Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Impact of the Lanthanide Contraction on the Activity of a Lanthanide-dependent Methanol Dehydrogenase – A Kinetic and DFT Study

Henning Lumpe, Arjan Pol, Huub J.M. Op den Camp and Lena J. Daumann

Figure S1 Typical procedure for the Epoch 2 plate-reader assay with Eu-MDH and different lanthanide ions. The plate type used was a 96 well plate. A path length correction was applied (Path length Correction: 977 / 900, Absorbance at 1 cm: 0.18)

Figure S2 Left: Optimized Structures for the active center with PQQ⁰, substrate and La (tan), Pr (light brown), Nd (brown) and Lu (green). Right: Optimized Structures for the active center with PQQH₂ and La (tan), Sm (grey), Eu (blue) and Lu (green) - Images generated with the UCSF Chimera package.^[1] Structure optimizations were similar to a procedure described by Schelter et al.^[2] and performed using Gaussian 09^[3] and the B3LYP functional with the 6-31G(d) basis set for C, H, N, O.^[4-9] Starting point was the crystal structure of the known Ce-MDH (PDB 4MAE).^[10] The present amino acids in the active site were truncated and the terminal carbon atoms, as well as all of the PQQ-atoms were frozen, to mimic the sterics imposed by the protein. The present polyethylenglycol was truncated as well and used as a substrate-model. The cerium atom was then exchanged with every Ln in the series. Quasi relativistic effective core potentials (ECP) and segmented basis sets were used for the central metal: ECP-MWB46+4fⁿ.^[11-13] Calculations were performed with 11 outer sphere electrons, as pseudo-singlets (f-electrons included in ECP) and restricted closed-shell calculations.¹⁴ Calculations were conducted in the gas phase. For additional active site calculations, the truncated polyethylene glycol residue was manually removed, and/or the PQQ-quinone part was manually converted to the quinol. For simplification, the added quinol protons were frozen as well in their position. In case of Gd, the Harris functional was not able to form the initial guess, therefore the core Hamiltonian was used instead, using "guess=(core,always)". None of the calculations showed negative frequencies.

Figure S3 Example input for Gaussian optimizations (in this case La³⁺ PQQ with substrate). -1 denotes a frozen carbon atom.

%chk=	57-LallI-PQQ-with-Substrate.chk	0	0
%mem	=64GB	N	-1
%npro	cshared=4	С	-1
#p opt	freq rb3lyp/gen geom=connectivity 5d 7f	С	-1
pseudo	p=read	0	-1
		0	-1
La(III) -	PQQ – with substrate	С	-1
		С	-1
01		С	-1
С	-1 -4.90400000 3.34400000 3.52500000	С	-1
С	0 -4.43100000 2.75000000 2.21200000	0	-1
0	0 -5.31600000 2.48300000 1.32700000	С	-1
0	0 -3.21300000 2.47700000 2.02300000	0	-1
С	-1 -7.59200000 1.55900000 -2.75400000	С	-1
С	0 -6.78400000 1.98800000 -1.55100000	N	-1
0	0 -5.53400000 1.90100000 -1.57100000	С	-1
Ν	0 -7.44100000 2.47100000 -0.49176943	С	-1
С	-1 -7.57000000 -2.04200000 0.45144469	0	-1
С	0 -6.14900000 -1.61500000 0.75161945	0	-1
0	0 -5.81500000 -0.46701986 0.29292243	С	-1
0	0 -5.39000000 -2.35900000 1.42100000	С	-1
С	-1 -3.16200000 -0.96440872 -4.27600000	С	-1
С	0 -3.96500000 -0.84870079 -2.97500000	0	-1
0	0 -5.10800000 -1.31100000 -2.91900000	0	-1

0	-3.34000000	-0.27056742	-1.98200000
-1	3.33000000	-0.81662988	1.47900000
-1	3.61300000	-2.05900000	1.97300000
-1	5.01500000	-2.49400000	2.20800000
-1	5.88200000	-1.54200000	1.91200000
-1	5.26800000	-3.61500000	2.62500000
-1	2.41800000	-2.74800000	2.13600000
-1	1.39400000	-1.87800000	1.71500000
-1	1.99200000	-0.65850047	1.29400000
-1	-0.03196565	-2.09600000	1.68300000
-1	-0.65585683	-3.02200000	2.17600000
-1	-0.80639866	-0.98447544	0.95671480
-1	-1.97200000	-1.16300000	0.63270177
-1	-0.13660882	0.31747211	0.63836618
-1	-0.97622754	1.23100000	0.17358237
-1	-0.50347008	2.43600000	-0.15877326
-1	-1.51600000	3.38500000	-0.69429278
-1	-2.68200000	3.07700000	-0.90161786
-1	-1.02900000	4.60100000	-0.94685640
-1	0.84871874	2.74100000	-0.04652754
-1	1.77100000	1.78600000	0.39850560
-1	3.21000000	2.20900000	0.35976671
-1	3.37200000	3.51000000	0.13590368
-1	4.17700000	1.46400000	0.47970217

C -1	1.28200000	0.49657896	0.78449450	26
O 0	-3.93300000	-0.32848794	2.35300000	27 28 2.0 29 1.0
C 0	-3.16200000	-0.45069210	3.55200000	28 70 1.0
C -1	-4.04600000	-0.73580415	4.76200000	29 30 1.5 40 1.5
Н 0	-7.34200000	2.20600000	-3.60200000	30 31 1.5 70 1.0
Н 0	-7.28400000	0.54246200	-3.01600000	31 32 1.0 35 1.5
Н 0	-8.67000000	1.59400000	-2.58300000	32 33 2.0 34 1.5
Н 0	-7.70800000	-2.10900000	-0.63361256	33 70 1.0
Н 0	-7.80300000	-3.00600000	0.90925659	34 64 1.0
Н 0	-8.26700000	-1.28200000	0.82000108	35 36 1.5 62 1.0
Н 0	-5.67800000	4.09600000	3.34900000	36 37 1.0 40 1.5
Н 0	-5.35100000	2.54500000	4.12900000	37 38 1.5 39 2.0
Н 0	-4.07300000	3.78100000	4.08500000	38 61 1.0
Н 0	-4.78000000	0.06458975	4.90600000	39
Н 0	-4.58800000	-1.67900000	4.63500000	40
Н 0	-3.43600000	-0.81454479	5.67000000	41 42 1.0 69 1.0 70 1.0
Н 0	-2.63900000	0.50250317	3.66600000	42 43 1.0 56 1.0 57 1.0
Н 0	-2.41400000	-1.24600000	3.43300000	43 53 1.0 54 1.0 55 1.0
Н 0	-2.74100000	0.00689772	-4.55900000	44
Н 0	-2.32100000	-1.65000000	-4.12400000	45
Н 0	-3.79400000	-1.34200000	-5.08200000	46
Н -1	4.34900000	3.70100000	-0.00827955	47
Н -1	1.19100000	3.72400000	-0.32958075	48
H -1	6.90200000	-1.87400000	1.98800000	49
Н -1	-1.75500000	5.14900000	-1.30300000	50
Н -1	4.02400000	-0.11676026	1.22800000	51
Н -1	2.30000000	-3.76900000	2.46200000	52
НО	-8.45000000	2.47400000	-0.46268410	53
но	-6.90800000	2,66300000	0.35974909	54
н 0	-4.37900000	-1.19400000	2.13400000	55
la 0	-3.90000000	0.86148825	0.01088327	56
				57
1 2 1.0 50 1	.0 51 1.0 52 1.0			58
2 3 1.5 4 1.5	; ;			59
3 70 1.0				60
4 70 1.0				61
561.0441	.0 45 1.0 46 1.0			62
672.081.5	; ;			63
7 70 1.0				64
8 67 1.0 68	1.0			65
9 10 1.0 47	1.0 48 1.0 49 1.	0		66
10 11 1.5 12	1.5			67
11 70 1.0				68
12				69
13 14 1.0 58	3 1.0 59 1.0 60 1	1.0		70
14 15 1.5 16	5 1.5			
15 70 1.0				C H N O O
16 70 1.0				6-31G(d)
17 18 1.5 24	1.5 65 1.0			****
18 19 1.0 22	1.5			La O
19 20 1.5 21	2.0			MWB46
20 63 1.0				****
21				
22 23 1.5 66	5 1.0			La O
23 24 1.5 25	5 1.5			MWB46
24 40 1.0	-			-
25 26 2.0 27	1.0			

Figure S4 Calculated coordination numbers of the active site in MDH with oxidized (PQQ) or reduced (PQQH₂) cofactor with- and without substrate.

