Supporting Information

A Bi-metallic MOF Catalyst *via* Sensitive Detection & Adsorption of Fe³⁺ Ions

for Size-selective Reaction Prompting

Yang Li,^a Ziling Chang,^a Fangmin Huang,^a Pengyan Wu,^{a,*} Huacong Chu^a and Jian Wang^{a,*}

^aSchool of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for

Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.

E-mail: wpyan@jsnu.edu.cn (P.Y. Wu); wjian@jsnu.edu.cn (J. Wang)

Additional experimental details.

Reagents and chemicals: All reagents and solvents were of AR grade and used without further purification unless otherwise noted. 5,5'-methylenebisophthalic acid was synthesized according to the literature methods. (Eur. J. Org. Chem., 2007, 20, 3271-3276) Cd(ClO₄)₂ 6H₂O was purchased from Alfa Aesar, Fe(NO₃)₃·9H₂O and the other metal salts were provided from Shanghai Fourth Chemical Reagent aromatic Company (China). All of the aldehvdes (Benzaldehyde, 4-nitrobenzaldehvde, 4-methoxybenzaldehyde, 1-naphthaldehyde and 3,5-di-tert-butylbenzaldehyde) were purchased from Beijing Innochem Science & Technology Co., Ltd.. Stock solution $(2 \times 10^{-2} \text{ M})$ of the aqueous nitrate salts of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Co²⁺, Ni²⁺, Cu²⁺, Mn²⁺, Zn²⁺, Cd²⁺, Fe²⁺, Ag⁺, Pb²⁺, Al³⁺, Cr³⁺, Fe^{3+} and Hg^{2+} were prepared for further experiments.

Instruments and spectroscopic measurements: The elemental analyses of C, H and N were performed on a Vario EL III elemental analyzer. ¹H NMR spectra were measured on a Bruker-400 spectrometer with Me₄Si as an internal standard. X-Ray powder diffraction (XRD) patterns of the Cd-MDIP was recorded on a Rigaku D/max-2400 X-ray powder diffractometer (Japan) using Cu- $K\alpha$ ($\lambda = 1.5405$ Å) radiation. FT-IR spectra were recorded as KBr pellets on JASCO FT/IR-430. Thermogravimetric analysis (TGA) was carried out at a ramp rate of 5 °C/min in a nitrogen flow with a Mettler-Toledo TGA/SDTA851 instrument. Fluorescence spectra of the solution were obtained using the F-4600 spectrometer (Hitachi). Both excitation and emission slit widths were 5 nm. Fluorescence measurements were carried out in a 1 cm quartzcuvette with stirring the suspension of Cd-MDIP. The adsorption abilities of Cd-MDIP for Fe³⁺ in water was measured by Inductively Coupled Plasma Spectrometer (Perkin Elmer).

Cd(1)–O(1W)	2.271(7)	Cd(1)–O(2B)	2.323(4)			
Cd(1)–O(2)	2.323(4)	Cd(1)–O(1)	2.372(3)			
Cd(1)–O(1B)	2.372(3)	Cd(1)–O(2W)	2.452(6)			
Cd(1)-O(2WA)	2.454(4)					
O(1W)-Cd(1)-O(2B)	88.64(11)	O(1W)-Cd(1)-O(2)	88.64(11)			
O(2B)-Cd(1)-O(2)	158.03(17)	O(1W)–Cd(1)–O(1)	96.06(18)			
O(2B)-Cd(1)-O(1)	146.66(11)	O(2)-Cd(1)-O(1)	55.31(11)			
O(1W)-Cd(1)-O(1B)	96.07(18)	O(2B)-Cd(1)-O(1B)	55.31(11)			
O(2)-Cd(1)-O(1B)	146.66(11)	O(1)-Cd(1)-O(1B)	91.35(16)			
O(1W)-Cd(1)-O(2W)	173.9(2)	O(2B)-Cd(1)-O(2W)	90.19(10)			
O(2)-Cd(1)-O(2W)	90.19(10)	O(1)-Cd(1)-O(2W)	88.21(13)			
O(1B)-Cd(1)-O(2W)	88.20(13)	O(1W)-Cd(1)-O(2WA)	96.0(2)			
O(2B)-Cd(1)-O(2WA)	79.30(8)	O(2)-Cd(1)-O(2WA)	79.30(8)			
O(1)-Cd(1)-O(2WA)	132.53(8)	O(1B)-Cd(1)-O(2WA)	132.53(8)			
O(2W)-Cd(1)-O(2WB)	77.90(18)					
Symmetry code A: <i>x</i> , - <i>y</i> , 1- <i>z</i> ; B: - <i>x</i> , <i>y</i> , <i>z</i> .						

Table S1 Selective bond distance (Å) and angle (°) in Cd-MDIP.

Figure S1. The fluorescence spectra of Cd-MDIP in water solution upon the addition of 0.55 mM of various metal ions.

Figure S2. The Stern–Volmer plot of Cd-MDIP quenched by Fe^{3+} aqueous solution, where I₀ and I are the fluorescence intensity ratio before and after metal ion incorporation, respectively.

Figure S3. The DR UV–vis spectra of Cd–MDIP, $Fe(NO_3)_3$ and Cd–MDIP \supset Fe³⁺.

Table S1. The ICP results of splitting Cd–MDIP (2 mg), splitting of Cd–MDIP (2 mg) after treated with excess Fe³⁺ in 50 mL solution, respectively.

