Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Syntheses and studies of electron/energy transfer of new dyads based on an unsymmetrical perylene diimide incorporating chelating 1,10-phenantroline and its corresponding square-planar complexes with dichloroplatinum(II) and dichloropalladium(II)

Sebile Işık Büyükekşi^a, Ahmet Karatay^b, Nursel Acar^c, Betül Küçüköz^b, Ayhan Elmalı^b and Abdurrahman Şengül^{a*}

^aDepartment of Chemistry, Faculty of Arts and Sciences, Bülent Ecevit University, 67100 Zonguldak, Turkey ^bDepartment of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey

^cDepartment of Chemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey

^{*}Corresponding author. Tel: +90 372 2911126; fax: +90 372 257 4181.

E-mail address: abdurrahmans2002@yahoo.co.uk sengul@beun.edu.tr (A. Sengul)

Table of Contents

The synthesis and characterizations of PDI-3	S3-S6
The FT-IR spectra of 1, 2 and 3	S6-S7
The MALDI-TOF spectra of 1, 2 and 3	S8-S9
The ¹ H NMR spectra of 1 , 2 and 3	S9-S10
The ¹ H- ¹ H COSY NMR spectra of 1 , 2 and 3	S11-S12
¹ H chemical shifts (ppm) for compounds 1 , 2 and 3 in DMSO- d_6	S13
The ¹³ C NMR spectra of 1 , 2 and 3	S14-S15
The ¹ H- ¹³ C HSQC NMR spectra of 1 , 2 and 3	S16-S18
The ¹ H- ¹³ C HMBC NMR spectra of 1 , 2 and 3	S19-S21
¹³ C chemical shifts (ppm) for compounds 1 , 2 and 3 in DMSO- d_6	S22
Electronic absorption and fluorescence excitation spectra of 1, 2 and 3 in DMSO	S23-S25
Electronic absorption and fluorescence excitation spectra of 1, 2 and 3 in DCM	S26
Schematic representation of the investigated molecules	S27
Dipole moments (μ , Debye), sum of electronic energies and zero-point energies (E _{elec} +ZPE,	
Hartree), complexation energies (ΔE_C) and some dihedral angles of studied systems calculated	S27
with B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.	
Calculated IR spectra of 1, 2 and 3 in gas phase.	S28
Frontier molecular orbitals, their energies, and HOMO-LUMO energy gaps for the investigated	
molecules calculated at B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis	S28
sets in DCM.	
Electronic transitions (λ_{ex}), oscillator strengths (f), transition dipole moments (μ_{tr}), excitation	
character, molecular orbitals and their % contributions of 1, 2 and 3 at B3LYP functional using	S29-S31
6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.	
Some molecular orbitals of 1, 2 and 3 in DCM.	S32-S34
Charge distribution in compound 2 in DCM	S35
Ultrafast transient absorption spectra of 2 and 3 with different time delays at excited 590 nm	\$26
femtosecond pulsed laser	330
femtosecond pulsed laser	~~~

Synthesis of PDI-3

Scheme S1. Synthesis of PDI-3.

N'-(2-ethylhexyl)-1,6,7,12-tetrakis-(4-methoxyphenoxy)perylene-9,10-dicarboxylicimide-3,4-dicarboxylic anhydride (PDI-3)