Table S1 Calculated bond lengths and angles of the structure optimizations for Ln³⁺ with PQQ⁰ and substrate as described in Figure S2. Example structures of the La³⁺ and Lu³⁺ calculations are given above.

PQQ + S	Distance SubstrO-C5	Distance SubstrO-M	Distance C5(O)-M	Distance N6-M	Distance C7'(CO ₂)-M	Distance O10-M	Distance O11-M	Bond angle O10-M-O11	Binding mode (ASP301)	Binding mode (ASP299)	CN	Atomic number
La	3.41871	2.66856	2.77142	2.89968	2.70271	2.64509	2.69935	48.99033	bidentate	monodentate	10	57
Ce	3.41485	2.66337	2.76197	2.89762	2.70936	2.63128	2.69154	49.14706	bidentate	monodentate	10	58
Pr	3.41219	2.65857	2.75417	2.89826	2.71734	2.61729	2.68469	49.29969	bidentate	monodentate	10	59
Nd	3.41778	2.61171	2.8574	2.99031	2.73730	3.49774	2.37672	39.70468	monodentate	monodentate	9	60
Sm	3.41537	2.59286	2.86013	3.00451	2.75280	3.59349	2.34644	37.85292	monodentate	monodentate	9	62
Eu	3.41492	2.58683	2.8639	3.01475	2.76106	3.60815	2.33595	37.51399	monodentate	monodentate	9	63
Gd	3.41444	2.58184	2.8679	3.02469	2.76871	3.61594	2.32783	37.31441	monodentate	monodentate	9	64
Tb	3.41577	2.57695	2.87418	3.03645	2.77646	3.62958	2.31973	37.00105	monodentate	monodentate	9	65
Dy	3.41595	2.57284	2.88008	3.04880	2.78509	3.63383	2.3123	36.86735	monodentate	monodentate	9	66
Но	3.41630	2.56955	2.88679	3.06206	2.79398	3.63696	2.30498	36.75500	monodentate	monodentate	9	67
Er	3.41718	2.5667	2.89434	3.07614	2.80304	3.63804	2.29817	36.68542	monodentate	monodentate	9	68
Tm	3.41814	2.56512	2.90226	3.08903	2.81036	3.63908	2.29201	36.62292	monodentate	monodentate	9	69
Yb	3.41893	2.56333	2.9108	3.10398	2.81956	3.63864	2.2857	36.58582	monodentate	monodentate	9	70
Lu	3.41938	2.56218	2.91864	3.11756	2.82784	3.63362	2.28047	36.64844	monodentate	monodentate	9	71

Table S2 Calculated bond lengths and angles of the structure optimizations for Ln³⁺ with PQQ⁰ and without substrate as described in Figure S2. Example structures of the La³⁺ and Lu³⁺ calculations are given above.

PQQ - S	Distance C5(O)-M	Distance N6-M	Distance C7'(CO ₂)-M	Distance O10-M	Distance 011-M	Bond angle O10-M-O11	Binding mode (ASP301)	Binding mode (ASP299)	CN	Atomic number
La	2.96030	3.20725	2.86410	2.63074	2.59339	50.21016	bidentate	bidentate	10	57
Ce	2.97706	3.22575	2.86963	2.62193	2.57966	50.37921	bidentate	bidentate	10	58
Pr	2.99437	3.24509	2.87580	2.61454	2.56625	50.53544	bidentate	bidentate	10	59
Nd	3.01204	3.26478	2.88222	2.60951	2.5525	50.67674	bidentate	bidentate	10	60
Sm	2.89771	3.03707	2.71801	2.55847	2.5967	50.68474	bidentate	monodentate	9	62
Eu	2.90947	3.04857	2.71891	2.54712	2.59047	50.82384	bidentate	monodentate	9	63
Gd	2.91986	3.05875	2.71977	2.53707	2.58482	50.94776	bidentate	monodentate	9	64
Tb	2.93182	3.07068	2.72104	2.52512	2.57823	51.10283	bidentate	monodentate	9	65
Dy	3.10597	3.18576	2.69915	3.42002	2.29714	40.74210	monodentate	monodentate	8	66
Но	3.12665	3.20178	2.69759	3.46268	2.2822	39.91409	monodentate	monodentate	8	67
Er	3.14994	3.22022	2.69600	3.48318	2.2708	39.48094	monodentate	monodentate	8	68
Tm	3.19116	3.24933	2.68576	3.42667	2.26154	40.50209	monodentate	monodentate	8	69
Yb	3.21140	3.26725	2.68713	3.44662	2.25019	40.08331	monodentate	monodentate	8	70
Lu	3.22792	3.2828	2.68946	3.45084	2.24257	39.96807	monodentate	monodentate	8	71

Table S3 Calculated bond lengths and angles of the structure optimizations for Ln^{3+} with reduced PQQH₂ and substrate as described in Figure S2. Example structures of the La^{3+} and Lu^{3+} calculations are given above.

PQQH ₂ + S	Distance SubstrO-C5	Distance SubstrO-M	Distance C5(O)-M	Distance N6-M	Distance C7'(CO ₂)-M	Distance O10-M	Distance 011-M	Bond angle O10-M-O11	Binding mode (ASP301)	Binding mode (ASP299)	CN	Atomic number
La	3.54092	2.70834	2.81254	2.86802	2.62451	2.71244	2.66632	48.64818	Bidentate	monodentate	10	57
Ce	3.54946	2.63521	2.91106	2.95102	2.64007	3.68944	2.40021	36.28487	Monodentate	monodentate	9	58
Pr	3.54064	2.63263	2.90953	2.95712	2.64814	3.69075	2.3828	36.19016	Monodentate	monodentate	9	59
Nd	3.5334	2.62958	2.91074	2.96688	2.65772	3.68653	2.36869	36.19823	Monodentate	monodentate	9	60
Sm	3.52661	2.62199	2.91926	2.98775	2.67306	3.69495	2.34789	35.9033	Monodentate	monodentate	9	62
Eu	3.52627	2.62008	2.92709	2.99971	2.67872	3.69484	2.33881	35.83736	Monodentate	monodentate	9	63
Gd	3.52663	2.61864	2.93476	3.01084	2.68363	3.69327	2.33143	35.81268	Monodentate	monodentate	9	64
Tb	3.52582	2.61692	2.94434	3.02416	2.68955	3.69751	2.32426	35.67653	Monodentate	monodentate	9	65
Dy	3.52649	2.61604	2.95369	3.03771	2.69576	3.69566	2.3173	35.65926	Monodentate	monodentate	9	66
Но	3.52752	2.61594	2.96397	3.05224	2.70222	3.69367	2.31027	35.64429	Monodentate	monodentate	9	67
Er	3.52895	2.61629	2.97493	3.06762	2.70907	3.69064	2.30366	35.65323	Monodentate	monodentate	9	68
Tm	3.53062	2.61775	2.98598	3.08189	2.71457	3.68782	2.29767	35.66513	Monodentate	monodentate	9	69
Yb	3.53273	2.61924	2.99806	3.09834	2.72169	3.68425	2.29139	35.68734	Monodentate	monodentate	9	70
Lu	3.53428	2.62061	3.0085	3.11303	2.72844	3.67742	2.28598	35.78303	Monodentate	monodentate	9	71

Table S4 Calculated bond lengths and angles of the structure optimizations for Ln³⁺ with reduced PQQH₂ and without substrate as described in Figure S2. Example structures of the La³⁺ and Lu³⁺ calculations are given above.

