Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Synthesis of Pure Silica MFI Zeolites Using Imidazolium-based Long Dications. A Comparative Study of Structure-directing Effects Derived from a Further Spacer Length Increase

Peng Lu, Luis Gómez-Hortig üela and Miguel A. Camblor

Index

Figure S1. ¹H NMR in D₂O of the organic dications used in this work.

Figure S2. XRD patterns of as-made 8BI-MFI (bottom) and 10BI-MFI (top) zeolites synthesized at 175 °C

and 150 $^{\circ}\text{C}$ with synthesis time of 9 and 10 days and water/silica ratios of 2.6 and 3.0, respectively.

Figure S3. XRD patterns of as-made materials synthesized at different times with 8BI at 175 °C and a water/silica ratio of 8. The main phase obtained at 5 days is zeolite TON.

Figure S4. XRD patterns of as-made materials synthesized at different times with 10BI at 175 °C and a water/silica ratio of 8. The phase obtained at 7 days is zeolite TON.

Figure S5. ¹H MAS NMR spectra of MFI zeolites synthesized with (from top to bottom): 4BI, 8BI, 10BI and 1E3MI. The arrow points to a broad signal at 10.2 ppm related to silanol-silanolate hydrogen bonding. The top and bottom traces correspond to reference [1].

Figure S6. Thermogravimetric analysis of the as-made zeolites obtained in this work.

Figure S7. N₂ sorption isotherms of the calcined MFI zeolites.

Table S1. Porous properties of the calcined MFI zeolites.

Figure S8. Location of 8BI (left) and 10BI (right) dications in a folded conformation, occupying both types of channels.

Figure S1. ¹H NMR in D₂O of the organic dications used in this work.

Figure S2. XRD patterns of as-made 8BI-MFI (bottom) and 10BI-MFI (top) zeolites synthesized at 175 $^{\circ}$ C and 150 $^{\circ}$ C with synthesis time of 9 and 10 days and water/silica ratio of 2.6 and 3.0, respectively.

Figure S3. XRD patterns of as-made materials synthesized at different times with 8BI at 175 $\,^{\circ}$ C and a water/silica ratio of 8. The main phase obtained at 5 days is zeolite TON.

Figure S4. XRD patterns of as-made materials synthesized at different times with 10BI at 175 $^{\circ}$ C and a water/silica ratio of 8. The phase obtained at 7 days is zeolite TON.

Figure S5. ¹H MAS NMR spectra of MFI zeolites synthesized with (from top to bottom): 4BI, 8BI, 10BI and 1E3MI. The arrow points to a broad signal at 10.2 ppm related to silanol-silanolate hydrogen bonding. The top and bottom traces correspond to reference [1].

Figure S6. Thermogravimetric analysis of the as-made zeolites obtained in this work.

The porous properties of the calcined MFI zeolites were determined by N₂ adsorption-desorption. The two samples demonstrated almost identical isotherms except for several minor differences (Figure S6). Both exhibited a steep uptake at low relative pressure (P/P₀ < 0.1) indicative of existence of micropores and also a distinctive uptake stage in the region $0.1 < P/P_0 < 0.2$, which could be due to the completeness of monolayer coverage and multilayer adsorption about to begin.[2] The hysteresis loops appeared for both samples, though is more obvious for 8BI-MFI suggesting the presence of mesopores. Indeed, abundant mesopores were calculated in both samples, and 8BI-MFI has a much higher mesopore volume (0.16 cm³/g) than 10BI-MFI (0.11 cm³/g) (Table S1). However, we perceive that these mesopores are inter-crystal mesopores indicating the loosely packed pattern of the rod-like crystals.

Figure S7. N₂ sorption isotherms of the calcined MFI zeolites.

Sample	Surface area (m ² /g)			Pore volume (cm^3/g)			
	$^{a}S_{total}$	^b S _{micro}	^c S _{ext}	$^{\rm d}V_{\rm total}$	^e V _{micro}	${}^{\mathrm{f}}\mathrm{V}_{\mathrm{meso}}$	- °Pore width (A)
8BI-MFI	335	161	174	0.24	0.08	0.16	5.0
10BI-MFI	341	169	172	0.20	0.09	0.11	4.9

Table S1. Porous properties of the calcined MFI zeolites

^aBET surface area. ^bt-plot micropore surface area. ^ct-plot external surface area. ^dV_{total} was determined from adsorbed volume at $P/P_0 = 0.99$. ^et-plot micropore volume. ^fV_{meso} (mesopore volume) = V_{total} – V_{micro}. ^gThe median pore width derived for H-K pore size distribution.

Figure S8. Location of 8BI (left) and 10BI (right) dications in a folded conformation, occupying both types of channels.

References:

[1] A. Rojas, L. Gomez-Hortiguela, M.A. Camblor, Zeolite structure direction by simple bis(methylimidazolium) cations: the effect of the spacer length on structure direction and of the imidazolium ring orientation on the 19F NMR resonances, Journal of the American Chemical Society, 134 (2012) 3845-3856.

[2] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, Pure and Applied Chemistry, 1985, pp. 603-619.