N,*N*-di(2-ethylhexyl)-1,6,7,12-tetrakis-(4-methoxyphenoxy)perylene-3,4,9,10-tetracarboxylic acid diimide (4.6 g, 1.49 mmol) and KOH (4.9 g) were heated under reflux for 70 min. in a mixture of isopropanol (48 mL) and H₂O (6 mL). After cooling the reaction mixture to room temperature, it was stirred in acetic acid (10 mL) for 1h, H₂O was added, and the resulting precipitate was filtered and dried under vacuum. The crude product was purified by column chromatography on silica gel using (DCM/EtAs – 100/1) as eluent. The product (0.29 g, 20%) was obtained as a purple solid. FT-IR Spectrum [(ATR)/cm⁻¹]: 3075 (Ar-CH), 2956-2850 (CH), 1765 (C=O anhydride), 1735 (C=O anhydride), 1662 (C=O imide), 1589 (C=C), 1499, 1463, 1442, 1407, 1394, 1376, 1339, 1285, 1246, 1224, 1197 (C-O-C), 1179 (C-O-C), 1138, 1118, 1102, 1072, 1132, 1007, 946, 905, 873, 828, 796, 758, 742, 730, 705, 669, 650. MALDI-TOF (*m*/2): Calculated: 992.03; Found: 992.4 [M]⁺. ¹H NMR (600 MHz, CDCl₃) δ_{ppm} : δ = 8.11 (s, 2H, H_{P1}), 8.08 (s, 2H, H_{P1}), 6.92 (d, 8H, H_{P2}), 6.83 (d, 8H, H_{P3}), 4.03 (m, 2H, H_{H1}), 3.81 (s, 12H, H_{P4}), 1.54 (t, 1H, H_{H2}), 1.31-1.25 (m, 8H, H_{H3, H5, H6, H7), 0.92-0.86 (m, 6H, H_{H4, H8}). ¹³C NMR (DEPT, 600 MHz, CDCl₃) δ_{ppm} : (C) 163.633, 157.273, 156.905, 156.844, 148.170, 123.066, 121.403, 119.043, 117.939 (CH) 121.533, 121.449, 120.529, 118.782, 115.311, 115.265, 38.061 (CH₂) 44.413, 30.796, 29.685, 24.053, 23.033 (CH₃) 55.678, 156.884, 10.581.}

Figure S1. FT-IR spectrum of PDI-3

Figure S2. MALDI-TOF spectrum of PDI-3

Figure S4. ¹³C NMR DEPT spectrum of PDI-3

Figure S6. FT-IR spectrum of 2

Figure S7. FT-IR spectrum of 3

Figure S8. MALDI-TOF spectrum of 1

Figure S9. MALDI-TOF spectrum of 2

Figure S10. MALDI-TOF spectrum of 3

Figure S11. ¹H NMR spectrum of 1

Figure S12. ¹H NMR spectrum of 2

Figure S13. ¹H NMR spectrum of 3

Figure S14. COSY spectrum of 1

Figure S15. COSY spectrum of 2

Figure S16. COSY spectrum of 3

	1	2	3
Proton	$\Box_{\rm H}, J $ in Hz	$\Box_{\rm H}, J $ in Hz	$\Box_{\rm H}, J \text{ in Hz}$
H_{P1}	7.85 (s, 2H)	7.86 (s, 2H)	7.85 (s, 2H)
H_{P1}	7.84 (s, 2H)	7.84 (s, 2H)	7.82 (s, 2H)
H_{P2}	7.00 (m. 9H)	7.01 (m. 9 H)	6.09 (m, 911)
$H_{P2'}$	7.00 (III, 8H)	7.01 (III, 8H)	0.98 (111, 811)
H_{P3}	6 05 (m 8H)	6.05 (m. 8H)	6.02 (m. 8H)
$H_{P3'}$	0.95 (11, 611)	0.93 (111, 811)	0.95 (III, 811)
H_{P4}	3.76 (s, 6H)	3.76 (s, 6H)	3.75 (s, 6H)
$H_{P4'}$	3.69 (s, 6H)	3.70 (s, 6H)	3.69 (s, 6H)
H_2	9.16 (d, <i>J</i> = 3.89, 1H)	9.75 (d, <i>J</i> = 5.53, 1H)	9.39 (d, <i>J</i> = 5.27, 1H)
H_3	7.80 (dd, $J = 4.08$, 1H)	8.19 (dd, <i>J</i> = 5.59, 1H)	8.14 (dd, <i>J</i> = 5.52, 1H)
H_4	8.47 (m, 1H)	9.05 (d, <i>J</i> = 8.17, 1H)	8.96 (d, <i>J</i> = 8.15, 1H)
H_6	8.09 (s, 1H)	8.48 (s, 1H)	8.44 (s, 1H)
H_7	8.49 (m, 8H)	9.13 (d, <i>J</i> = 8.53, 1H)	9.05 (d, <i>J</i> = 8.47, 1H)
H_8	7.64 (dd, $J = 4.11, 1H$)	8.07 (dd, <i>J</i> = 5.55, 1H)	8.02 (dd, <i>J</i> = 5.39, 1H)
H ₉	9.10 (d, <i>J</i> = 4.07, 1H)	9.73 (d, <i>J</i> = 5.52, 1H)	9.36 (d, <i>J</i> = 5.13, 1H)
H_{H1}	3.87 (m, 2H)	3.89 (m, 2H)	3.84 (m, 2H)
H_{H2}	1.75 (m, 1H)	1.75 (m, 1H)	1.74 (m, 1H)
H _{H3,H5,H6,H7}	1.21 (m, 8H)	1.21 (m, 8H)	1.20 (m, 8H)
$H_{\rm H4,H8}$	0.80 (m, 6H)	0.80 (m, 6H)	0.79 (m, 6H)

