Supplementary Information for

Novel Chelators Based on Adamantane-Derived Semicarbazones and Hydrazones that

Target Multiple Hallmarks of Alzheimer's Disease

Duraippandi Palanimuthu^a, Zhixuan Wu^a, Patric J. Jansson^a, Nady Braidy^b, Paul V. Bernhardt^c,

Des R. Richardson^{a*} and Danuta S. Kalinowski^{a*}

^aMolecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia.

^bCentre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2031, Australia.

^cSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.

General Procedure for the Preparation of Copper Complexes of the ASC Ligands	S2		
General Procedure for the Preparation of Copper Complexes of the ABH Ligands	S 3		
General Procedure for the Preparation of Iron Complexes of the ASC and ABH Ligands	S5		
Figure S1. Inter- and intra-molecular hydrogen bond interactions in 6	S 10		
Figure S2. Inter- and intra-molecular hydrogen bond interactions in $[Cu(2)Cl]_2$	S 11		
Figure S3. EPR spectra of Fe complexes of selected semicarbazones and hydrazones	S12		
Figure S4. EPR spectra of Cu ^{II} complexes of selected semicarbazones and hydrazones	S 13		
Figure S5. Cyclic voltammograms of selected Cu complexes	S14		
Figure S6. Linear relationship between the experimental and reported effective permeability			
coefficients (P_e) determined by PAMPA-BBB	S15		
Table S1. Effective permeability coefficients (P_e) of reference agents	S16		
Table S2. Classification of effective permeability coefficients (P_e)	S16		

General Procedure for the Preparation of Copper Complexes of the ASC Ligands

To a hot methanolic (5 mL) solution of the ASC ligand (1 mmol), copper chloride dihydrate (179 mg, 1.05 mmol) was added and refluxed for 2 h. The precipitate formed was cooled to room temperature and collected by vacuum filtration, washed with diethyl ether and dried in air.

$[Cu(1)Cl_2] \cdot 1.5H_2O$

Light green solid (0.32 g). Yield: 65%. ESI-MS in CH₃CN: found mass: 460.60 (100%), Calc. mass for CuC₂₁H₂₈N₅O₃: 461.16 $[M-2Cl^--H^++CH_3CN]^+$. Anal. Calc. for CuC₁₉H₂₅N₄O₃Cl·HCl·1.5H₂O (%): C 43.89, H 5.62, N 10.78. Found (%): C 43.58, H 5.49, N 10.63.

[Cu(2-H)Cl]·0.5CH₃OH

Yellow-green solid (0.28 g). Yield: 68%. ESI-MS in CH₃CN: found mass: 415.73 (100%), Calc. mass for CuC₂₀H₂₅N₄O₂: 416.14 [M–Cl⁻+CH₃CN]⁺. Anal. Calc. for CuC₁₈H₂₂N₃O₂Cl·0.5CH₃OH (%): C 51.99, H 5.66, N 9.83. Found (%): C 52.04, H 5.48, N 10.02.

[Cu(3-H)Cl]·0.5CH₃OH

Light brown solid (0.24 g). Yield: 52%. ESI-MS in CH₃CN: found mass: 465.80 (100%), Calc. mass for CuC₂₄H₂₇N₄O₂: 466.15 [M–Cl⁻+CH₃CN]⁺. Anal. Calc. for CuC₂₂H₂₄N₃O₂Cl·0.5CH₃OH (%): C 56.60, H 5.49, N 8.80. Found (%): C 56.69, H 5.19, N 8.85.

[Cu(4-H)Cl]·HCl

Green solid (0.22 g). Yield: 51%. ESI-MS in CH₃CN: found mass: 395.93 (100%), Calc. mass for CuC₁₇H₂₂N₄OCl: 396.09 [M+H⁺]⁺. Anal. Calc. for CuC₁₇H₂₁N₄OCl·HCl (%): C 47.33, H 5.14, N 12.99. Found (%): C 47.22, H 5.04, N 12.95.

