Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

### **Electronic supplementary information**

#### Synthesis of vanadium oxide hydrate H<sub>2</sub>V<sub>3</sub>O<sub>8</sub> nanobelts

Vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>), ethanol, and Glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>·H<sub>2</sub>O) with analytical grade were purchased from Sinopharm Chemical Reagent Co., Ltd and used without any further purification. The synthesis of vanadium oxide hydrate H<sub>2</sub>V<sub>3</sub>O<sub>8</sub> nanobelts was based on our previous report [1]. In a typical synthesis, 1.82 g of V<sub>2</sub>O<sub>5</sub> powder was dispersed into 5 mL of ethanol, and then 75 mL of deionized water was added into the above solution with magnetic stirring. The mixed solution was transferred into a 100 mL Teflon Lined stainless steel autoclave after the solution became suspension. The autoclave was sealed and maintained at 180 °C for 48 h and then cooled to room temperature naturally. The products were filtered off, washed with distilled water and absolute ethanol several times to remove any possible residue, and dried in vacuum at 75 °C for future application.

#### Synthesis of H<sub>2</sub>V<sub>3</sub>O<sub>8</sub>@C core-shell composites

The synthesis of  $H_2V_3O_8@C$  core-shell composite was according to our previous reports [2, 3]. In a typical procedure, 0.5 g of the as-obtained  $H_2V_3O_8$  nanobelts were dispersed into the glucose solution (3.0 g of glucose and 60 mL of distilled water) in a 100 mL beaker under ultrasonic for 20 min, and then the mixture was stirred vigorously for 1 h by magnetic stirrer. After the solution became suspension, they were transferred into a 100 mL Teflon Lined stainless steel autoclave, which was sealed and maintained at 180 °C for 4 h. After cooling to room temperature naturally, the products were filtered off, washed with distilled water and absolute ethanol several times, and dried in vacuum at 75 °C for further characterization and application.

Figure S1



Figure S1. XRD patterns of the samples obtained at various calcined temperatures for 2 h: (A) VC@C series; (B) VN@C series; (C) Identification of the differences of VC@C and VN@C.



Figure S2. SEM image of VN@C and the corresponding elemental mapping images.

# Figure S3



Figure S3. SEM image of VC@C and the corresponding elemental mapping images.

## Figure S4



Figure S4. FTIR (a) and Raman (b) spectra of VN@C and VC@C.

# Figure S5

Figure S6



Figure S5. The cycling stability of the as-fabricated VC@C and VN@C SSC electrodes.



Figure S6. Ragone plots of VN@C SSC device and VC@C SSC device.

## Table S1

| Various device                                                 | Electrolyte                         | Potential/V | Capacitance<br>/mF·cm <sup>-2</sup> | Energy density                           | Power density                             | Cycling capability    | Reference |
|----------------------------------------------------------------|-------------------------------------|-------------|-------------------------------------|------------------------------------------|-------------------------------------------|-----------------------|-----------|
| RGO/Cellulose SSC                                              | H <sub>2</sub> SO <sub>4</sub> /PVA | 0~0.8       | 46, 2 mV $\cdot$ s <sup>-1</sup>    | $15 \ \mu Wh \ cm^{-2}$                  | -                                         | 99 % after<br>5000    | [4]       |
| Activated carbon cloth SSC                                     | H <sub>2</sub> SO <sub>4</sub> /PVA | 0~1         | 31, 10 mV $\cdot$ s <sup>-1</sup>   | -                                        | -                                         | 95 % after<br>20000   | [5]       |
| Graphene-cellulose<br>tissue composites SSC                    | H <sub>2</sub> SO <sub>4</sub> /PVA | 0~1.1       | 80                                  | $9 \ \mu Wh \ cm^{-2}$                   | $100 \text{ mW cm}^{-2}$                  | 90 % after<br>5000    | [6]       |
| Hierarchical carbon<br>tubular nanostructures<br>SSC           | H <sub>3</sub> PO <sub>4</sub> /PVA | 0~1         | 80, 5 mV $\cdot$ s <sup>-1</sup>    | _                                        | _                                         | -                     | [7]       |
| Hierarchical carbon<br>tubular nanostructures<br>SSC           | KOH/PVA                             | 0~1         | 79, 5 mV $\cdot$ s <sup>-1</sup>    | -                                        | -                                         | _                     | [7]       |
| Graphite<br>nanosheets/PANI SSC                                | $H_2SO_4/PVA$                       | 0~0.8       | 77.8, 0.1 mA $cm^{-2}$              | -                                        | -                                         | 83 % after<br>10000   | [8]       |
| PET/Pt/MnO2 SSC                                                | H <sub>3</sub> PO <sub>4</sub> /PVA | 0~0.8       | 20, 10 mV $\cdot$ s <sup>-2</sup>   | 1.9*10 <sup>-6</sup> Wh cm <sup>-2</sup> | $1.6*10^{-4} \mathrm{W} \mathrm{cm}^{-2}$ | 82.2 %<br>after 10000 | [9]       |
| V <sub>2</sub> O <sub>5</sub> H <sub>2</sub> O/graphene<br>SSC | LiCl/PVA                            | -0.8~0.8    | 12, 0.25 $A \cdot m^{-2}$           | $1.14~\mu W~h~cm^{-2}$                   | $10.0 \ \mu W \ cm^{-2}$                  | 95 % after<br>2000    | [10]      |
| VO2 NF@3DG SSC                                                 | $K_2SO_4$                           | -0.6~0.6    | 70.8, 0.5 mA·cm <sup>-2</sup>       | $279.6 \text{ mWh m}^{-2}$               | $6000 \text{ mW m}^{-2}$                  | 64 % after<br>3000    | [11]      |
| VC@C SSC device                                                | LiCl/PVA                            | 0~0.8       | 46, 5 mV $\cdot$ s <sup>-1</sup>    | $0.024 \text{ Wh m}^{-2}$                | $0.8 \text{ W} \text{ m}^{-2}$            | 81 % after<br>2000    | This work |
| VN@C SSC device                                                | LiCl/PVA                            | 0~0.8       | 65, 5 mV $\cdot$ s <sup>-1</sup>    | $0.041 \text{ Wh m}^{-2}$                | $0.8 \text{ W} \text{m}^{-2}$             | 85 % after<br>2000    | This work |

