Electronic Supplementary Information

Amido calcuim complexes coordinated by phenolate ligands for catalytic cross-dehydrogenative coupling amines with silanes

Natalia V. Forosenko,^a Ivan V. Basalov,^a Anton V. Cherkasov,^a Georgy K. Fukin,^a Elena S. Shubina,^b Alexander A. Trifonov^{a,b,*}

Table S1. Crystal Data and Structures Refinement Details for Complexes 1, 5, 7, 8. Figure S1 ¹H NMR spectrum (400 MHz, CDCl₃) of L⁴H. Figure S2 ¹³C NMR spectrum (101 MHz, CDCl₃) of L⁴H. Figure S3 ¹H NMR spectrum (400 MHz, C₆D₆) of 1. Figure S4 ¹³C NMR spectrum (101 MHz, C₆D₆) of 1. **Figure S5** ¹H NMR spectrum (400 MHz, C_6D_6) of **2**. Figure S6 ¹³C NMR spectrum (101 MHz, C_6D_6) of **2**. Figure S7 ¹H NMR spectrum (400 MHz, C_6D_6) of 3. Figure S8 13 C NMR spectrum (101 MHz, C₆D₆) of **3**. Figure S9 ¹H NMR spectrum (400 MHz, C₆D₆) of 4. Figure S10 ¹³C NMR spectrum (101 MHz, C₆D₆) of 4. Figure S11 ¹H NMR spectrum (400 MHz, C_6D_6) of 5. Figure S12 13 C NMR spectrum (101 MHz, C₆D₆) of 5. Figure S13 ¹H NMR spectrum (400 MHz, C₆D₆) of 7. Figure S14 ¹³C NMR spectrum (101 MHz, C₆D₆) of 7. Figure S15 ¹H NMR spectrum (400 MHz, C₆D₆) of 8. Figure S16 ¹³C NMR spectrum (101 MHz, C₆D₆) of 8. Figure S17 ¹H NMR spectrum (400 MHz, CDCl₃) of 9-(phenylsilyl)-9H-carbazole. Figure S18 ¹³C NMR spectrum (101 MHz, CDCl₃) of 9-(phenylsilyl)-9H-carbazole. Figure S19 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of **9-(phenylsilyl)-9H-carbazole**. Figure S20¹H NMR spectrum (400 MHz, CDCl₃) of N,N-bis(2-methoxyethyl)-1-phenylsilanamine. Figure S21¹³C NMR spectrum (101 MHz, CDCl₃) of N,N-bis(2-methoxyethyl)-1-phenylsilanamine. Figure S22 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N,N-bis(2-methoxyethyl)-1-phenylsilanamine Figure S23 ¹H NMR spectrum (400 MHz, CDCl₃) of N-cyclohexyl-1-phenylsilanamine. Figure S24 ¹³C NMR spectrum (101 MHz, CDCl₃) of N-cyclohexyl-1-phenylsilanamine. Figure S25 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N-cyclohexyl-1-phenylsilanamine. Figure S26 ¹H NMR spectrum (400 MHz, CDCl₃) of N,N-dicyclohexyl-1-phenylsilanamine. Figure S27 ¹³C NMR spectrum (101 MHz, CDCl₃) of N,N-dicyclohexyl-1-phenylsilanamine. Figure S28 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N,N-dicyclohexyl-1-phenylsilanamine. Figure S29 ¹H NMR spectrum (400 MHz, CDCl₃) of 1-(methyl(phenyl)silyl)-1H-indole. Figure S30¹³C NMR spectrum (101 MHz, CDCl₃) of **1-(methyl(phenyl)silyl)-1H-indole**. Figure S31 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of 1-(methyl(phenyl)silyl)-1H-indole. Figure S32 ¹H NMR spectrum (400 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine. Figure S33 ¹³C NMR spectrum (101 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine. Figure S34 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine. Figure S35 IR spectrum of CaH₂.