[Cu(5-H)Cl]·HCl

Dark brown solid (0.29 g). Yield: 63%. ESI-MS in CH₃CN: found mass: 426.00 (100%), Calc. mass for CuC₂₁H₂₃N₄O₂: 426.12 [M-2Cl⁻-H⁺]⁺. Anal. Calc. for CuC₂₁H₂₃N₄O₂Cl·HCl (%): C 50.56, H 4.85, N 11.23. Found (%): C 50.30, H 4.40, N 11.09.

[Cu(6-H)Cl]·2CH₃OH

Dark brown solid (0.24 g). Yield: 56%. ESI-MS in CH₃CN: found mass: 431.80 (80%), Calc. mass for CuC₂₀H₂₅N₄O₃: 432.13 [M–Cl⁻+CH₃CN]⁺, found mass: 422.73 (100%), Calc. mass for CuC₁₉H₂₆N₃O₄: 423.13 [M–Cl⁻+CH₃OH]⁺. Anal. Calc. for CuC₁₈H₂₂N₃O₃Cl·2CH₃OH (%): C 48.88, H 6.15, N 8.55. Found (%): C 49.00, H 5.62, N 8.55.

General Procedure for the Preparation of Copper Complexes of the ABH Ligands

Copper complexes of the ABH ligands were prepared by following the procedure outlined for the preparation of the copper complexes of the ASC ligands above. The only exception to this protocol was that 0.5 mmol of the ABH ligand was refluxed with copper chloride dihydrate (90 mg, 0.53 mmol).

$[Cu(7)Cl_2]$

Light green solid (0.28 g). Yield: 94%. ESI-MS (negative mode) in CH₃CN: found mass: 558.05 (100%), Calc. mass for CuC₂₆H₂₈N₄O₄Cl: 558.12 [M–HCl–H⁺]⁻. Anal. Calc. for CuC₂₆H₃₀N₄O₄Cl₂ (%): C 52.31, H 5.07, N 9.39. Found (%): C 52.72, H 5.37, N 9.42.

$[Cu(8-H)Cl] \cdot H_2O$

Green solid (0.26 g). Yield: 97%. ESI-MS (negative mode) in CH₃CN: found mass: 513.04 (100%), Calc. mass for CuC₂₅H₂₅N₃O₃Cl: 513.09 [M–H⁺]⁻. Anal. Calc. for CuC₂₅H₂₆N₃O₃Cl·H₂O (%): C 56.28, H 5.29, N 7.88. Found (%): C 56.57, H 5.49, N 7.58.

$[Cu(9-H)Cl] \cdot 3H_2O$

Grayish-green brown solid (0.30 g). Yield: 97%. ESI-MS (negative mode) in CH₃CN: found mass: 563.10 (100%), Calc. mass for CuC₂₉H₂₇N₃O₃Cl: 563.11 $[M-H^+]^-$. Anal. Calc. for CuC₂₉H₂₈N₃O₃Cl·3H₂O (%): C 56.22, H 5.53, N 6.78. Found (%): C 56.22, H 5.46, N 6.73.

$[Cu(10)Cl_2]$

Yellowish green solid (0.25 g). Yield: 93%. ESI-MS in CH₃CN: found mass: 522.04 (100%), Calc. mass for CuC₂₄H₂₅N₄O₂ClNa: 522.09 [M–HCl+Na⁺]⁺. Anal. Calc. for CuC₂₄H₂₆N₄O₂Cl₂ (%): C 53.69, H 4.88, N 10.43. Found (%): C 53.82, H 4.86, N 10.42.

$[Cu(11)Cl_2] \cdot H_2O$

Grey-yellow solid (0.23 g). Yield: 72%. ESI-MS (negative mode) in CH₃CN: found mass: 564.06 (40%), Calc. mass for CuC₂₈H₂₆N₄O₃Cl: 564.11 $[M-2H^+-Cl^-]^-$. Anal. Calc. for CuC₂₈H₂₈N₄O₃Cl₂·H₂O (%): C 54.15, H 4.87, N 9.02. Found (%): C 54.28, H 4.87, N 9.03.