	$[Cd^{2+}] (\mu M)$	$[{\rm Fe}^{3+}]$ ($\mu {\rm M}$)	
splitting Cd-MDIP	76.7		
splitting Cd-MDIP after treated	76.5	4.5	
with Fe ³⁺			

Figure S4. The PXRD pattern of the residue left of Cd-MDIP and Cd-MDIP \supset Fe³⁺ behind were found to be predominantly CdO phase and CdO + Fe₃O₄ mixture phase, respectively.

Figure S5. Study on recycling of catalyst Cd-MDIP \supset Fe³⁺ for the heterogeneous cyanosilylation: (CH₃)₃SiCN: 1.2 mmol; benzaldehyde: 0.5 mmol; Cd-MDIP \supset Fe³⁺ catalysts: 2.5 μ mol, room temperature for 2 hours.

Figure 6. ¹H NMR (400 MHz, CDCl₃) of 2-phenyl-2-(trimethylsilyloxy)-acetonitrile.

Figure S7. ¹H NMR (400 MHz, CDCl₃) of 2-(4-nitrophenyl)-2-((trimethylsilyl)oxy)-acetonitrile.

Figure S8. ¹H NMR (400 MHz, CDCl₃) of 2-(4-methoxyphenyl)-2-(trimethylsilyloxy)-acetonitrile.

Figure S9. ¹H NMR (400 MHz, CDCl₃) of 2-(naphthalene-1-yl)-2-(trimethylsilyloxy)-acetonitrile.

Entry	Catalyst	T (°C)	t (hr)	Yield(%)	Ref.
1	1·Cd	r.t.	18	94	[S1]
2	Cd-PBA	r.t.	8	99	[S2]
3	Ce-MDIP1	r.t.	24	93	[S3]
4	Ce-MDIP2	r.t.	24	94	[S3]
5	Eu-PDC	r.t.	3	93	[S4]
6	MIL-47 (V)	r.t.	3	46	[S5]
7	MIL-53 (Al)	r.t.	3	26	[S5]
8	MIL-101 (Cr)	r.t.	4	96	[85]
9	Zn-MOF	r.t.	10	74	[S6]
10	Ce-MOF	r.t.	2	94	[S7]
11	Ps-CMOF	r.t.	48	93	[S8]
12	POMOF-1	r.t.	24	98	[S9]
13	UPC-15	r.t.	24	99	[S10]
14	UPC-16	r.t.	24	97	[S10]
15	Co-MOF	r.t.	12	98	[S11]
16	Cd-bpdc	r.t.	14	95	[S12]
17	Mn-MOF	r.t.	9	98	[S13]
18	Cd-MDIP⊃Fe ³⁺	r.t.	2	97	This work

Table S2. Comparison with different MOF catalysts in the catalytic of cyanosilylation reaction of benzaldehyde with (CH₃)₃SiCN.

Reference

- S1. W. Jiang, J. Yang, Y.-Y. Liu, S.-Y. Song, J.-F. Ma, Inorg. Chem., 2017, 56, 3036.
- S2. L. Hu, G.-X. Hao, H.-D. Luo, C.-X. Ke, G. Shi, J. Lin, X.-M. Lin, U. Y. Qazi, Y.-P. Cai, *Cryst. Growth Des.*, 2018, DOI: 10.1021/acs.cgd.7b01728.
- S3. D. Dang, P. Wu, C. He, Z. Xie, C. Duan, J. Am. Chem. Soc., 2010, 132, 14321.
- S4. X.-M. Lin, J.-L. Niu, P.-X. Wen, Y. Pang, L. Hu, Y.-P. Cai, Cryst. Growth Des., 2016, 16, 4705.
- S5. Z. Zhang, J. Chen, Z. Bao, G. Chang, H. Xing, Q. Ren, RSC Adv., 2015, 5, 79355.
- S6. A. Karmakar, A. Paul, G. M. D. M. Rúbio, M. F. C. G. da Silva, A. J. L. Pombeiro, *Eur. J. Inorg. Chem.*, 2016, **2016**, 5557.
- S7. A. Karmakar, G. M. D. M. Rubio, A. Paul, M. F. C. G. da Silva, K. T. Mahmudov, F. I. Guseinov, S. A. C. Carabineiro, A. J. L. Pombeiro, *Dalton Trans.*, 2017, 46, 8649.
- S8. J. Li, Y. Ren, C. Qi, H. Jiang, Chem. Commun., 2017, 53, 8223.
- S 9. Q. Han, X. Sun, J. Li, P. Ma, J. Niu, Inorg. Chem., 2014, 53, 6107.
- S10. X. Wang, L. Zhang, J. Yang, F. Dai, R. Wang, D. Sun, Chem. Asian J., 2015, 10, 1535.
- S11. X. Cui, M.-C. Xu, L.-J. Zhang, R.-X. Yao, X.-M. Zhang, Dalton Trans., 2015, 44, 12711.
- S12. A. Bhunia, S. Dey, J. M. Moreno, U. Diaz, P. Concepcion, K. Van Hecke, C. Janiak, P. Van Der Voort, *Chem. Commun.*, 2016, **52**, 1401.
- S13. S. Horike, M. Dincă, K. Tamaki, J. R. Long, J. Am. Chem. Soc., 2008, 130, 5854.