PQQH ₂ - S	Distance C5(O)-M	Distance N6-M	Distance C7'(CO ₂)-M	Distance O10-M	Distance O11-M	Bond angle O10-M-O11	Binding mode (ASP301)	Binding mode (ASP299)	CN	Atomic number
La	2.95742	3.13982	2.78158	2.63361	2.60395	50.02797	bidentate	bidentate	10	57
Ce	2.97215	3.15675	2.78697	2.62111	2.59302	50.20832	bidentate	bidentate	10	58
Pr	2.98586	3.17385	2.79371	2.61024	2.58227	50.37431	bidentate	bidentate	10	59
Nd	3.00095	3.19184	2.80022	2.6013	2.57175	50.52454	bidentate	bidentate	10	60
Sm	3.07479	3.2641	2.81502	2.63305	2.51598	50.66503	bidentate	bidentate	10	62
Eu	3.03114	3.09536	2.66574	3.4818	2.30303	39.60913	monodentate	monodentate	8	63
Gd	3.04624	3.10588	2.66276	3.52863	2.28762	38.66039	monodentate	monodentate	8	64
Tb	3.06665	3.12128	2.66008	3.56398	2.27436	37.90669	monodentate	monodentate	8	65
Dy	3.0875	3.13792	2.65814	3.57228	2.26438	37.68103	monodentate	monodentate	8	66
Но	3.10862	3.15511	2.65662	3.57863	2.25469	37.49011	monodentate	monodentate	8	67
Er	3.12939	3.17266	2.65601	3.57974	2.24588	37.40832	monodentate	monodentate	8	68
Tm	3.14776	3.18799	2.65536	3.57983	2.23828	37.35706	monodentate	monodentate	8	69
Yb	3.16743	3.2055	2.65608	3.57884	2.2299	37.31814	monodentate	monodentate	8	70
Lu	3.18277	3.22011	2.6578	3.57202	2.22282	37.40757	monodentate	monodentate	8	71

Figure S5 Optimized and superimposed structures for the active center with PQQ, substrate and Eu³⁺. The regular calculation, as described in Figure S2-S3 is given in dark blue. An open shell calculation, using the smaller ECP-MWB28^[11-13] and taking the f-electrons into account is given in blue and a calculation, taking solvent effects into account, by using the CPCM method with water, is given in light blue. Input commands for the calculations are given below. The structures received from the calculations only differ slightly, with an exception of Asp301, which is tilted away under the influence of the solvent model (light blue). Since all calculations show the same coordination number – the property of interest - the simplified, "regular" calculations described above were used for every Ln and active site configuration. None of the calculations showed negative frequencies.

Figure S6 Example inputs of the calculations described in Figure S2. **Left**: Open shell calculation, using the smaller ECP-MWB28. **Right**: Closed-shell calculation, considering solvent effects by the use of CPCM with water.

Eu (ECP-MWB28)	Eu (CPCM=water)
#p opt freq ub3lyp/gen geom=connectivity 5d 7f pseudo=read	<pre>#p opt freq rb3lyp/gen scrf=(cpcm,solvent=water) geom=connectivity 5d 7f pseudo=read</pre>
0 7	01
Atomic coordinates and geometry specifications as in Figure S3	Atomic coordinates and geometry specifications as in Figure S3
C H N O 0 6-31G(d) ****	C H N O 0 6-31G(d) ****
Eu 0 MWB28 ****	Eu 0 MWB52 ****
Eu 0 MWB28	Eu O MWB52

Figure S7 Optimized and superimposed structures for the active center with PQQ, substrate and La³⁺, Eu³⁺ or Lu³⁺. Calculations were performed exactly as the "regular" ones described in Figure S2-S3, but with all amino acid residues set to unfrozen. An example input command for the La³⁺ calculation is given below in Figure S8. Both Eu and Lu calculations only differ slightly from the regular ones. Glu172 and the substrate almost keep their position, while Asn256, Asp299 and Asp301 are shifted more significantly from their position. The unfrozen La calculation differs strongly from the regular one, with all amino acids, central metal and substrate rearranged. However, the coordination number for all three calculations does not differ from the respective regular calculation. The coordination number is therefore not forced by the frozen amino acids but only by the varying properties of the Ln. None of the calculations showed negative frequencies.

Figure S8 Example input for Gaussian optimizations with all amino acids set to unfrozen (while keeping all PQQ atoms frozen). -1 denotes a frozen carbon atom.

%chk=	LallI-PQQ-with-Substrate-not-frozen.chk	С	0	-3.16200000	-0.96440872	-4.27600000
%men	n=60GB	С	0 -	-3.96500000	-0.84870079	-2.97500000
%nprc	ocshared=8	0	0	-5.10800000	-1.31100000	-2.91900000
#p opt	: freq rb3lyp/gen geom=connectivity 5d 7f pseudo=read	0	0	-3.34000000	-0.27056742	-1.98200000
		N	-1	3.33000000	-0.81662988	1.47900000
La(III)	- PQQ - with Substrat	С	-1	3.61300000	-2.05900000	1.97300000
AS not	t frozen	С	-1	5.01500000	-2.49400000	2.20800000
		0	-1	5.88200000	-1.54200000	1.91200000
01		0	-1	5.26800000	-3.61500000	2.62500000
С	0 -4.90400000 3.34400000 3.52500000	С	-1	2.41800000	-2.74800000	2.13600000
С	0 -4.43100000 2.75000000 2.21200000	С	-1	1.39400000	-1.87800000	1.71500000
0	0 -5.31600000 2.48300000 1.32700000	С	-1	1.99200000	-0.65850047	1.29400000
0	0 -3.21300000 2.47700000 2.02300000	С	-1	-0.03196565	-2.09600000	1.68300000
С	0 -7.59200000 1.55900000 -2.75400000	0	-1	-0.65585683	-3.02200000	2.17600000
С	0 -6.78400000 1.98800000 -1.55100000	С	-1	-0.80639866	-0.98447544	0.95671480
0	0 -5.53400000 1.90100000 -1.57100000	0	-1	-1.97200000	-1.16300000	0.63270177
Ν	0 -7.44100000 2.47100000 -0.49176943	С	-1	-0.13660882	0.31747211	0.63836618
С	0 -7.57000000 -2.04200000 0.45144469	N	-1	-0.97622754	1.23100000	0.17358237
С	0 -6.14900000 -1.61500000 0.75161945	С	-1	-0.50347008	2.43600000	-0.15877326
0	0 -5.81500000 -0.46701986 0.29292243	С	-1	-1.51600000	3.38500000	-0.69429278
0	0 -5.39000000 -2.35900000 1.42100000	0	-1	-2.68200000	3.07700000	-0.90161786