[Cu(12)Cl₂]·CH₃OH

Grey solid (0.25 g). Yield: 42%. ESI-MS (negative mode) in CH₃CN: found mass: 529.07 (100%), Calc. mass for CuC₂₅H₂₅N₃O₄Cl: 529.09 $[M-2H^+-Cl^-]^-$. Anal. Calc. for CuC₂₅H₂₇N₃O₄Cl₂·CH₃OH (%): C 52.05, H 5.21, N 7.00. Found (%): C 51.71, H 5.01, N 7.10.

S4

General Procedure for the Preparation of Iron Complexes of the ASC and ABH Ligands

The ligand (0.5 mmol; except for **10**) was dissolved in ethanol (10 mL) with heating. If not completely soluble, a few millilitres of acetonitrile was added to completely dissolve the ligands. Ferric perchlorate hexahydrate (115 mg, 0.25 mmol) was added and refluxed for 1 h. The solution was concentrated and poured into diethyl ether to precipitate the product, which was filtered, washed with adequate amounts of diethyl ether and dried in air.

As described previously, the Fe^{II} complex of **10** was prepared by an alternative procedure due to the inability to isolate a pure complex by the method above and because of the known preference of pyridine-derived hydrazones to form Fe^{II} complexes.¹ Briefly, **10** (0.25 mmol) was suspended in acetonitrile (10 mL) and triethylamine (5 mmol) was added. The resulting solution was degassed under nitrogen. Ferrous perchlorate hexahydrate (45 mg, 0.12 mmol) dissolved in degassed acetonitrile (5 mL) was added drop wise to the ligand solution under reflux and the reaction mixture was refluxed for 3 h. The precipitate formed was collected by filtration, washed with methanol and air dried.

[Fe(1-H)2]ClO4·H2O

Dark brown solid (0.18 g). Yield: 41%. ESI-MS (negative mode) in CH₃OH: found mass: 768.37 (100%), Calc. mass for FeC₃₈H₄₈N₈O₆: 768.30 $[M-2H^+-ClO_4^-]^-$. ESI-MS (positive mode) in CH₃OH: found mass: 770.34 (100%), Calc. mass for FeC₃₈H₅₀N₈O₆: 770.32 $[M-ClO_4^-]^+$. Anal. Calc. for FeC₃₈H₅₀N₈O₁₀Cl·H₂O (%): C 51.39, H 5.90, N 12.62. Found (%): C 51.29, H 6.04, N 12.54. IR (cm⁻¹) 2904 (m), 2849 (w), 1623 (s), 1558 (m), 1390 (m), 1302 (m), 1248 (m), 1196 (m), 1091 (vs ClO₄⁻), 1064 (vs), 923 (w), 662 (w), 613 (m), 567 (m).

[Fe(2-H)₂]ClO₄·0.5H₂O

Black solid (0.20 g). Yield: 51%. ESI-MS (negative mode) in CH₃OH: found mass: 678.32 (100%), Calc. mass for FeC₃₆H₄₂N₆O₄: 678.26 $[M-2H^+-ClO_4^-]^-$. ESI-MS (positive mode) in CH₃OH: found mass: 680.27 (100%), Calc. mass for FeC₃₆H₄₄N₆O₄: 680.28 $[M-ClO_4^-]^+$. Anal. Calc. for FeC₃₆H₄₄N₆O₈Cl·0.5H₂O (%): C 54.80, H 5.75, N 10.65. Found (%): C 54.76, H 5.96, N 10.42. IR (cm⁻¹) 3312 (m), 2904 (m), 2851 (w), 1617 (s), 1564 (s), 1468 (m), 1375 (m), 1303 (m), 1208 (m), 1086 (vs, ClO₄⁻), 1064 (vs), 831 (w), 752 (s), 621 (s), 420 (s).