Table S1. Crystal Data and Structures Refinement Details for Complexes 1, 5, 7, 8.

				1
	1	5	7	8
Empirical formula	$C_{38}H_{61}CaN_3O_3Si_2$	$C_{55}H_{62}CaN_4O_2$	C ₅₀ H ₇₀ CaN ₂ O ₆	C ₅₄ H ₇₆ CaN ₂ O ₆
Formula Weight	704.15	851.16	835.16	889.24
Т, К	100	100	100	100
Crystal System	Triclinic	Monoclinic	Triclinic	Triclinic
Space Group	P-1	P21/c	P-1	P-1
Unit Cell Dimensions	<i>a</i> = 10.7618(10) Å	a = 19.4603(12) Å	a = 13.3721(7) Å	<i>a</i> = 11.8448(4) Å
	<i>b</i> = 12.4539(13) Å	<i>b</i> = 14.0786(9) Å	b = 13.8868(7) Å	<i>b</i> = 14.0854(4) Å
	<i>c</i> = 15.7229(15) Å	<i>c</i> = 17.4538(11) Å	<i>c</i> = 14.7330(8) Å	<i>c</i> =17.5399(6) Å
	$\alpha = 74.996(2)^{\circ}$	<i>α</i> = 90°	$\alpha = 106.0090(10)^{\circ}$	$\alpha = 75.8870(10)^{\circ}$
	<i>θ</i> = 86.375(2)°	<i>θ</i> = 98.2580(10)°	<i>β</i> = 105.5980(10)°	<i>β</i> = 89.098(2)°
	γ = 88.424(2)°	γ = 90°	γ = 100.5220(10)°	γ = 65.1700(10)°
<i>V,</i> Å ³	2031.2(3)	4732.3(5)	2433.5(2)	2563.15(14)
Z	2	4	2	2
d_{calc} , Mg/m ³	1.151	1.195	1.140	1.152
μ, mm ⁻¹	0.250	0.178	0.176	0.171
F ⁰⁰⁰	764	1824	904	964
Crystal Size, mm	0.37 x 0.21 x 0.15	0.14 x 0.08 x 0.06	0.22 x 0.11 x 0.07	0.40 x 0.15 x 0.10
 Θ Range for Data Collection, ° 	1.870–27.94	2.23–26.415	2.47–27.91	2.15-30.87
Index Ranges	− 14 ≤ <i>h</i> ≤ 14	-24 ≤ h≤ 24	−17 ≤ h≤ 17	-15 ≤ h ≤ 15
	− 16 ≤ <i>k</i> ≤ 16	<i>−</i> 17 ≤ <i>k</i> ≤ 17	− 18 ≤ <i>k</i> ≤ 18	$-20 \le k \le 20$
	− 20 ≤/≤ 20	–21 ≤/≤ 21	− 19 ≤/≤ 19	-25 ≤ / ≤ 25
Refins Collected	27526	47901	28391	35464
Independent Reflns (R _{int})	9719 (0.0402)	9686 (0.0924)	11492 (0.0719)	16082 (0.0333)
Completeness to θ, %	100.0	99.9	99.6	99.8
Data / Restraints / Parameters	9719 / 0 / 436	9686 / 109 / 613	11492 / 0 / 550	16082 / 57 / 604
GOF on F ²	1.015	1.017	1.0017	1.022
Final RIndices	R ₁ = 0.0488	$R_1 = 0.0532$	R ₁ = 0.0610	<i>R</i> ₁ = 0.0439
(<i>I>2σ</i> (<i>I</i>))	$wR_2 = 0.1130$	$wR_2 = 0.1100$	$wR_2 = 0.1125$	$wR_2 = 0.1079$
RIndices (all data)	R ₁ = 0.0706	$R_1 = 0.0896$	R ₁ = 0.1071	$R_1 = 0.0591$
	$wR_2 = 0.1271$	$wR_2 = 0.1242$	$wR_2 = 0.1266$	$wR_2 = 0.1158$
Largest Diff Peak and Hole, e/Å ³	0.475 / -0.226	0.558 / -0.457	0.545 / -0.543	0.504 / -0.440

Figure S1 ¹H NMR spectrum (400 MHz, CDCl₃) of L⁴H.