0	-1	-1.02900000	4.60100000	-0.94685640	23 24 1.5 25 1.5
С	-1	0.84871874	2.74100000	-0.04652754	24 40 1.0
С	-1	1.77100000	1.78600000	0.39850560	25 26 2.0 27 1.0
с	-1	3.21000000	2.20900000	0.35976671	26
0	-1	3.37200000	3.51000000	0.13590368	27 28 2.0 29 1.0
0	-1	4.17700000	1.46400000	0.47970217	28 70 1.0
C	-1	1 28200000	0 49657896	0 78449450	29 30 1 5 40 1 5
0	Ô	-3 93300000	-0 32848794	2 35300000	30 31 1 5 70 1 0
c	n	-3 16200000	-0.45069210	3 55200000	31 32 1 0 35 1 5
c c	ñ	-4.04600000	-0 73580/15	4 76200000	32 33 2 0 34 1 5
с ц	0	7 24200000	2 2060000	2 60200000	22 70 1 0
н ц	0	7.34200000	2.20000000	2 01600000	33701.0
п u	0	-7.28400000 8 6700000	1 50400000	-3.01000000	34 04 1.0 25 26 1 5 62 1 0
п	0	-8.07000000	1.39400000	-2.56500000	35 30 1.5 02 1.0 26 27 1 0 40 1 F
п 	0	-7.70800000	-2.10900000	-0.03301250	30 37 1.0 40 1.5
н	0	-7.80300000	-3.00600000	0.90925659	37 38 1.5 39 2.0
н	0	-8.26700000	-1.28200000	0.82000108	38 61 1.0
н	0	-5.67800000	4.09600000	3.34900000	39
н	0	-5.35100000	2.54500000	4.12900000	40
н	0	-4.07300000	3.78100000	4.08500000	41 42 1.0 69 1.0 70 1.0
н	0	-4.78000000	0.06458975	4.90600000	42 43 1.0 56 1.0 57 1.0
Н	0	-4.58800000	-1.67900000	4.63500000	43 53 1.0 54 1.0 55 1.0
н	0	-3.43600000	-0.81454479	5.67000000	44
Н	0	-2.63900000	0.50250317	3.66600000	45
Н	0	-2.41400000	-1.24600000	3.43300000	46
н	0	-2.74100000	0.00689772	-4.55900000	47
н	0	-2.32100000	-1.65000000	-4.12400000	48
н	0	-3.79400000	-1.34200000	-5.08200000	49
н	-1	4.34900000	3.70100000	-0.00827955	50
н	-1	1.19100000	3.72400000	-0.32958075	51
н	-1	6.90200000	-1.87400000	1.98800000	52
н	-1	-1.75500000	5.14900000	-1.30300000	53
н	-1	4.02400000	-0.11676026	1.22800000	54
н	-1	2.30000000	-3.76900000	2.46200000	55
н	0	-8.45000000	2,47400000	-0.46268410	56
н	Ő	-6 90800000	2 66300000	0 35974909	57
н	0	-4 37900000	-1 19400000	2 13400000	58
la	0	-3 9000000	0.86148825	0.01088327	59
Lu	0	5.50000000	0.00140023	0.01000327	60
12101	50 1 (151105210			61
2215	JU 1.0	5 51 1.0 52 1.0			62
2 3 1.3	4 I.J				62
3 70 1.0) \				03
4 /0 1.0) ^ ^ ^ ^				04 CF
501.04	44 I.(5 45 1.0 46 1.0			05
6/2.08	81.5				66
7 70 1.0)				67
8 67 1.0	0681	0	_		68
9 10 1.0) 47 1	0 48 1.0 49 1.0	0		69
10 11 1	.5 12	1.5			70
11 70 1	.0				
12					CHNO0
13 14 1	.0 58	1.0 59 1.0 60 1	1.0		6-31G(d)
14 15 1	.5 16	1.5			****
15 70 1	.0				La O
16 70 1	.0				MWB46
17 18 1	.5 24	1.5 65 1.0			****
18 19 1	.0 22	1.5			
19 20 1	.5 21	2.0			La O
20 63 1	.0				MWB46
21					
22 23 1	.5 66	1.0			

Figure S9: Optimized Structures for the extended active center with substrate and La (tan), Ce (purple) or Lu (green) with PQQ in the active quinone state (PQQ⁰ – left) or the resting semiquinone state (PQQ⁻ – right). Electronic-structure calculations were performed with Gaussian 09 and exactly as described by Schelter et al.^[2] The B3LYP functional with the 6-31G(d) basis set was used for C, H, N and O. 28 electron quasi relativistic effective core potentials (ECP) and segmented basis sets were used for each central metal respectively (La, Ce, Lu): ECP-MWB28.^[11-13] Starting point of the geometry optimization was the active site of the crystal structure of Ce-MDH isolated from SolV (4MAE).^[10] The present amino acids in the active site were truncated and the terminal carbon atoms were frozen, to mimic the sterics imposed by the protein. The present polyethylenglycol was truncated as well and used as a substrate-model. The conductor-like polarizable continuum model (CPCM) was used for water, with the default settings for the universal force field (UFF) and a dielectric constant of 4, to reproduce the interior of the protein and the active site pocket. The charge and multiplicity for the quinone PQQ⁰ state were set to "0 1" for La and Lu and to "0 2" for Ce. The additional electron for the semiguinone PQQ^{•-} state was taken into account, by changing the system to "-1 2" for La and Lu and to "-1 3" for Ce. None of the calculations showed negative frequencies. All structures differed only slightly, by changing the central metal or the PQQ state. The PQQ ligand moved closer to the central metal, especially in case of Lu, probably due to the decreased ionic radius. In contrast to the simplified calculations described in Figure S2-S3, Asp301 remained monodentate for all calculations and therefore the overall coordination number did not change over the exchange of La to Ce or Lu. Since the simplified system given in S2 was also calculated with a smaller ECP and solvent effects as described in Figure S5, the binding mode of Asp301 is probably influenced during the optimization by the larger hydrogen bond network due to the additional amino acids and the change of the dielectric constant to 4.

Figure S10 Example input for	Gaussian optimizations (i	n this case La ³⁺ PQQ	⁰)1 denotes a frozen carbon atom
------------------------------	---------------------------	----------------------------------	--

%chk=C	::\Use	rs\akdaumanr	n\Desktop\La(I	II)-PQQ(0).chk	N	0	6.37600000	1.73100000	-2.50700000
%mem=	=128G	iB			Ν	0	6.93100000	0.79380766	-0.44848331
%nproc	share	d=12			С	0	7.08000000	4.45200000	-0.35938247
#p opt=	maxc	ycle=999 freq	rb3lyp/gen		0	0	5.73400000	4.21400000	-0.86097367
scrf=(cp	ocm,sc	olvent=water,r	ead)		С	-1	7.09400000	5.43300000	0.80182198
geom=0	conne	ctivity pseudo:	=read scf=max	cycles=1024	С	-1	2.43900000	6.91600000	-0.75832705
formch	eck				0	0	3.32900000	5.98400000	-1.38600000
					С	-1	-4.90400000	3.34400000	3.52500000
La(III) -	PQQ((D)			С	0	-4.43100000	2.75000000	2.21200000
					0	0	-5.31600000	2.48300000	1.32700000
01					0	0	-3.21300000	2.47700000	2.02300000
С	-1	10.31100000	-2.74300000	0.91007048	С	-1	-7.59200000	1.55900000	-2.75400000
С	0	8.93000000	-2.09500000	0.98227463	С	0	-6.78400000	1.98800000	-1.55100000
0	0	8.26200000	-2.29300000	2.04300000	0	0	-5.53400000	1.90100000	-1.57100000
0	0	8.55300000	-1.38000000	0.00969315	Ν	0	-7.44100000	2.47100000	-0.49176943
С	-1	8.18300000	-0.06179479	-3.80000000	С	-1	-7.57000000	-2.04200000	0.45144469
N	0	7.90300000	-0.03453109	-2.37100000	С	0	-6.14900000	-1.61500000	0.75161945
С	0	7.07000000	0.82769766	-1.78300000	0	0	-5.81500000	-0.46701986	0.29292243