[Fe(3-H)2]ClO4

Dark green solid (0.22 g). Yield: 50%. ESI-MS (negative mode) in CH₃OH: found mass: 778.38 (100%), Calc. mass for FeC₄₄H₄₆N₆O₄: 778.29 $[M-2H^+-ClO_4^-]^-$. ESI-MS (positive mode) in CH₃OH: found mass: 780.33 (100%), Calc. mass for FeC₄₄H₄₈N₆O₄: 780.31 $[M-ClO_4^-]^+$. Anal. Calc. for FeC₄₄H₄₈N₆O₈Cl (%): C 60.04, H 5.50, N 9.55. Found (%): C 60.15, H 5.67, N 9.88. IR (cm⁻¹) 2906 (m), 1618 (s), 1575 (s), 1466 (m), 1318 (m), 1241 (m), 1182 (w), 1083 (s, ClO₄⁻), 1029 (s), 954 (w), 831 (m), 786 (m), 750 (vs), 622 (s), 419 (s).

[Fe(4)(4-H)]ClO4·0.5C2H5OH

Dark green solid (0.20 g). Yield: 44%. ESI-MS (positive mode) in CH₃OH: found mass: 651.24 (35%), Calc. mass for FeC₃₄H₄₃N₈O₂: 651.29 $[M-ClO_4^-]^+$. Anal. Calc. for FeC₃₄H₄₃N₈O₆Cl·0.5C₂H₅OH (%): C 54.31, H 5.99, N 14.48. Found (%): C 54.23, H 6.15, N 14.53. IR (cm⁻¹) 2908 (m, CH), 2852 (m, CH), 1650 (m, C=O), 1551 (s, C=N), 1468 (m), 1360 (m), 1303 (m), 1245 (w), 1088 (vs, ClO₄⁻), 920 (w), 774 (m), 620 (s), 517 (m), 425 (m).

[Fe(5-H)2]ClO4·0.75H2O

Dark brown solid (0.27 g). Yield: 61%. ESI-MS (negative mode) in CH₃OH: found mass: 780.53 (100%), Calc. mass for FeC₄₂H₄₄N₈O₄: 780.29 $[M-2H^+-CIO_4^-]^-$. ESI-MS (positive mode) in CH₃OH: found mass: 782.31 (100%), Calc. mass for FeC₄₂H₄₆N₈O₄: 782.30 $[M-CIO_4^-]^+$. Anal. Calc. for FeC₄₂H₄₆N₈O₈Cl·0.75H₂O (%): C 56.32, H 5.35, N 12.51. Found (%): C 56.05, H 5.38, N 13.18. IR (cm⁻¹) 3246 (w), 2905 (m), 2848 (m) 1634 (s), 1541 (s), 1448 (s), 1338 (s), 1299 (m), 1183 (w), 1090 (vs, CIO₄⁻), 1061 (vs), 908 (m), 835 (m), 742 (s), 622 (s), 495 (s).

[Fe(6-H)2]ClO4·C2H5OH

Dark brown solid (0.19 g). Yield: 47%. ESI-MS (positive mode) in CH₃OH: found mass: 712.26 (50%), Calc. mass for FeC₃₆H₄₄N₆O₆: 712.27 $[M-ClO_4^-]^+$. Anal. Calc. for FeC₃₆H₄₄N₆O₁₀Cl·C₂H₅OH (%): C 53.19, H 5.87, N 9.79. Found (%): C 52.97, H 6.09, N 9.90. IR (cm⁻¹) 3325 (w), 2906 (m), 2851 (m) 1619 (s), 1568 (s), 1448 (m), 1377 (m), 1302 (s), 1227 (m), 1071 (vs, ClO₄⁻), 926 (m), 868 (m), 739 (s), 621 (s), 436 (s).

[Fe(7-H)2]ClO4·4H2O

Dark brown solid (0.28 g). Yield: 52%. ESI-MS (negative mode) in CH₃OH: found mass: 976.53 (100%), Calc. mass for FeC₅₂H₅₆N₈O₈: 976.36 [M–2H⁺–ClO₄⁻]⁻. ESI-MS (positive mode) in CH₃OH: found mass: 1000.40 (25%), Calc. mass for FeC₅₂H₅₇N₈O₈Na: 1000.36 [M–H⁺+Na⁺–ClO₄⁻]⁺. Anal. Calc. for FeC₅₂H₅₈N₈O₁₂Cl·4H₂O (%): C 54.29, H 5.78, N 9.74. Found (%): C 54.01, H 5.78, N 9.72. IR (cm⁻¹) 3271 (w), 2905 (m), 2850 (m), 1657 (m), 1639 (m), 1583 (m), 1456 (m), 1379 (s), 1304 (m), 1085 (vs, ClO₄⁻), 1059 (vs), 867 (m), 727 (m), 621 (s).