Table S1. ¹H chemical shifts (ppm) for compounds 1, 2 and 3 in DMSO- d_6

Figure S17. ¹³C NMR DEPT spectrum of 1

Figure S18. ¹³C NMR DEPT spectrum of 2

Figure S19. ¹³C NMR DEPT spectrum of 3

Figure S20. HSQC spectrum of 1

Figure S21. HSQC spectrum of 2

Figure S22. HSQC spectrum of 3

Figure S23. HMBC spectrum of 1

Figure S24. HMBC spectrum of 2

Figure S25. HMBC spectrum of 3

	1	2	3
Carbon		\Box_{c}	
C _{P1}	118.153	118.176	118.169
C _{P1} ,	117.992	117.969	117.969
C _{P2}	121.908	121.901	121.901
C _{P2'}	121.770	121.694	121.694
C _{P3}	115.793	115.770	115.770
С _{Р3'}	115.755	115.770	115.770
C _{P4}	55.945	55.953	55.953
C _{P4} ,	55.907	55.922	55.914
C _a	163.564	163.580	163.564
$C_{a'}$	163.342	163.304	163.304
C _b	148.369	148.346	148.346
C _b ,	148.323	148.277	148.277
C _c	156.875	156.882	156.882
C _c ,	156.798	156.798	156.798
C ₂	151.334	150.369	151.587
C ₃	124.182	127.073	126.759
C_4	136.912	140.169	140.698
C_6	127.916	129.096	129.020
C ₇	132.437	136.330	136.821
C_8	124.000	127.073	126.759
C ₉	150.698	150.124	151.265
C _{H1}	43.998	43.983	43.983
C _{H2}	37.653	37.638	37.638
	22.825	22.818	22.818
	23.937	23.929	23.929
$C_{H3}, C_{H5}, C_{H6}, C_{H7}$	28.573	28.565	28.565
	30.588	30.580	30.580
C C	10.871	10.863	10.863
C_{H4}, C_{H8}	14.358	14.350	14.350

Table S2. ¹³C chemical shifts (ppm) for compounds 1, 2 and 3 in DMSO- d_6

Figure S26. Electronic absorption spectra of **1** in DMSO at different concentrations (inset: plot of absorbance vs. concentration)

Figure S27. Electronic absorption spectra of **2** in DMSO at different concentrations (inset: plot of absorbance vs. concentration)

Figure S28. Electronic absorption spectra of **3** in DMSO at different concentrations (inset: plot of absorbance vs. concentration)

Figure S29. The fluorescence emission spectra of **1**, **2** and **3** in DMSO (1.0×10^{-5} M). (Excitation wavelength = 550 nm)

Figure S30. UV-Vis absorption spectra of **1**, **2** and **3** at 5×10^{-5} M in DCM.