Figure S2 $^{\rm 13}C$ NMR spectrum (101 MHz, CDCl_3) of $L^4H.$

Figure S3 ¹H NMR spectrum (400 MHz, C_6D_6) of 1.

Figure S4 ¹³C NMR spectrum (101 MHz, C₆D₆) of 1.

Figure S5 ¹H NMR spectrum (400 MHz, C_6D_6) of **2**.

Figure S6 ¹³C NMR spectrum (101 MHz, C_6D_6) of **2**.

Figure S7 ¹H NMR spectrum (400 MHz, C₆D₆) of **3**.

Figure S8 13 C NMR spectrum (101 MHz, C₆D₆) of **3**.

Figure S9 ¹H NMR spectrum (400 MHz, C_6D_6) of 4.

Figure S10 $^{\rm 13}C$ NMR spectrum (101 MHz, $C_6D_6)$ of 4.

Figure S11 ^1H NMR spectrum (400 MHz, C_6D_6) of 5.

Figure S12 $^{\rm 13}C$ NMR spectrum (101 MHz, $C_6D_6)$ of 5.

Figure S13 ¹H NMR spectrum (400 MHz, C₆D₆) of 7.

Figure S14 13 C NMR spectrum (101 MHz, C₆D₆) of 7.

Figure S15 ¹H NMR spectrum (400 MHz, C_6D_6) of 8.

Figure S16 13 C NMR spectrum (101 MHz, C₆D₆) of 8.

Figure S17 ¹H NMR spectrum (400 MHz, CDCl₃) of 9-(phenylsilyl)-9H-carbazole.

Figure S18 ¹³C NMR spectrum (101 MHz, CDCl₃) of 9-(phenylsilyl)-9H-carbazole.

Figure S19 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of 9-(phenylsilyl)-9H-carbazole.

78 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 ppm

Figure S20 ¹H NMR spectrum (400 MHz, CDCl₃) of N,N-bis(2-methoxyethyl)-1-phenylsilanamine.

Figure S22 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N,N-bis(2-methoxyethyl)-1-phenylsilanamine

Figure S24 ¹³C NMR spectrum (101 MHz, CDCl₃) of N-cyclohexyl-1-phenylsilanamine.

۳. «الميا بالمانيا» المانية والمانية والمانية والمحالية المحالية المحالية

4 2 0 -2 4 6 -8 -10 -14 -18 -22 -26 -30 -34 -38 -42 -46 -50 -54 -58 Figure S25 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N-cyclohexyl-1-phenylsilanamine.

Figure S26 ¹H NMR spectrum (400 MHz, CDCl₃) of N,N-dicyclohexyl-1-phenylsilanamine.

Figure S27 ¹³C NMR spectrum (101 MHz, CDCl₃) of N,N-dicyclohexyl-1-phenylsilanamine.

--28.59

8.0 7.5
 B.0
 7.5
 70
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0 ppm
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0

 Figure S29 ¹H NMR spectrum (400 MHz, CDCl₃) of 1-(methyl(phenyl)silyl)-1H-indole.
 0.5 0.0

Figure S30 ¹³C NMR spectrum (101 MHz, CDCl₃) of 1-(methyl(phenyl)silyl)-1H-indole.

-36.03

Figure S31 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of 1-(methyl(phenyl)silyl)-1H-indole.

Figure S32 ¹H NMR spectrum (400 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine.

Figure S33 ¹³C NMR spectrum (101 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine.

Figure S34 ²⁹Si NMR spectrum (79 MHz, CDCl₃) of N-(2-methoxybenzyl)-1-methyl-1-phenylsilanamine.

Figure S35 IR spectrum of CaH₂.