0	0	-5.39000000	-2.35900000	1.42100000
С	-1	-3.16200000	-0.96440872	-4.27600000
С	0	-3.96500000	-0.84870079	-2.97500000
0	0	-5.10800000	-1.31100000	-2.91900000
0	0	-3.34000000	-0.27056742	-1.98200000
N	0	3,33000000	-0.81662988	1,47900000
c	ñ	3 61300000	-2 05900000	1 97300000
c c	0	5.01500000	-2.03300000	2 20800000
	0	5.01500000	-2.49400000	2.20800000
0	0	5.88200000	-1.54200000	1.91200000
0	0	5.26800000	-3.61500000	2.62500000
С	0	2.41800000	-2.74800000	2.13600000
С	0	1.39400000	-1.87800000	1.71500000
С	0	1.99200000	-0.65850047	1.29400000
С	0	-0.03196565	-2.09600000	1.68300000
0	0	-0.65585683	-3.02200000	2.17600000
С	0	-0.80639866	-0.98447544	0.95671480
0	0	-1.97200000	-1.16300000	0.63270177
c	ñ	-0 13660882	0 31747211	0.63836618
N	0	-0.97622754	1 23100000	0 17358237
C	0	0.57022754	2 42600000	0.17330237
	0	-0.50347008	2.43600000	-0.15877320
C	0	-1.51600000	3.38500000	-0.69429278
0	0	-2.68200000	3.07700000	-0.90161786
0	0	-1.02900000	4.60100000	-0.94685640
С	0	0.84871874	2.74100000	-0.04652754
С	0	1.77100000	1.78600000	0.39850560
С	0	3.21000000	2.20900000	0.35976671
0	0	3.37200000	3.51000000	0.13590368
0	0	4 17700000	1 46400000	0 47970217
c	ñ	1 28200000	0.49657896	0 78449450
0	0	2 02200000	0.40007000	2 25200000
0	0	-3.93300000	-0.32848794	2.35300000
C	0	-3.16200000	-0.45069210	3.55200000
C	-1	-4.04600000	-0.73580415	4.76200000
С	-1	-1.81800000	-5.63500000	-3.12600000
N	0	-2.49200000	-5.27000000	-1.87800000
С	0	-2.38200000	-4.05700000	-1.31700000
N	0	-1.38300000	-3.25400000	-1.70400000
N	0	-3.28000000	-3.66000000	-0.40296842
С	-1	2.04400000	-6.54300000	-1.24900000
с	0	1.30700000	-5.20800000	-1.01900000
0	0	0.91595122	-4.60900000	-2.08800000
0	ñ	1 10700000	-4 82700000	0 15045621
н	0	-7 3/200000	2 2060000	-3 60200000
	0	7.34200000	2.20000000	-3.00200000
п 	0	-7.28400000	0.54246200	-3.01600000
н	0	-8.67000000	1.59400000	-2.58300000
Н	0	-7.70800000	-2.10900000	-0.63361256
Н	0	-7.80300000	-3.00600000	0.90925659
Н	0	-8.26700000	-1.28200000	0.82000108
н	0	-5.67800000	4.09600000	3.34900000
н	0	-5.35100000	2.54500000	4.12900000
н	0	-4.07300000	3.78100000	4.08500000
н	0	-4.78000000	0.06458975	4,90600000
н	0	-4 58800000	-1 67900000	4 63500000
 ц	0	2 42600000	0.81454470	5 6700000
	0	-3.43000000	0.01434479	3.07000000
п 	0	-2.63900000	0.50250317	3.00000000
н	0	-2.41400000	-1.24600000	3.43300000
н	0	-2.74100000	0.00689772	-4.55900000
н	0			
	0	-2.32100000	-1.65000000	-4.12400000
Н	0 0	-2.32100000 -3.79400000	-1.65000000 -1.34200000	-4.12400000 -5.08200000
H H	0 0 0	-2.32100000 -3.79400000 -2.14000000	-1.65000000 -1.34200000 -4.97600000	-4.12400000 -5.08200000 -3.94100000
H H H	0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419	-1.65000000 -1.34200000 -4.97600000 -5.57200000	-4.12400000 -5.08200000 -3.94100000 -3.01300000
H H H H	0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000	-1.65000000 -1.34200000 -4.97600000 -5.57200000 -6.66000000	-4.12400000 -5.08200000 -3.94100000 -3.01300000 -3.36700000
н н н н	0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000	-1.6500000 -1.34200000 -4.97600000 -5.57200000 -6.66000000 -6.48700000	-4.12400000 -5.08200000 -3.94100000 -3.01300000 -3.36700000 -2.12300000
н н н н		-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 2.62300000	-1.6500000 -1.34200000 -4.97600000 -5.57200000 -6.66000000 -6.48700000 -6.83100000	-4.12400000 -5.08200000 -3.94100000 -3.01300000 -3.36700000 -2.12300000 -0.36649540
н н н н н		-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 1.30600000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000	-4.12400000 -5.08200000 -3.94100000 -3.01300000 -3.36700000 -2.12300000 -0.36649540 -1.44700000
H H H H H H		-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 2.62300000 1.30600000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 -7.3320000	-4.12400000 -5.08200000 -3.94100000 -3.01300000 -3.36700000 -2.12300000 -0.36649540 -1.44700000
н Н Н Н Н Н		-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 2.62300000 1.30600000 8.60600000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 0.8880926 0.8452462	-4.12400000 -5.08200000 -3.94100000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -4.14600000
н Н Н Н Н Н Н Н	0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 2.62300000 1.30600000 8.60600000 8.91800000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.8889236 -0.84624694	-4.12400000 -5.08200000 -3.94100000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -4.14600000 -3.98300000
н н н н н н н н н н н н н н н н н н н	0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 2.62300000 1.30600000 8.60600000 8.91800000 7.28400000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.8889236 -0.84624694 -0.29160738	-4.12400000 -5.08200000 -3.94100000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -4.14600000 -3.98300000 -4.38300000
н н н н н н н н н н н н	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 1.30600000 8.60600000 8.91800000 7.28400000 6.71300000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.8889236 -0.84624694 -0.29160738 6.41500000	-4.12400000 -5.08200000 -3.01300000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -4.14600000 -3.98300000 -4.38300000 0.49706827
H H H H H H H H H H H H H H H H H H H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.70200000 1.30600000 8.60600000 8.91800000 7.28400000 6.71300000 6.48200000	-1.6500000 -1.3420000 -4.9760000 -5.5720000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.8889236 -0.84624694 -0.29160738 6.4150000 5.06400000	-4.12400000 -5.08200000 -3.94100000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -4.14600000 -3.98300000 -4.38300000 0.49706827 1.63100000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.62300000 1.30600000 8.60600000 8.91800000 7.28400000 6.71300000 8.48200000 8.11900000	-1.6500000 -1.3420000 -4.9760000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.88889236 -0.84624694 -0.29160738 6.4150000 5.0640000 5.5680000	-4.1240000 -5.0820000 -3.9410000 -3.3670000 -2.1230000 -0.36649540 -1.4470000 -4.1460000 -3.9830000 -4.3830000 0.49706827 1.6310000 1.1630000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2.32100000 -3.79400000 -2.14000000 -0.73347419 -2.10500000 2.62300000 1.30600000 8.60600000 8.91800000 7.28400000 6.71300000 6.48200000 8.11900000	-1.6500000 -1.3420000 -4.9760000 -6.6600000 -6.4870000 -6.8310000 -7.3320000 0.88889236 -0.84624694 -0.29160738 6.4150000 5.0640000 5.5680000 4.8080000	-4.12400000 -5.08200000 -3.94100000 -3.36700000 -2.12300000 -0.36649540 -1.44700000 -3.98300000 -4.38300000 0.49706827 1.63100000 -1.16300000 -1.19000000