Figure S31. Fluorescence spectra of 1, 2 and 3 at 5×10^{-5} M in DCM.

Figure S32. Schematic representation of the investigated molecules

Table S3. Dipole moments (μ , Debye), sum of electronic energies and zero-point energies ($E_{elec}+ZPE$, Hartree), complexation energies (ΔE_C) and some dihedral angles of studied systems calculated with B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.

		(-==-				
		μ	E _{elec} +ZPE	$^{a}\Delta E_{C}$	Dihedral angle	Dihedral angle
		(D)	(Hartree)	(kcal/mol)	(C1C2C3C4)°	(C5N1C6C7)°
	1	5.36	-3898.118026		-28	90
	2	21.07	-4937.737230	-25.92	-28	89
	3	21.15	-4945.310683	-15.25	-28	92
	PtCl ₂	6.06	-1039.577881			
	PdCl ₂	6.28	-1047.168343			
$\Delta E_{\rm C} = \left[(E+ZPE)_{2/3} - (E+ZPE)_1 - (E+ZPE)_{\rm MCl2} \right]$						

S27

Figure S33. Calculated IR spectra of 1, 2 and 3 in gas phase.

Figure S34. Frontier molecular orbitals, their energies, and HOMO-LUMO energy gaps for the investigated molecules calculated at B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.

state	λ_{ex} (nm)	f	$\mu_{tr}(D)$	Character ^a	Predominant Transitions	%
\mathbf{S}_1	661	0.0416	0.9048	ICT1	H→L	70
S ₂	640	0.0019	0.0393	ICT1	H-2→L	68
c	620	0.0622	1 2007	LE1,ICT1	H-1→L	62
33	029	0.0052	1.5087	LE1,ICT1	H-4→L	27
S_4	620	0.0233	0.4750	ICT1	H-3→L	70
S_5	543	0.5563	9.5352	LE1,ICT1	H-4→L	65
S ₆	447	0.0002	0.0025	ICT2	H-5→L	70
S ₇	400	0.0321	0.4227	LE1,ICT3	H-8→L	62
S ₈	398	0.0102	0.1332	ICT1	H→L+1	64
G	204.2	0.0062	0.0002	ICT2	H-6→L	46
39	394.2	0.0062	0.0805	LE1,ICT1	H-1→L+1	40
S	204	0.0255	0.4610	LE1,ICT1	H-9→L	47
S_{10}	394	0.0333	0.4010	ICT2	H-6→L	46
S	202	0.0270	0 3608	LE1,ICT1	H-1→L+1	45
S_{11}	393	0.0279	0.3008	LE1,ICT3	H-9→L	37
S ₁₂	388	0.0089	0.1138	ICT1	H-2→L+1	69
S	386	0.0032	0.0401	ICT1	H-10→L	61
513	380	0.0032	0.0401	LE+ICT1	H-1→L+1	29
S ₁₄	382.4	0.0077	0.0975	ICT1	H-11→L	65
S ₁₅	382	0.0010	0.0132	ICT2	H-7→L	66
S ₁₆	381	0.0004	0.0054	ICT1	H-3→L+1	65
S ₁₇	380	0.0025	0.0314	ICT1	H-12→L	70
S ₁₈	376	0.0158	0.1961	ICT1	H-13→L	69
S	369 0.0004	369 0.0004 0.0049	0.0040	LE1,ICT4	H-15→L	51
3 19			0.0049	LE1,ICT4	H-16→L	43
S ₂₀	366	0.0001	0.0009	LE1,ICT1	H-4→L+1	66

Table S4. Electronic transitions (λ_{ex}) , oscillator strengths (f), transition dipole moments (μ_{tr}) , excitation character, molecular orbitals and their % contributions of 1 at B3LYP/6-31G(d,p) level in DCM.

