Supplementary Information

Intrinsic Peroxidase-like Activity and Enhanced Photo-Fenton Reactivity of Ironsubstituted Polyoxometallate nanostructures

Akif Zeb, Shafaq Sahar, Umair Yaqub Qazi, Atheer Hameid Odda, Naseeb Ullah, Ya-Nan Liu,

Ishtiaq A. Qazi, An-Wu Xu*

*anwuxu@ustc.edu.cn

Content

Figure S1 SEM image of as-prepared K₃PW₁₂O₄₀ (KPW).

Figure S2 TEM image of as-prepared $KFePW_{12}O_{40}$ showing core-shell structure (a) and nanoparticles on the surface (b).

Figure S3 SEM image of KFePW₁₂O₄₀ (KFePW) after RhB adsorption.

Figure S4 TGA analysis of KFePW₁₂O₄₀ (KFePW).

Figure S5 N2 adsorption and desorption isotherm of K₃PW₁₂O₄₀ (KPW).

Figure S6 Temporal UV-visible absorption spectral changes observed for the RhB solutions as a function of irradiation time in KFePW solutions

Figure S7 Photographs showing RhB solutions after 1 hour of reaction

Figure S8 KFePW recycle in repetitive degradation of RhB

Figure S9 Demonstration that the peroxidase-like activity of KFePW does not result from iron ion leaching.

Figure S10 Schematic presentation of TMB oxidation. Photographs show the color change of solution before (left) and after (right) 5 min reaction.

Table S2 Comparison of the kinetic constant (min⁻¹) of KFePW and KPW in different reaction systems

Table S2 Comparison of the catalytic activities of KFePW and other similar materials for degradation of RhB in different conditions

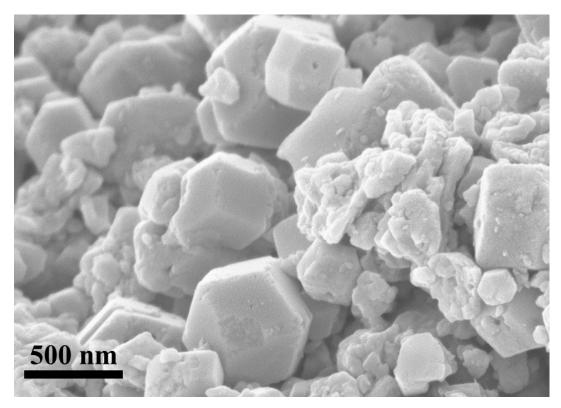


Figure S1. SEM image of as-prepared $K_3PW_{12}O_{40}$ (KPW).

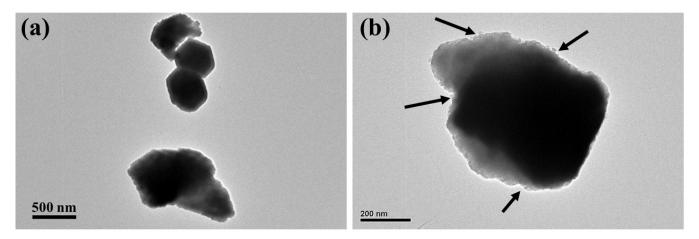


Figure S2. TEM image of as-prepared $KFePW_{12}O_{40}$ showing core-shell structure (a) and nanoparticles on the surface (b).

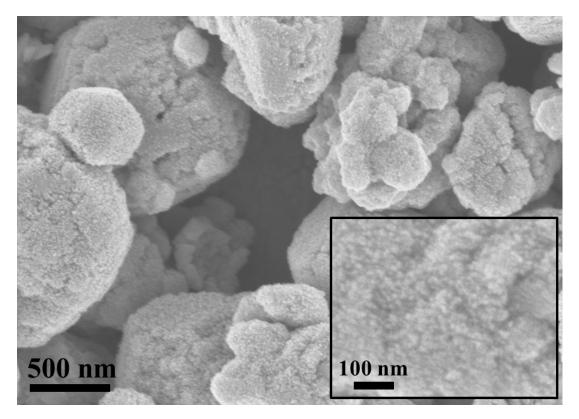


Figure S3. SEM image of KFePW₁₂O₄₀ (KFePW) after RhB adsorption.

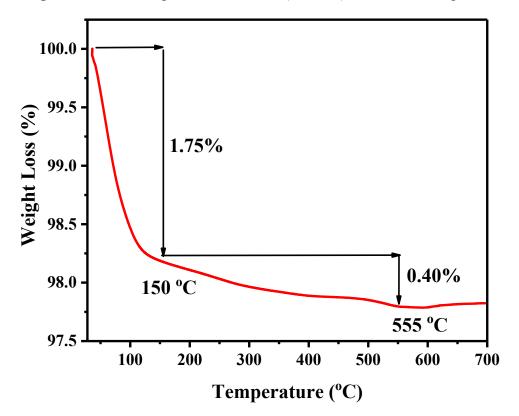


Figure S4. TGA analysis of $KFePW_{12}O_{40}$ (KFePW).