Table S1. Comparison of the electrochemical performance of various materials based on SC devices.

 $ASC = Asymmetric Supercapacitors; SSC = Symmetric Supercapacitors; M = mol L^{-1}; PVA = Polyvinyl Alcohol$ 

#### References

[1] Y. Zhang, X. Liu, G. Xie, L. Yu, S. Yi, M. Hu, C. Huang, Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O single-crystal nanobelts, Mater. Sci. Eng. B, 175 (2010) 164-171.

[2] Y. Zhang, X. Liu, D. Chen, L. Yu, J. Nie, S. Yi, H. Li, C. Huang, Fabrication of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O@C coreshell nanostructured composites and the effect of V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O and V<sub>3</sub>O<sub>7</sub>·H<sub>2</sub>O@C on decomposition of ammonium perchlorate, J. Alloys Compd., 509 (2011) L69-L73.

[3] Y. Zhang, M. Zhou, M. Fan, C. Huang, C. Chen, Y. Cao, H. Li, X. Liu, Improvement of the electrochemical properties of  $V_3O_7$ ·H<sub>2</sub>O nanobelts for Li battery application through synthesis of  $V_3O_7$ @C core-shell nanostructured composites, Curr. Appl. Phys., 11 (2011) 1159-1163.

[4] Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du, H.-M. Cheng, Graphene–Cellulose Paper Flexible Supercapacitors, Advanced Energy Materials, 1 (2011) 917-922.

[5] G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability, Advanced Materials, 26 (2014) 2676-2682.

[6] M. Sevilla, G.A. Ferrero, A.B. Fuertes, Graphene-cellulose tissue composites for high power supercapacitors, Energy Storage Materials, 5 (2016) 33-42.

[7] H. Zhang, H. Su, L. Zhang, B. Zhang, F. Chun, X. Chu, W. He, W. Yang, Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures, Journal of Power Sources, 331 (2016) 332-339.

[8] B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu, W. Chen, Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes, Nano Energy, 2 (2013) 1071-1078.

[9] X. Long, Z. Zeng, E. Guo, X. Shi, H. Zhou, X. Wang, Facile fabrication of all-solid-state flexible interdigitated MnO2 supercapacitor via in-situ catalytic solution route, J. Power Sources, 325 (2016) 264-272.

[10] J. Bao, X. Zhang, L. Bai, W. Bai, M. Zhou, J. Xie, M. Guan, J. Zhou, Y. Xie, All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional  $V_2O_5$ ·H<sub>2</sub>O/graphene composite, J. Mater. Chem. A, 2 (2014) 10876-10881.

[11] J. Wang, X. Zhang, Y. Zhang, A. Abas, X. Zhao, Z. Yang, Q. Su, W. Lan, E. Xie, Lightweight, interconnected VO2 nanoflowers hydrothermally grown on 3D graphene networks for wide-voltage-window supercapacitors, RSC Adv., 7 (2017) 35558-35564.