25 125 1.0
26
27 28 1.0 81 1.0
28 29 1.5 30 1.5
29 125 1.0
30 125 1.0
31 32 1.5 38 1.5
32 33 1.0 36 1.5
33 34 1.0 35 2.0
34 113 1.0
35
35 36 37 1.5 116 1.0
35 36 37 1.5 116 1.0 37 38 1.5 39 1.0
35 36 37 1.5 116 1.0 37 38 1.5 39 1.0 38 54 1.0
35 36 37 1.5 116 1.1 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0
36 36 37 1.5 116 1.0 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40
35 36 37 1.5 116 1.0 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40 41 42 2.0 43 1.0
35 36 37 1.5 116 1.0 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40 41 42 2.0 43 1.0 42 125 1.0
35 36 37 1.5 116 1. 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40 41 42 2.0 43 1.0 42 125 1.0 43 44 1.5 54 1.5
35 36 37 1.5 116 1. 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40 41 42 2.0 43 1.0 42 125 1.0 43 44 1.5 54 1.5
35 36 37 1.5 116 1. 37 38 1.5 39 1.0 38 54 1.0 39 40 2.0 41 1.0 40 41 42 2.0 43 1.0 42 125 1.0 43 44 1.5 54 1.5

н	0	2 84700000	7 91400000	-0 93492756			
	0	1 42200000	6 86500000	1 10200000			
н	0	1.43200000	6.86500000	-1.19300000			
н	0	2.36900000	6.75000000	0.32496012			
н	0	11.07300000	-1.98700000	1.13500000			
 Ц	0	10 40200000	2 55600000	1 62200000			
	0	10.40200000	-3.33000000	1.03300000			
н	0	10.50600000	-3.11500000	-0.10037254			
н	0	2.95500000	5.09900000	-1.25100000			
ц	0	1 2100000	2 7010000	0 00827055			
	0	4.34900000	5.70100000	-0.00827955			
н	0	5.34500000	5.05500000	-1.17800000			
н	0	5.98800000	2.54800000	-2.03600000			
ц	Δ	6 58800000	1 84500000	2 19700000			
	0	0.38800000	1.0400000	-3.40700000			
н	0	6.08300000	1.18200000	-0.04770952			
Н	0	7.36600000	-0.01798868	0.02169258			
н	Λ	8 34400000	-0 71/102873	-1 7/1500000			
	0	0.34400000	-0.71452075	-1.74500000			
н	0	1.19100000	3.72400000	-0.32958075			
Н	0	6.90200000	-1.87400000	1.98800000			
н	0	-1 75500000	5 14900000	-1 30300000			
	0	1.75500000	0.14070000	1.30300000			
н	0	4.02400000	-0.116/6026	1.22800000			
н	0	2.30000000	-3.76900000	2.46200000			
н	0	-3.08300000	-2.86900000	0.19805491			
	0	4 17200000	4 1 1 7 0 0 0 0	0.20126504			
п	U	-4.17200000	-4.11700000	-0.28130504			
н	0	-1.44200000	-2.29500000	-1.39100000			
н	0	-0.41936651	-3.68700000	-1.86600000			
	0	2 17200000	E 00700000	1 40000000			
п	U	-3.17200000	-5.90700000	-1.49000000			
н	0	-8.45000000	2.47400000	-0.46268410			
н	0	-6.90800000	2.66300000	0.35974909			
	~	4.37000000	1 10 400000	2 1 2 400000			
н	0	-4.37900000	-1.19400000	2.13400000			
La	0	-3.90000000	0.86148825	0.01088327			
1 2 1 0 10	1 1	0 102 1 0 102	1.0				
121.010	тт	.0 102 1.0 103	1.0				
2 3 1.5 4	1.5						
3							
1							
4							
561.090) 1.(0 91 1.0 92 1.0					
672.011	11	.0					
79100	1 0						
/81.09	1.0						
8 107 1.0	10	8 1.0					
9 109 1.0	11	0 1.0					
10 11 1 0	12	1 0 0 0 1 0 0 7 1	1.0				
10 11 1.0	12	1.0 96 1.0 97 1	1.0				
11 106 1.	0						
12 93 1.0	94	1.0 95 1.0					
121/10	00	1 0 00 1 0 100	10				
15 14 1.0	90	1.0 99 1.0 100	1.0				
14 104 1.	0						
15 16 1.0	73	1.0 74 1.0 75 1	1.0				
16 17 1 5	10	1 5					
10 17 1.5	10	1.5					
17 125 1.	0						
18 125 1.	0						
19 20 1 0	67	1 0 68 1 0 69 1	1.0				
15 20 1.0	07	1.0 00 1.0 05 1	1.0				
20 21 2.0	22	1.0					
21 125 1.	0						
22 122 1 0 123 1 0							
22 122 1.0 123 1.0							
23 24 1.0 /0 1.0 /1 1.0 /2 1.0							
24 25 1.5	26	1.5					
25 125 1	0						
20 220 21	•						
26							
27 28 1.0	81	1.0 82 1.0 83 1	1.0				
28 29 1.5	30	1.5					
20 125 1	0						
23 123 1.	0						
30 125 1.	υ						
31 32 1.5	38	1.5 115 1.0					
37 33 1 0	36	1.5					
22 23 1.0	20	2.0					
33 34 1.0	35	2.0					
34 113 1.	0						
35							
20274-	4.4	C 1 0					
30 37 1.5	11	01.0					
37 38 1.5	39	1.0					
38 54 1.0							
20 40 2 0 41 1 0							
39 40 2.0 41 1.0							
40							
41 42 2.0	43	1.0					
12 125 1	۰						
-+C ICO I.	J						

44 45 1.5 125 1.0

116 117 118 119 120 121 122 123 124 125 CHNOO 6-31G(d) **** La O S 5 1.00 60228.6130000 0.000003 7142.4190000 0.000035 1034.3051000 0.000329 563.4427000 -0.000106 123.5532000 0.003280 S 1 1.00 34.5544000 1.0 S 1 1.00 24.6330000 1.0 S 1 1.00 11.2660000 1.0 S 1 1.00 2.9062000 1.0 S 1 1.00 1.5433000 1.0 S 1 1.00 0.5672000 1.0 S 1 1.00 0.2539000 1.0 S 1 1.00 0.0467000 1.0 S 1 1.00 0.0200000 1.0 P 6 1.00 3966.3547000 0.000004 1143.9280000 0.000033 446.9977000 0.000034 229.5466000 0.000362 27.3267000 -0.007136 19.4864000 0.206654 P 1 1.00 13.9024000 1.0 P 1 1.00 4.2361000 1.0 P 1 1.00 2.2936000 1.0 P 1 1.00 1.1258000 1.0 P 1 1.00 0.5279000 1.0 P 1 1.00 0.2292000 1.0 P 1 1.00 0.0800000 1.0 D 6 1.00 367.7157000 0.000074 113.5768000 0.000612 33.5588000 0.007687 14.4198000 -0.076510 7.3159000 0.151754 3.9483000 0.421873 D 1 1.00 2.0150000 1.0 D 1 1.00 0.9581000 1.0 D 1 1.00

0.3109000 1.0 D 1 1.00 La O 0.0954000 1.0 ECP28MWB 5 28 F 5 1.00 H-Komponente 124.7971000 0.001150 1 2 1.000000 0.000000 43.9427000 0.014333 19.2668000 0.062594 S-H 8.4893000 0.164000 1 2 19.441418 585.201953 3.7672000 0.285863 F 1 1.00 P-H 1.5902000 1.0 1 2 16.016353 330.109510 F 1 1.00 0.6098000 1.0 D-H F 1 1.00 1 0.1973000 1.0 2 15.128259 186.058232 G 4 1.00 F-H 19.2668000 -0.002118 1 8.4893000 0.026709 2 23.103875 -49.433352 3.7672000 -0.029667 G-H 1.5902000 0.282785 1 2 15.639020 -20.123020 G 1 1.00 0.6098000 1.0 G 1 1.00 stoichiometry=H2O1 0.1973000 1.0 solventname=water **** eps=4.0

Figure S11 Input for the calculation of the La³⁺ PQQ^{•-} species.