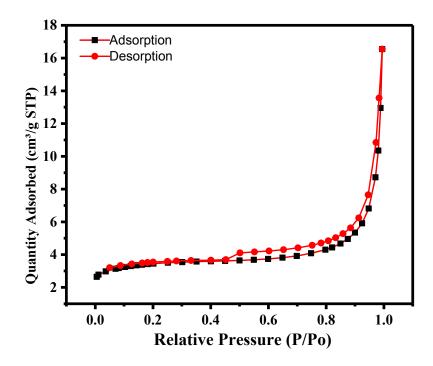
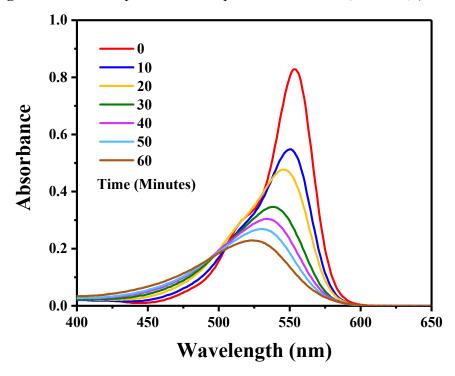



Figure S5. N2 adsorption and desorption isotherm of K₃PW₁₂O₄₀ (KPW).

Figure S6. Temporal UV-visible absorption spectral changes observed for the RhB solutions as a function of irradiation time in KFePW solutions [catalyst] = 0.2 g L^{-1} , [H₂O₂] = 20 mM; [RhB] = 5 mM at a pH of 7.

(a) KFePW₁₂O₄₀ with light

(c) K₃PW₁₂O₄₀ with light

(b) KFePW₁₂O₄₀ without light

(D) K₃PW₁₂O₄₀ without light

Figure S7. Photographs showing RhB solutions after 1 hour of reaction; $[catalyst] = 0.2 \text{ g L}^{-1}$, $[H_2O_2] = 20 \text{ mM}$; [RhB] = 5 mM at a pH of 7.

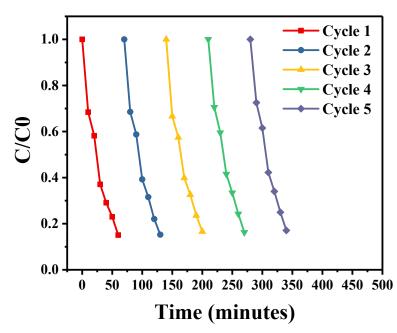


Figure S8. KFePW recycle in repetitive degradation of RhB; $[catalyst] = 0.2 \text{ g } \text{L}^{-1}$, $[\text{H}_2\text{O}_2] = 20 \text{ mM}$; [RhB] = 5 mM at a pH of 7.

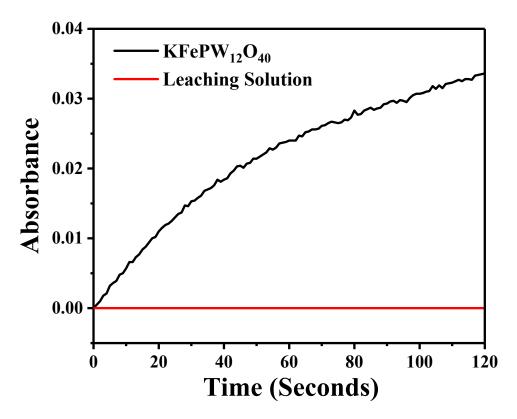


Figure S9. Demonstration that the peroxidase-like activity of KFePW does not result from iron ion leaching.

Figure S10. Schematic presentation of TMB oxidation. Photographs show the color change of solution before (left) and after (right) 5 min reaction.

 Table S1 Comparison of the kinetic constant (min⁻¹) of KFePW and KPW in different reaction systems

	KWP	KWP+H ₂ O ₂	KFePW	KFePW+H ₂ O ₂	
In Dark	0.0039	0.0036	0.0073	0.0116	
In Light	0.0041	0.0042	0.007	0.0305	

Catalyst	H ₂ O ₂	RhB	Catalyst	pH	Degradation	Reference
	conc.	conc.	amount		rate (min ⁻¹)	
	mM	(ppm)	(g/L)			
KFePW ₁₂ O ₄₀	38	10	0.05	Neutral	0.0305	This study
$K_{3}PW_{12}O_{40}$	38	10	0.05	Neutral	0.0042	This study
nanosphere α -Fe ₂ O ₃	-	100	-	Neutral	0.0133	1
Fe ₃ O ₄	90	10	0.05	Neutral	0.0105	2
Pt loaded C-ZnFe ₂ O ₄	5x10 ³	5	0.04	Neutral	9.31	3
VO _x	20	10	0.2	Neutral	5.79	4
$Fe_3O_4/g-C_3N_4$ NC	90	10	0.05	Neutral	0.02	2
H ₃ PW ₁₂ O ₄₀ /SiO ₂	-	10	0.05	2.5	0.03	5
HPW@ MIL-53(Fe)	-	20	0.02	Neutral	0.0141	6
[Co ₂ (4,4'-bpy)](4,4'-	-	100	2	Neutral	0.013	7
obb) ₂						
[Ni ₂ (4,4'-bpy) ₂](4,4'-	-	100	2	Neutral	0.008	7
obb) ₂ ·H ₂ O						
[Zn ₂ (4,4'-bpy)](4,4'-	-	100	2	Neutral	0.007	7
obb) ₂						

Table S2 Comparison of the catalytic activities of KFePW and other similar materials for degradation of RhB in different conditions

References

- 1. RSC Adv., 2016, 6, 75347–75358.
- 2. Chin. J. Catal., 2017, 38, 2110–2119.
- 3. J. Mater. Chem. A, 2015, 3, 18578–18585
- 4. ACS Appl. Mater. Interfaces, 2016, 8, 30126–30132
- **5.** Int. J. Photoenergy, 2013, **1**, 1–12.
- 6. Environ. Prog. Sustainable Energy, 2017, 36, 1342–1350.
- **7.** J. Phys. Chem. B, 2006, **110**, 13759–13768