[Fe(8-H)₂]ClO₄·(C₂H₅)₃N·0.25H₂O

Black solid (0.33 g). Yield: 67%. ESI-MS (negative mode) in CH₃OH: found mass: 886.43 (100%), Calc. mass for FeC₅₀H₅₀N₆O₆: 886.32 [M–2H⁺–ClO₄⁻]⁻. ESI-MS (positive mode) in CH₃OH: found mass: 932.33 (60%), Calc. mass for FeC₅₀H₅₀N₆O₆Na₂: 932.30 [M–2H⁺+2Na⁺–ClO₄⁻]⁺. Anal. Calc. for FeC₅₀H₅₂N₆O₁₀Cl·(C₂H₅)₃N·0.25H₂O (%): C 61.48, H 6.22, N 8.96. Found (%): C 61.76, H 6.11, N 8.55. IR (cm⁻¹) 3256 (w), 2905 (s), 2850 (m), 1588 (s), 1537 (s), 1493 (m), 1439 (m), 1384 (m), 1298 (s), 1202 (m), 1084 (s, ClO₄⁻), 894 (m), 867 (m), 757 (m), 607 (s).

[Fe(9-H)2]ClO4·6.5H2O

Black solid (0.29 g). Yield: 53%. ESI-MS (negative mode) in CH₃OH: found mass: 986.62 (100%), Calc. mass for FeC₅₈H₅₄N₆O₆: 986.35 $[M-2H^+-ClO_4^-]^-$. ESI-MS (positive mode) in CH₃OH: found mass: 1032.41 (100%), Calc. mass for FeC₅₈H₅₄N₆O₆Na₂: 1032.33 $[M-2H^++2Na^+-ClO_4^-]^+$. Anal. Calc. for FeC₅₈H₅₆N₆O₁₀Cl·6.5H₂O (%): C 57.79, H 5.77, N 6.97. Found (%): C 57.80, H 5.39, N 6.97. IR (cm⁻¹) 2906 (s), 2851 (m), 1578 (s), 1526 (s), 1380 (m), 1359 (s), 1301 (s), 1198 (m), 1090 (s, ClO₄⁻), 976 (m), 826 (m), 781 (m), 652 (s), 523 (s).

[Fe(10-H)₂]·1.25H₂O

Dark green solid (0.1 g). Yield: 46%. ESI-MS (positive mode) in CH₃OH: found mass: 881.35 (40%), Calc. mass for FeC₄₈H₅₀N₈O₄Na: 881.32 [M+Na⁺]⁺; found mass: 859.42 (13%), Calc. mass for FeC₄₈H₅₁N₈O₄: 859.81 [M+H⁺]⁺. Anal. Calc. for FeC₄₈H₅₀N₈O₄·1.25H₂O (%): C 65.41, H 6.00, N 12.71. Found (%): C 65.41, H 5.89, N 12.60. IR (cm⁻¹) 3337 (w), 2905 (m), 2849 (m), 1643 (s), 1531 (s), 1452 (s), 1358 (s), 1304 (s), 1142 (m), 1061 (m) 864 (m), 712 (m).

[Fe(11-H)2]ClO4·H2O

Greenish brown solid (0.25 g). Yield: 46%. ESI-MS (negative mode) in CH₃OH: found mass: 988.35 (100%), Calc. mass for FeC₅₆H₅₂N₈O₆: 988.34 $[M-2H^+-ClO_4^-]^-$. Anal. Calc. for FeC₅₆H₅₄N₈O₁₀Cl·H₂O (%): C 60.68, H 5.09, N 10.11. Found (%): C 60.42, H 5.22, N 10.11. IR (cm⁻¹) 2906 (m), 2850 (w), 1639 (m), 1543 (m), 1451 (m), 1343 (m), 1300 (m), 1241 (m), 1091 (vs, ClO₄⁻), 1061 (vs), 922 (m), 838 (m), 750 (m), 621 (s).

