Supporting information

Coordination-driven self-assembly of ruthenium(II) architectures: Synthesis, characterization and cytotoxicity studies

Aderonke Ajibola Adeyemo^a, Abhijith Shettar^{b,c}, Imtiyaz Ahmad Bhat^a, Paturu Kondaiah^{b*}, Partha Sarathi Mukherjee^{a*}

^aDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India; Tel.: +91-80-22933352; Fax: +91-80-23601552; E-mail: psm@iisc.ac.in.

^bDepartment of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India; Tel.: +91-80-22932688; Fax: +91-80-23600999; E-mail: paturu@iisc.ac.in.

^cDepartment of Biotechnology Engineering, Ramaiah Institute of Technology, Bangalore-560064

*Corresponding authors: psm@iisc.ac.in; paturu@iisc.ac.in.

Fig. S1. ¹³C NMR spectrum of **TD** in CDCl₃ at room temperature.

Fig. S2. ESI-MS spectrum of TD in methanol.

Fig.S3. ¹⁹F NMR spectrum of MA_1 in CD₃OD at room temperature.

Fig. S4. 1 H- 1 H COSY NMR spectrum of MA₁ in CD₃OD at room temperature.

Fig. S5. DOSY NMR spectrum of MA₁ in CD₃OD at room temperature.

Fig. S6. Cell viability plots for the cytotoxicity of MA1.

Fig. S7. ¹H NMR spectrum of MA₂ in CD₃OD at room temperature.

Fig. S8. ¹⁹F NMR spectrum of MA₂ in CD₃OD at room temperature.

Fig. S9. ¹³C NMR spectrum of **MA**₂ in CD₃OD at room temperature.

Fig. S10. ¹H-¹H COSY NMR spectrum of MA₂ in CD₃OD at room temperature.

Fig. S11. DOSY NMR spectrum of MA₂ in CD₃OD at room temperature.

Fig. 12. Cell viability plots for the cytotoxicity of MA2.

Fig. S13. ¹H NMR spectrum of MA₃ in CD₃OD at room temperature.

Fig. S14. Temperature-dependent ¹H NMR of MA_3 in CD₃OD from 20° C to 50° C.

Fig. S15. ¹⁹F NMR spectrum of MA₃ in CD₃OD at room temperature.

Fig. S16. ¹³C NMR spectrum of MA₃ in CD₃OD at room temperature.

Fig. S17. ¹H-¹H COSY NMR spectrum of MA₃ in CD₃OD at room temperature.

Fig. S18. ¹H NMR spectrum of **MA**₄ in CD₃OD at room temperature.

Fig. S19. ¹⁹F NMR spectrum of MA₄ in CD₃OD at room temperature.

Fig. S20. ¹H-¹H COSY NMR spectrum of MA₄ in CD₃OD at room temperature.

Fig. S21. DOSY NMR spectrum of MA4 in CD3OD at room temperature.

Fig. S22. Cell viability plots for the cytotoxicity of MA4.

The Stokes-Einstein equation was used calculate the hydrodynamic radius using the diffusion coefficient (D) obtained from the DOSY NMR experiment;

$$D = \frac{k_B T}{6\pi\eta r_H}$$

where, D = diffusion coefficient; k_B = Boltzmann constant (1.3806 x 10⁻²³ m²Kgs⁻²K⁻¹); T = Absolute temperature (298 K); η = viscosity coefficient of CD₃OD (6.02 x 10⁻⁴ Kgm⁻¹s⁻¹); r_H = hydrodynamic radius. The respective values of r_H for supramolecular architectures MA₁, MA₂ and MA₄ as calculated from the above equation is summarized in table S1.

Table S1. Diffusion coefficients and hydrodynamic radii of MA1 - MA4.

Molecular	Diffusion coefficient	Hydrodynamic radius	
Architecture	(D)	(r_H)	
MA ₁	$-9.480 \log (m^2 s^{-1})$	1.094 x 10 ⁻⁹ m (10.94 Å)	
MA ₂	$-9.375 \log (m^2 s^{-1})$	8.661 x 10 ⁻¹⁰ m (8.66 Å)	
MA ₃	$-9.451 (logm^2 s^{-1})$	1.029 x 10 ⁻⁹ m (10.29 Å)	
MA4	$-9.465 \log (m^2 s^{-1})$	1.063 x 10 ⁻⁹ m (10.63 Å)	

Fig. S23. (a) Full ESI-MS spectrum of **MA**₁ in methanol; (b), (d), (f) experimental and (c), (e), (g) theoretical isotopic distribution of the charged fragments.

Fig. S24. (a) Full ESI-MS spectrum of MA_2 in methanol; (b), (d), (f) experimental and (c), (e), (g) theoretical isotopic distributions of the charged fragments.

Fig. S25. (a) Full ESI-MS spectrum of **MA**³ in methanol; (b), (d) experimental and (c), (e) theoretical isotopic distribution of the charged fragments.

Fig. S26. (a) Full ESI-MS spectrum of **MA**₄ in methanol; (b) experimental and (c) theoretical isotopic distribution of the charged fragment.

Fig. S27. FTIR spectra of TD and MA1 - MA4.

Fig. S28. UV-Vis absorption spectra of **TD** and **MA**₁ - **MA**₄ recorded in methanol (3.5 x 10⁻⁵ M) at 298 K.

Bond lengths [Å]		Bond angles [°]		
Ru01-N00I	2.103(5)	N00I-Ru01-O00B	81.60(2)	
Ru01-O00B	2.122(5)	N00I-Ru01-O00C	87.20(2)	
Ru01-O00C	2.111(5)	O00C-Ru01-O00B	78.57(18)	
Ru02-N00L	2.096(5)	N00L-Ru02-O008	82.61(19)	
Ru02-O008	2.131(4)	N00L-Ru02-O00E	85.70(2)	
Ru02-O00E	2.100(5)	O00E-Ru02-O008	78.98(18)	
Ru03-N00J	2.098(5)	N00J-Ru03-O009	81.65(19)	
Ru03-O009	2.111(4)	N00J-Ru03-O00D	87.10(2)	
Ru03-O00D	2.136(5)	O009-Ru03-O00D	78.15(18)	
Ru04-N00N	2.105(6)	N00N-Ru04-O00A	79.80(2)	
Ru04-O00A	2.106(4)	N00N-Ru04- O00F	85.80(2)	
Ru04-O00F	2.101(5)	O00F-Ru04-O00A	78.90(18)	

Table S2. Selected bond lengths [Å] and angles [°] for MA₁.

Chart S1. IC₅₀ values (μ M) of MA₁ – MA₄, Ru_c and TD on normal lung epithelial cells HPL1D

Fig. S29. Cell viability plots for the cytotoxicity of Ruc.

Fig. S30. Cell viability plots for the cytotoxicity of TD.