^aLE1: local excitation of perylene; ICT1: intramolecular charge-transfer from phenyl rings to perylene moiety; ICT2: intramolecular charge-transfer from phenanthroline to perylene moiety; ICT3: intramolecular charge-transfer from perylene to phenyl rings; ICT4: intramolecular charge-transfer from C=O, N and alkyl chain of perylene side to perylene.

stata) (nm)		f	Character	Predominant	0/	
state	λ_{ex} (nm)	1	$\mu_{tr}(D)$	Character	Transitions	⁷ 0
\mathbf{S}_1	679	0.0581	1.2975	ICT1	H→L	70
S	653	0.0110	0 2540	ICT1	H-2→L	60
\mathbf{S}_2	055	0.0119	0.2349	LE1,ICT1	H-1→L	37
S.	646	0 1038	2 2068	LE1,ICT1	H-1→L	57
33	040	0.1038	2.2008	ICT1	H-2→L	37
S_4	634	0.0335	0.6981	ICT1	H-3→L	70
S_5	563	0.6902	12.7975	LE1,ICT1	H-4→L	68
S_6	453	0.0001	0.0014	LMCT1,ICT5	H→L+1	62
S ₇	448	0.0002	0.0023	LMCT2,ICT5	H-1→L+1	61
S_8	439	0.0000	0.0006	LMCT1,ICT5	H-2→L+1	66
S 9	436	0.0000	0.0003	MLCT1	H-5→L	71
S ₁₀	431	0.0001	0.0011	LMCT1,ICT5	H-3→L+1	69
S ₁₁	425	0.0001	0.0013	LMCT1,ICT5	H→L+2	65
S ₁₂	423.3	0.0002	0.0027	LMCT2,ICT5	H-1→L+2	62
S ₁₃	423	0.0001	0.0011	MLCT1,ICT2	H-6→L	70
S ₁₄	418	0.0034	0.0463	LE2,MLCT3	H-5→L+1	66
S ₁₅	414	0.0006	0.0084	LMCT2,ICT5	H-4→L+1	65
S ₁₆	413	0.0000	0.0004	ICT5	H-2→L+2	63
S ₁₇	407	0.0673	0.9020	LE1,ICT1	H-9→L	67
S ₁₈	406	0.0004	0.0047	ICT5	H-3→L+2	69
S ₁₉	405	0.0001	0.0010	MLCT2	H-7→L	70
S ₂₀	404	0.0036	0.0479	LE2,MLCT3	H-7→L+1	65
S ₄₀	363	0.1946	2.3306	LE2,MLCT3	H-5→L+1	56

Table S5. Electronic transitions (λ_{ex}), oscillator strengths (f), transition dipole moments (μ_{tr}), excitation character, molecular orbitals and their % contributions of **2** calculated at B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.

^aLE1: local excitation of perylene; LE2: local excitation of Pt; LMCT1: charge transfer from phenyl units to Pt; LMCT2: charge transfer from perylene to Pt; MLCT1: charge transfer from Pt-Cl2 to perylene; MLCT2: charge transfer from Pt to perylene; MLCT3: charge transfer from Pt-Cl2 to phenanthroline; ICT1: intramolecular charge-transfer from phenyl rings to perylene moiety; ICT5: intramolecular charge-transfer from phenyl rings to pervlene moiety; ICT5: intramolecular charge-transfer from phenyl rings to phenanthroline.