[Fe(12-H)2]ClO4·H2O

Black solid (0.24 g). Yield: 47%. ESI-MS (negative mode) in CH₃OH: found mass: 918.49 (100%), Calc. mass for FeC₅₀H₅₀N₆O₈: 918.31 [M-2H⁺-ClO₄⁻]⁻. Anal. Calc. for FeC₅₀H₅₂N₆O₁₂Cl·H₂O (%): C 59.44, H 5.60, N 8.50. Found (%): C 59.39, H 5.60, N 8.27. IR (cm⁻¹) 3320 (s), 2907 (m), 2851 (w), 1620 (m), 1566 (), 1448 (m), 1375 (m), 1346 (m), 1227 (m), 1071 (vs, ClO₄⁻), 924 (m), 736 (s), 621 (s), 487 (s).

Figure S1. Inter- and intra-molecular hydrogen bond interactions in 6.

Figure S2. Inter- and intra-molecular hydrogen bond interactions in $[Cu(2)Cl]_2$.

Figure S3. X-band (9.37448 GHz) EPR spectra of Fe complexes of selected semicarbazones and hydrazones (130 K, 1-3 mM in DMF:tris buffer 2:1).

Figure S4. X-band (9.37448 GHz) EPR spectra of Cu^{II} complexes of selected semicarbazones and hydrazones (130 K, DMF:tris buffer 2:1). Asterisks denote a minor 1:2 Cu:L complex species.

Figure S5. Cyclic voltammograms of selected Cu complexes (1-3 mM in DMF:Tris buffer 2:1 and 0.1 M Et₄NClO₄). Sweep rate: 100 mV s^{-1} .

Figure S6. Linear relationship between the experimental and reported effective permeability coefficients (P_e) determined by PAMPA-BBB. $P_e(exp) = 1.0563 P_e(ref) + 1.3528$. Results are presented as the mean of quadruplicate repeats examined in ≥ 3 experiments.

Table S1. Effective permeability coefficients (P_e) of reference agents used for the validation of the PAMPA-BBB experiment.

Reference Agent	$P_{\rm e} (10^{-6} {\rm cm s^{-1}})$		
-	Reference value	Experimental value	
Theophylline	0.1^{2}	2.63 ± 0.05	
Verapamil	16 ²	18.42 ± 3.04	
Progesterone	9.3 ²	9.36 ± 1.00	
Chlorpromazine	6.5 ²	6.69 ± 0.53	
Donepezil	12^{3}	16.04 ± 4.20	

Table S2. Classification of effective permeability coefficients (P_e) determined by the PAMPA-BBB (P_e , 10⁻⁶ cm s⁻¹).⁴

Compounds with predicted high BBB permeation (CNS+)	$P_e > 5.578$
Compounds with uncertain BBB permeation (CNS+/-)	$5.578 > P_e > 3.46$
Compounds with predicted low BBB permeation (CNS-)	$P_{e} < 3.46$

References

- 1. P. V. Bernhardt, P. Chin, P. C. Sharpe, and D. R. Richardson, *Dalton Trans.*, 2007, 3232.
- M. Shidore, J. Machhi, K. Shingala, P. Murumkar, M. K. Sharma, N. Agrawal, A. Tripathi,
 Z. Parikh, P. Pillai, and M. R. Yadav, *J. Med. Chem.*, 2016, 59, 5823.
- 3. L. Di, E. D. Kerns, S. L. Petusky, and Y. Huang, J. Pharm. Sci. 2009, 98, 1980.
- L. Di, E. H. Kerns, K. Fan, O. J. McConnell, and G. T. Carter, *Eur. J. Med. Chem.*, 2003, 38, 223.