For the semiquinone PQQ^{•-} species, following modification was implemented, while the rest of the input file was unchanged to figure S10:

#p opt=maxcycle=999 freq ub3lyp/gen scrf=(cpcm,solvent=water,read)
geom=connectivity formcheck pseudo=read scf=maxcycles=1024

La(III) - PQQ(-1)

-1 2

Figure S12 Input for the calculation of the Ce^{3+} and Lu^{3+} variants of the PQQ⁰ species. For the semiquinone PQQ^{•-} species, the input files were exactly the same, but the charge and multiplicity were changed to -13 for Ce^{3+} and -12 for Lu^{3+} .

Ce³⁺ PQQ⁰

#p opt(maxcycle=999) freq ub3lyp/gen
scrf=(cpcm,solvent=water,read)
geom=connectivity scf=maxcycles=1024 pseudo=read

Ce(III) - PQQ(0)

02

Atomic coordinates and geometry specifications as in Figure S10

CHNO0 6-31G(d) **** Ce 0 S 5 1.00 66920.6810000 0.000005 7142.4190000 0.000062 1149.2279000 0.000408 626.0474000 0.000080 137.2813000 0.003559 S 1 1.00 36.6434000 1.0 S 1 1.00 25.9742000 1.0 S 1 1.00 11.8859000 1.0 S 1 1.00 3.0284000 1.0 S 1 1.00 1.5664000 1.0 S 1 1.00 0.5937000 1.0 S 1 1.00 0.2630000 1.0 S 1 1.00 0.0490000 1.0 S 1 1.00 0.0207000 1.0 P 6 1.00 3813.8026000 0.000005 1216.9447000 0.000051 496.6641000 0.000053 212.5431000 0.000671 27.6306000 0.008805 19.6040000 0.150861 P 1 1.00 13.8918000 1.0 P 1 1.00 4.4389000 1.0 P 1 1.00 2.3374000 1.0 P 1 1.00 1.1067000 1.0 P 1 1.00 0.5287000 1.0 P 1 1.00 0.2305000 1.0 P 1 1.00

0.0800000 1.0 D 6 1.00 367.7157000 0.000120 109.8798000 0.000991 36.0211000 0.007778 14.7637000 -0.062958 7.3281000 0.180342 3.9441000 0.432529 D 1 1.00 2.0202000 1.0 D 1 1.00 0.9649000 1.0 D 1 1.00 0.3273000 1.0 D 1 1.00 0.1032000 1.0 F 5 1.00 123.4821000 0.001566 43.9881000 0.018101 19.4518000 0.076157 8.6013000 0.192683 3.8049000 0.324332 F 1 1.00 1.6176000 1.0 F 1 1.00 0.6364000 1.0 F 1 1.00 0.2164000 1.0 G 4 1.00 19.4518000 0.002199 8.6013000 0.037428 3.8049000 0.030378 1.6176000 0.355664 G 1 1.00 0.6364000 1.0 G 1 1.00 0.2164000 1.0 **** Ce 0 ECP28MWB 5 28 H-Komponente 1 2 1.000000 0.000000 S-H 1 2 20.137829 580.083457 P-H 1 2 15.998482 310.302833 D-H 1 2 14.974187 167.813944 F-H 1 2 23.402455 -49.390229 G-H 1 2 16.570553 -21.331879 stoichiometry=H2O1 solventname=water

eps=4.0

CHNOO 6-31G(d) **** Lu O S 5 1.00 95169.7670000 0.000022 15488.4030000 0.000145 3776.2335000 0.000651 1079.0501000 0.002038 268.9538000 0.005127 S 1 1.00 63.4679000 1.0 S 1 1.00 45.1332000 1.0 S 1 1.00 21.4568000 1.0 S 1 1.00 5.3483000 1.0 S 1 1.00 2.6778000 1.0 S 1 1.00 1.0287000 1.0 S 1 1.00 0.4408000 1.0 S 1 1.00 0.0791000 1.0 S 1 1.00 0.0313000 1.0 P 6 1.00 4043.9748000 0.000294 958.8771000 0.002353 309.1220000 0.010441 114.2203000 0.025828 37.1091000 0.085047 20.4579000 -0.200371 P 1 1.00 14.5932000 1.0 P 1 1.00 6.527500 1.0 P 1 1.00 3.2448000 1.0 P 1 1.00 1.4504000 1.0 P 1 1.00 0.6635000 1.0 P 1 1.00 0.2858000 1.0 P 1 1.00 0.080000 1.0 D 6 1.00 484.5275000 0.002286

01 Atomic coordinates and geometry specifications as in Figure S10

Lu(III) - PQQ(0)

#p opt=maxcycle=999 freq rb3lyp/gen scrf=(cpcm,solvent=water,read) geom=connectivity pseudo=read scf=maxcycles=1024 formcheck

146.6655000 0.018629 56.3779000 0.074088 23.6711000 0.161554 9.4401000 0.308091 4.3712000 0.448334 D 1 1.00 1.9580000 1.0 D 1 1.00 0.7272000 1.0 D11.00 0.2460000 1.0 D 1 1.00 0.0744000 1.0 F 5 1.00 175.1559000 0.004102 62.8909000 0.039086 28.3624000 0.147044 13.2478000 0.271092 6.1440000 0.345665 F 1 1.00 2.7623000 1.0 F 1 1.00 1.1574000 1.0 F 1 1.00 0.4244000 1.0 G 4 1.00 28.3624000 0.047905 13.2478000 0.150128 6.1440000 0.322911 2.7623000 0.444494 G 1 1.00 1.1574000 1.0 G 1 1.00 0.4244000 1.0 **** Lu O ECP28MWB 5 28 H-Komponente 2 1.000000 0.000000 S-H 2 35.162097 989.995584 P-H 2 19.464402 278.865652 D-H 2 10.006865 71.009178 F-H 2 23.517932 -47.405890 G-H 2 29.412238 -35.557146 stoichiometry=H2O1 solventname=water