stata) (mm)	f	(D)	Character	Predominant	0/
State	λ_{ex} (IIIII)	1	$\mu_{tr}(D)$	Character	Transitions	/0
S ₁	678.5	0.0590	1.3178	ICT1	H→L	71
C	(5)	0.0126	0 2712	ICT1	H-2→L	60
\mathbf{S}_2	033	0.0126	0.2712	LE1,ICT1	H-1→L	37
c	616	0 1026	2 2028	LE+ICT1	H-1→L	57
33	040	0.1050	2.2028	ICT1	H-2→L	37
S ₄	634	0.0334	0.6962	ICT1	H-3→L	70
S ₅	563	0.6871	12.738	LE1,ICT1	H-4→L	68
S ₆	486	0.0002	0.0025	LE2,MLCT3	H-5→L+1	66
S ₇	485	0.0014	0.0001	LE2,MLCT3	H-8→L+1	62
S ₈	461	0.0000	0.0001	LE2,MLCT3	H-6→L+1	66
S ₉	458	0.0016	0.0243	LE2,MLCT3	H-13→L+1	64
S ₁₀	452	0.0000	0.0001	LMCT1,ICT5	H→L+1	67
S ₁₁	447	0.0000	0.0001	LMCT2,ICT5	H-1→L+1	66
S ₁₂	446	0.0001	0.0014	ICT5	H→L+2	62
S ₁₃	442	0.0001	0.0018	LMCT2,ICT5	H-1→L+2	61
S ₁₄	440	0.0000	0.0002	LMCT1,ICT5	H-2→L+1	68
S ₁₅	433	0.0000	0.0007	ICT5	H-2→L+2	66
S ₁₆	432	0.0000	0.0002	LMCT1,ICT5	H-3→L+1	69
S ₁₇	425	0.0001	0.0011	ICT5	H-3→L+2	69
S ₁₈	419	0.0001	0.0018	ICT5	H→L+2	65
S ₁₉	418	0.0002	0.0030	LMCT2,ICT5	H-1→L+2	62
S ₂₀	413	0.0000	0.0002	LMCT2,ICT5	H-4→L+1	70

Table S6. Electronic transitions (λ_{ex}), oscillator strengths (f), transition dipole moments (μ_{tr}), excitation character, molecular orbitals and their % contributions of **3** calculated at B3LYP functional using 6-31G(d,p) and LANL2DZ (for metals) basis sets in DCM.

^aLE1: local excitation of perylene; LE2: local excitation of Pd; LMCT1: charge transfer from phenyl units to Pd; LMCT2: charge transfer from perylene to Pd; MLCT1: charge transfer from Pd-Cl2 to perylene; MLCT2: charge transfer from Pd-Cl2 to perylene; MLCT3: charge transfer from Pd-Cl2 to phenanthroline; ICT1: intramolecular charge-transfer from phenyl rings to perylene moiety; ICT5: intramolecular charge-transfer from phenyl rings to pervlene moiety; ICT5: intramolecular charge-transfer from phenyl rings to pervlene moiety; ICT5: intramolecular charge-transfer from phenyl rings to pervlene moiety.

Figure S34. Selected molecular orbitals of 1 in DCM

Figure S35. Some molecular orbitals of 2 in DCM.

S36. Selected molecular orbitals of **3** in DCM.

Table S7. Charge distribution in compound 2 in DCM

Mulliken charges	NBO charges
0.264	0.378
-0.333	-0.477
-0.334	-0.478
-0.647	-0.415
-0.643	-0.415
0.130	0.087
-0.111	-0.252
-0.484	-0.639
0.203	0.199
-0.621	-0.508
0.487	0.695
0.487	0.694
-0.485	-0.640
-0.484	-0.639
-0.486	-0.502
	Mulliken charges 0.264 -0.333 -0.334 -0.647 -0.643 0.130 -0.111 -0.484 0.203 -0.621 0.487 0.487 -0.485 -0.484 -0.486

Figure S37. Ultrafast transient absorption spectra of **2** with different time delays at excited 590 nm femtosecond pulsed laser

Figure S38. Ultrafast transient absorption spectra of **3** with different time delays at excited 590 nm femtosecond pulsed laser