soaking in DMF solution and DMF solution of Fe^{3+} (1 mmol L⁻¹) for 1 day.

Figure S20. The dimensions of $[(CH_3)_2NH_2]^+$ cation.

Figure S21. The absorbance spectra of metal ions in DMF (1 mmol L⁻¹).

Figure S22. The luminescent spectra of **1** in DMF solutions containing different organic molecules (50 mmol L⁻¹) upon excitation at 373 nm.

Figure S23. Luminescent intensity at 436 nm of the DMF suspension of **1** treated with 50 mmol L⁻¹ diverse nitro explosives.

Figure S24. The luminescent spectra of 1 in DMF solutions containing different nitro explosives (5 mmol L⁻¹).

Figure S25. Luminescent intensity at 436 nm of the DMF suspension of **1** (0.18 mg mL⁻¹) and at 416 nm of the DMF solution of H_6TATAT (0.3 mg mL⁻¹) treated with 5 mmol L⁻¹ diverse nitro explosives upon excitation at 373 nm.

Figure S26. Emission spectra of 1 with addition of different concentrations of 3-NP in DMF solutions.

Figure S27. The absorbance spectra of nitro explosives in DMF (5 mmol L^{-1}).

Figure S28. The dimensions of methanol, ethanol, dichloromethane, benzene, methylbenzene, nitrobenzene, 1,4-dinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, and 3-nitrophenol.