1

1

1

1

1

1

eps=4.0

Number Orbital	Orbital	Location of highest e ⁻ - density	Additional e ⁻ -density	Energy			
	Orbitai			Hartrees	eV	kJ/mol	
			La ³⁺ PQQ ⁰				
265	HOMO-3	Asp388	Asp301 + Arg326	-0.23192	-6.31087	-608.906	
266	HOMO-2	Asp301	Asp388	-0.23137	-6.29590	-607.462	
267	HOMO-1	Asp388	Arg326	-0.22645	-6.16202	-594.544	
268	НОМО	Asp388	-	-0.21038	-5.72473	-552.353	
269	LUMO	PQQ	-	-0.14161	-3.85341	-371.797	
270	LUMO+1	PQQ	-	-0.11693	-3.18183	-307.000	
La ³⁺ PQQ ^{*-}							
266-a	HOMO-3	PQQ	Asp388	-0.22487	-6.11903	-590.396	
266-b	HOMO-2	Asp388	Arg326 + PQQ	-0.22295	-6.06678	-585.355	
267-a	HOMO-2	Asp388	Arg326	-0.22282	-6.06324	-585.014	
267-b	HOMO-3	PQQ	Arg326 + Asp388	-0.22212	-6.04420	-583.176	
268-a	HOMO-1	Asp388	-	-0.20769	-5.65154	-545.290	
268-b	HOMO-1	Asp388	-	-0.20768	-5.65126	-545.264	
269-a	номо	PQQ	-	-0.17401	-4.73506	-456.863	
269-b	LUMO	PQQ	-	-0.10397	-2.82917	-272.973	
270-а	LUMO+1	PQQ	-	-0.10276	-2.79624	-269.796	
	I	T	Ce [™] PQQ [®]	1			
266-b	HOMO-3	Asp388	Asp301	-0.23159	-6.30189	-608.040	
266-a	HOMO-3	Asp388	Asp301	-0.23158	-6.30162	-608.013	
267-b	HOMO-2	Asp388	Arg326	-0.22657	-6.16529	-594.860	
267-a	HOMO-2	Asp388	Arg326	-0.22657	-6.16529	-594.860	
268-b	HOMO-1	Asp388	-	-0.21046	-5.72691	-552.563	
268-a	HOMO-1	Asp388	-	-0.21046	-5.72691	-552.563	
269-a	SOMO	Ce ³⁺	-	-0.19763	-5.37779	-518.878	
269-b	LUMO	PQQ	-	-0.14155	-3.85177	-371.640	
270-а	LUMO	PQQ	-	-0.14155	-3.85177	-371.640	
270-b	LUMO+1	PQQ	-	-0.11667	-3.17475	-306.317	
271-a	LUMO+1	PQQ	-	-0.11671	-3.17584	-306.422	
			Ce st PQQ				
266-a	HOMO-3	PQQ	-	-0.22722	-6.18297	-596.566	
266-b	HOMO-3	PQQ	-	-0.22373	-6.08801	-587.403	
267-a	HOMO-2	Asp388	Arg326	-0.22237	-6.05100	-583.832	
267-b	HOMO-2	Asp388	Arg326	-0.22235	-6.05045	-583.780	
268-a	HOMO-1	Asp388	-	-0.20890	-5.68446	-548.467	
268-b	HOMO-1	Asp388	-	-0.20885	-5.68310	-548.336	
269-a	SOMO	Ce	-	-0.18258	-4.96826	-479.364	
270-a	НОМО	PQQ	Ce	-0.17564	-4.77941	-461.143	
269-b	LUMO	PQQ	-	-0.10564	-2.87461	-2/7.358	
270-b	LUMO+1	PQQ	-	-0.09881	-2.68876	-259.426	
272		4		0 22000	6 20556	505 AGA	
272	HOMO-3	Asp388	Arg326 + PQQ	-0.23099	-6.28556	-606.464	
2/3	HOMO-2	Asp388	Arg326 + Asp301	-0.22661	-6.16638	-594.965	
274	HOMO-1	Asp301	-	-0.22574	-6.14270	-592.680	
275	HOMO	Asp388	-	-0.21016	-5./18/5	-551.775	
276		PQQ	-	-0.14311	-3.89422	-3/5./35	
2//	LUMO+1	PQQ	- · 3+ > > > • -	-0.11684	-3.17938	-306.763	
2/3-a		Asp388	A18320	-0.22188	-0.03/0/	-582.546	
2/3-0		Asp388	AIg320	-0.2218/	-0.03/39	-582.520	
274-a		Asp301	-	-0.22005	-5.98/8/	-5//./41	
274-0		Asp301	-	-0.21990	-5.98379	-5//.34/	
272-a		ASP388	-	-0.20811	-5.66296	-546.393	
275-0	HUIVIU-1	Аѕрзаа	-	-0.20806	-5.66160	-546.262	
276-a	HUIVIO	PQQ	-	-0.1/618	-4./9410	-462.561	
276-b		PQQ	-	-0.10606	-2.88604	-278.461	
277-a	LUIVIO+1	FUU	-	-0.10285	-2.79869	-270.033	

Table S5: Location of highest electron density and energy values of the calculated molecular orbitals (MO) forthe calculations given in Figure S9.

1 Hartree ~ 27.2114 eV ~ 2625.50 kJ \cdot mol⁻¹.^[15]

 Table S6 Ln-ligand distances [Å] for the active site calculations given in Figure S9.

	La-PQQ ⁰	La-PQQ*-	Ce-PQQ ⁰	Ce-PQQ*-	Lu-PQQ ⁰	Lu-PQQ'⁻
PQQ O2	2.88072	2.61357	2.86311	2.59050	2.72515	2.43018
PQQ N6	2.96958	2.85159	2.94383	2.81733	2.73335	2.63617
PQQ O3	2.71471	2.76245	2.69047	2.73264	2.49334	2.55311
Substrate O4	2.63346	2.65730	2.63014	2.66181	2.59689	2.57834
Glu172 O5	2.54295	2.56530	2.52417	2.55965	2.41993	2.44482
Glu172 O6	2.67813	2.71147	2.66758	2.65592	2.55701	2.67900
Asn256 07	2.53227	2.61032	2.50117	2.58137	2.28928	2.39758
Asp299 08	2.39335	2.44359	2.35205	2.38363	2.17319	2.21431
Asp301 O10	3.86233	4.08612	3.84750	3.98604	3.73898	3.80749
Asp301 011	2.38081	2.36061	2.35938	2.33516	2.30894	2.28001

Table S7 Visualization of the frontier orbitals for the calculations given in Figure S9. In all cases, the LUMO of the PQQ^{0} species and the HOMO of the PQQ^{-} species seem to be the same PQQ related orbital. In case of La³⁺ and Lu³⁺, the sign of the orbital wave function changes, probably due to the change from a closed- to an open shell system.

References

- 1. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, *J. Comput. Chem.*, 2004, **25**, 1605-1612.
- 2. J. A. Bogart, A. J. Lewis and E. J. Schelter, *Chem. Eur. J.*, 2014, **21**, 1743-1748.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, M. C. X. Li, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford CT, 2016.
- 4. A. D. Becke, J. Chem. Phys., 1993, **98**, 5648-5652.
- 5. C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785-789.
- 6. G. A. Petersson and M. A. Al-Laham, J. Chem. Phy.s, 1991, **94**, 6081-6090.
- 7. G. A. Petersson, T. G. Tensfeldt and J. A. M. Jr., *J. Chem. Phys.*, 1991, **94**, 6091-6101.
- 8. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.
- 9. S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200-1211.
- 10. A. Pol, T. R. M. Barends, A. Dietl, A. F. Khadem, J. Eygensteyn, M. S. M. Jetten and H. J. M. Op den Camp, *Environ. Microbiol.*, 2014, **16**, 255-264.
- 11. X. Cao and M. Dolg, J. Mol. Struct. THEOCHEM, 2002, **581**, 139-147.
- 12. M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys., 1989, 90, 1730-1734.
- 13. Taken from <u>http://www.tc.uni-koeln.de/PP/clickpse.en.html</u> visited: Jan 22nd 2018).
- 14. M. Regueiro-Figueroa, D. Esteban-Gómez, A. de Blas, T. Rodríguez-Blas and C. Platas-Iglesias, *Chem.– Eur. J.*, 2014, **20**, 3974-3981.
- 15. CODATA Recommended Values. National Institute of Standards and Technology. <u>https://physics.nist.gov/cgi-bin/cuu/Value?threv</u> visited Mar 26th 2018).